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From material point to Cosserat fiber bundle.
Development of ideas.

Jurij Povstenko

The aim of the present paper is to show the development of ideas and
mathematical notions used for description of continua with microstructure.

In Euclid’s FElements a surface is defined as something that has a
length and a width but does not have a hight, a curve is something that
has only a length but does not have a width and a hight, and a point is
considered as something that has no parts [14].

In mechanics of continua a material point is considered, on the one
hand, as a very small particle to apply methods of mathematical analysis
(the notions of continuous and differentiable functions of a point); on the
other hand, a material point contains a very large number of atoms to
consider continuum instead of discrete lattice. Hence, ,,a point” has parts.
But the classical continuum theory of solids is based upon the assumptions
that each small particle behaves like a single material point and ignores the
relative motions of constituent parts of this particle. In other words, the
internal structure of a material point is not taken into account. Let the
initial coordinate of a material point of a medium B be denoted by X and
let this point be at a geometrical point x of three-dimensional Euclidean
space at time ¢. The motion of the medium is described by the equation

x = x(X, 1) (1)
with deformation gradient
0z
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However, the results of experiments show that ,,a point” may have an
internal structure which can influence the behavior of a medium (further
discussion of a model of material point can be found in [20]). These facts
have forced researchers to build up generalized continuum theories that take
into account the internal structure of a small particle. Such a structure can
be described using various methods. The microstructure theory of Mindlin
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[17], the micromorphic theory of Eringen and Suhubi [9, 10], the director
theory of Toupin [21], and the multipolar theory of Green and Rivlin [11,
12] should be mentioned.

Mindlin suggested that each element (point) of the material is itself a
deformable continuum. These continua are fitted together smoothly, so all
the simplicity of a field theory results. The macromedium is a collection
of particles, with each of which is associated a micromedium. If the initial
coordinate of a material point of a macromedium is X and if this point is
at a geometrical point x at time ¢, then the displacement vector has the

form
u=x-X=u(X,t). (3)

For a micropoint with the material = and spatial £ position vectors the

microdisplacement vector is defined as
w=¢§-E=w(X,E1). (4)

The ensuing development of the theory is based on the assumptions con-
cerning the dependence of microdisplacement w on the arguments X and

p—
L)
Td

Eringen [8] and Eringen and Suhubi [9, 10] supposed that the material
particle contains N discrete micromaterial elements. The position vector
of a material point in the ath microelement is expressed as

X*=X+E2, (5)

where the center of mass of macroelement has the position vector X and
= is the position of a point in the microelement relative to this center of
mass. Upon the deformation of the body, because of the rearrangement
and relative deformation of the microelements, we obtain the new position
vector of the center of mass x and the new relative position vector €% of the
material point. The motion of the center of mass is expressed as usually
by equation (1), however the relative position vector £* depends not only
on X but also on E:

£ =&(X,B%1). (6)
The displacement vector is defined as the vector that extends from X®

o x"
=%t = X4 (7)

or
u*=x-X+¢* - E9, (8)

where u = x — X is the classical displacement vector (the displacement
vector of the center of mass).
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A microstructure theory must lean heavily on the assumption charac-
terizing the dependence of £ on E°. The basic assumption underlying the
theory of Eringen and Suhubi is the axiom of affine motion according to
which equation (6) is linear in Z* and the motion of the particle consists of
a translation, a rotation about its center of mass, and an affine deformation.

Duhem [4] had noticed that microstructure could be described as ef-
fects of direction, and suggested that materials be considered as sets of
points having vectors attached to them, that is, as oriented media. Various
theories based on this idea were constructed in [21, 23].

Consider a body B that is the collection of material points to each of
which IV vectors called directors are attached. In other words, a body B
consists of material points and N directors attached to each point. The
theory is valid for a greater number of directors, but usually the range
1, 2 or 3 is considered. Let the initial coordinate of a material point be
denoted by X and the associated directors by D,(X), (¢ = 1,2,...,N).
Upon deformation of the body, the new position of the same material point
at time ¢ will be denoted by x and the corresponding directors by d,,
(@ = 1,2,...,N). Thus, the motion of such a generalized continuum is
described by the following equations

WX 1)) (9)
dyi=dz(Mt) (10)

or in Cartesian coordinates
&4 = TplXxc L) =122 H =123 (11)

doi' = dop(Xic,t), k=53 K=123"a=172"..n0, (12)

The translational velocity of a generalized material point and its microve-
locities are defined by

_0x
V:Z.EELX’

_0d,
Va = — ®

Similarly, for accelerations of a material points we have

(13)

(14)
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Strain gradient and microstructure gradient are

36)3(:; and Zigf ] (17)
We also have the right Cauchy—Green tensor
QKL = TiKTiL (18)
and the microstructure strain tensor
Qab = diadip. (19)

For example, a theory of liquid crystals proposed by Ericksen [6, 7]
corresponds to a choice of only one director (N = 1). Liquid crystal (a
substance that flows as a liquid but maintains some of the ordered struc-
tures characteristic of a crystal) has rodlike molecules whose alignment
influences its material behavior. Three main categories have been recogni-
zed: nematic, cholesteric and smectic. Nematic liquid crystals consist of
cigar-shaped molecules oriented with their long axes parallel. They ma-
intain their orientation but are free to move in any direction. Cholesteric
liquid crystals form in thin layers and within each layer the molecules are
arranged with their long axes in the plane of the layer and parallel to each
other, as a two—dimensional nematic structures. Smectic liquid crystals
consist of flat layers of molecules with their long axes oriented perpendicu-
larly to the plane of the layer. During motion the sheets flow freely over
each other, but the molecules within each layer remain oriented and do not
move between layers. In all these cases the orientation of the molecule can
be described by the director.

A Cosserat medium [3] corresponds to a choice of three independent
directors under the additional condition

didip = qup = const; 8, be=1,2 3. (20)

This condition means that during the deformation process directors can
only rotate as the rigid body. The motion of a Cosserat continuum is
determined both by the displacement vector

u="u{X;t) (21)

and the rotation vector
¢ = (X, t) (22)

independent on it.
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The deformation of a Cosserat continuum is described by the deforma-

tion gradients

Ouyp
k=112 Ka=d.2.3
aX}\‘" ) )31
and 5
Pk
k=1,2 =123
aXK, ? !3,

(23)

(24)

A generalized understanding of media with microstructure can be achie-
ved using the mathematical structure of a fiber bundle (see e.g. [18, 24]).

A structure of differentiable fiber bundle is a six-tuple

(E’ B’ F’G77r1¢)’

where
the differentiable manifold F is the total space,
the differentiable manifold B is the base,
the differentiable manifold F' is the fiber,
the Lie group G is the structural group,
the differentiable map 7 : E — B is the projection,
1 is a family of diffeomorphisms.
The following axioms must be satisfied.
(i) The local triviality:

Vz € B Uy Ftha € % 1 Yo : Uy X F — 7~ 1(U,)

with
ToYe(z,f)=2 for (z,f) € Uy X F,

where U, is an open covering of B.
(ii) If z € U, N Ug, the diffeomorphism

ng;ogbaz:F—)F

coincides with the operation of an element g € G.
For trivial (product) fiber bundle

E.=B x F.

(25)

(26)

(27)

(28)

(29)

Important special cases of fiber bundles are the tangent bundle, the
vector bundle, the principal bundle, and the associated bundle [18, 24].
A vector bundle is a differentiable fiber bundle in which the fiber F is

a linear space and the maps

Yoz : F — F

(30)
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are linear isomorphisms.
In a case of tangent bundle T'(M) of a differentiable manifold M,

E=TWM)= U T.(M), (31)
zeM
the base space is the manifold M, the fiber at any point z € M is the
tangent space T;(M) (all the fibers are copies of the vector space IR").
The projection is defined by

T:T(M) — M. (32)

The structural group is G = GL(n,IR), i.e. the full linear group on the
fiber F = R"™.

The principal fiber bundle looks like a collection of copies of the struc-
tural group G sitting over the base manifold B. For each z € B the fiber
7n~!(z) is diffeomorphic with the structural group G. For example, the
canonical trivial principal bundle is defined as the product

B='B W, (33)

Below we present various fiber bundles which are used in the literature
for describing the continua with microstructure.

The extra degrees of freedom in liquid crystals may be summarized by
choosing E = R® x R, where R is some manifold. The body should consist
of points in physical space together with rod variables (a representative of
R) attached to each point. For example [16],

PR % P? (34)

corresponds to nematic liquid crystals with inextensible undirected rods.
Here IP? is a real projective two-space (the unit two—sphere $2 in IR® with
antipodal points identified). It is used to model inextensible rods that have
indistinguishing ends.

For cholesteric liquid crystals with inextensible directed rods the con-
taining space is represented by

E=R¥x5% (35)

The two-sphere S? is used to model vectors that are free to point in any
directions, but which are inextensible.

At least, we have
E=R°xR? (36)

for a general case of both extensible and directed rods.
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The configuration space for the micromorphic continuum has the form
[19] |
E=R3xGL*(3) (37)

and that for the Cosserat continuum is written as
E = R°® x SO(3), (38)

where GL*(3) is the general linear group the elements of which have posi-
tive determinants, SO(3) is the special orthogonal group.
The following fiber bundles

E=R?x (T(3)>S0(3)) (39)

and
E=R3x (T(3)550(3)) ® {:90(3)@...@50(32} (40)
N

are utilized in the gauge theories of Cosserat continuum [1, 5, 13] (see
also [2]) and continuum with N directors [15], respectively. Here b is the

semidirect product and { SO0(3)®...® SO(3) } denotes the direct product

N
repeated N times (the number of directors describing the microstructure).
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