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The classical continuum theory of solids is based upon the assumption
that each small particle behaves like a single material point and ignores
the relative motions of constituent parts of this particle. The internal
logic of the development of mechanics of continuous media, as well as the
growing field of applications of the theory, has led to the study of media
with microstructure, for example, the microstructure theory of Mindlin [8],
the micromorphic theory of Eringen and Suhubi [5], the director theory of
Toupin [19], the multipolar theory of Green and Rivlin [6], etc. The motion
of Cosserat continuum is determined both by the displacement field u and
by the rotation field ¢ independent on it, which causes the appearance of
couple-stresses T alongside the usual stresses o [3].

A convinient device for studying the Cosserat continua is the motor
calculus. The algebra of motors was developed by Mises [9, 10], the diffe-
rential operators for three-dimensional motors were introduced in {11, 12,
16, 17], the motor analysis for a Cosserat surface and a Cosserat line was
developed by the author [14].

A motor is the ordered pair of two vectors: the 'moment vector’ and
the ’ordinary (force) vector’. The underlined letters explain the origin of a
term 'motor’.

For example, a force field in a rigid body can be reduced to a force
vector F(P) at a point P and to a moment vector C(P) at the same point

o= )

Changing a reduction point we obtain

_(F@Q) _ F(P) )
R (C(Q)) 1 (C(P)+F(P)xcz_ﬁ ' )

For a given point P of a rigid body infinitesimal translation and infinite-
simal rotation are described by the translation vector u(P) and the rotation
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vector ¢(P) forming a motor

For another point @)

(cp(Q)) _ ( ©(P) __}) (4)
u(Q) u(P) +¢(P)x QP)

Equation (2) (or (4)) reflects the essential feature of the motor. Thus, a
motor is the ordered pair of two vectors which change according to a rule
(2) when changing a reduction point.

Introducing the three-dimensional del-operator

0

k

V=e W, k:1,2,3, (5)
where z* are the curvilinear coordinates, e* are vectors of the local basis,

we use the folllowing invariant notations for the gradient of a motor field
(‘X,), the divergence and the curl of a motor-tensor field (?{)

\ vV

X (W) i (VW— (V x g)T)’ )
Q v-Q

v (2)= (v @uer): 3
Q vVxQ

VX(R):(VXR—( §g)’f)‘ &

We use the following order of operations X and ¥ in (7) and (8): the cross
product of the neighbouring basis vectors of tensor Q and the metric tensor
g; the permutation of the second and the third basis vectors in the product
(QT denotes the transpose of tensor Q); the scalar or cross product of the
first and the second basis vectors.

The repeated action of the del-operator leads to the motor analogue
[17] of the well-known relations

oo o)
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The Gauss—Ostrogradski formula is also fulfilled for motors [11]

/;V-(g)defAn-(g)dA, (11)

where n denotes the unit normal to a surface A which is a boundary of
a volume V. It is natural that all the terms in (11) must be written for
arbitrary (non-zero) point of reduction.

Substituting the first fundamental tensor of a surface a for the metric
tensor g, we define the following differential operators for motors given at
two—dimensional surface embedded into a three-dimensional space

Vs VVsg
Vv =
: (Wg) (VWE — (Vg X a)T)' (12)
Q= Vs Qg
Vs - — : 13
: (Rz Vs R - (Qga)T (13)
Qx Vs X Qg
Vg X = , 14
% (Rz) (Vz X Ry — (ina)T) (4)
where Vg is the surface del-operator
Wy g tnioy = 1 9 (15)
2y — ayal .

with y* being the surface curvilinear coordinates, a® vectors of the local
surface basis.
The equations analogous to equations (9) and (10)

Vs X [Vz (V‘;’;)] —eg-b- Vs (:Vf;)’ (16)
Vs [Vz X (g;)] =Vgyg- l:ez -b-Vy (gz)] —2Hn - I:VE R (32)]
(17)

and the surface analogue of (11)

s Q Q
/Evz-(Rz) dE_/LN-(Rz) dL—[E2Hn-(R§) £ (18)

are fulfilled, where €y, is the surface alternating tensor, b denotes the second
fundamental tensor of the surface, H = %bg is the mean curvature. The
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closed curve L is the boundary of the surface ¥ and N is the outward unit
vector normal to L and tangential to X.
In a case of line embedded in a three-dimensional space we have the
one—dimensional del-operator
0
Vi =A— 19
L as) ( )
where s. denotes the length of a curve and A is the unit tangential vector.
For the line differential operators

e =3 \A%S?
Xs (WL) _ (VWL — (VL xA® A)T)’ (20)
Qr\ _ v Qr
Vi - (RL) o (VL Ry, — (QLXA®A)T)’ (21)
QL it Vi xQpL
Vi X (RL) pe (VL xR — (QLiA® A)T) (22)

the following formulae

vix [vi( )] <wv e vi(w)] e
v [oux (3] = -or- vox () 24

and the one—dimensional analogue of the Gauss-Ostrogradski formula

fL vy (gﬁ) dL = [A- (gi)r 2y /L kT - (gi) dL  (25)

hold with k the first curvature, 7 the principal normal, v the binormal to
a curve (A, 7, v is the Frenet trihedron).

Now we shall write the basic equations for Cosserat continua of various
dimensions in motor recording (see also [7, 15]).

Three—dimensional Cosserat continuum

The equation of equilibrium

I R
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The geometrical relations

(9-+()
(-~

The stress—strain relation

(£) = (59):
5)=0)-v(%). 30

The kinematical equation

g-=l)  w

Here X and Y are the volume force and the volume couple, o and p are
the stress tensor and the couple-stress tensor

Defect currents

o=0"¢,Qe;, p=p'e;R®e;, (32)
~ and k are the strain tensor and the bend-twist tensor
T == 7ijei ® €, = ﬁijei ® €5, (33)

~P and &P are the plastic strain and plastic bend—twist tensors, vP and w?
are the velocities of plastic displacement and plastic rotation, & and @ are
the densities of dislocations and disclinations,

a=ca'e;Qe;, 0="0¢e®e;, (34)
J anf I are the dislocation and disclination currents

J=Jije.;®ej, I=1"¢;®e;, (35)
C and D denote the isotropic fourth—order tensors

C=Cimpe' e ®e™ @€’ D= Dijmpe' @k ®e™ g e,
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Cikmp = Agikgmp + 1(GimGkp + GipGkm) + 0(FimGkp — GipGkm),

Dikmp == »Bgikgmp . o 7(gimgkp + gipgkm) + E(gimgkp - ginkm)v

where A, p, o, B, 7, € are material constants. A dot denotes the time
derivative.

Two—dimensional Cosserat continuum

The equation of equilibrium

os\ _ Xy
Vs - (Mz) = (YE) (36)

The geometrical relations

Ky | _ \ i)
()-=(z)

The condition of compatibility

0 P p
ay; 245> ~ Ty

The stress—strain relation

o) 2 f0CyY) Ky
() = (B2 (2) @
Is) (K% % wh
)= GE) - ==(5%) e

The kinematical equation

0 I I
(5] =-vex (3F) +e- (). ()

Vectors Xy and Yy include an external loading, body forces and body
couples.

In the local basis formed by the tangential vectors a,, (a=1,2) and
the unit normal n the introduced tensors have the following structure

Defect currents

cos =0**a, ®as+ 7 a, ®n,
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py = p*Pa, ® ag + 1 a, @ n, (42)
75 =78, @ ap + 7*"a, @ n,
ky = k*Pa, ® ag + k" "a, ® n, (43)
ay = a”ﬁncg)ag +a"n® n,
0z =0"Pn®ag+6"nQ@n, (44)
Iy = J%Pa, ®ag+J "a, @ n,
Is = I*Pa, ® ag + I°"a, ® n. (45)

In the same basis tensors Cy and Dy have the components
Cg = Copysa® @ A’ ®@a'®al + Canpna® @n Q@ af ® i

Dy = Dypsa® @a’ @ a” ® a° + Dan naa®n®a“beta®n,
By 3

Capys = AL8aplys + px(Aayaps + Castpy) + ax(@ayaps — Gasapy),

Dogys = Braapays + Y5 (Gayaps + @astpy) + €x(ayass — Gasapy),

Cangn = 2#§aaﬁa
Danﬁn = 27‘-ELa'aﬁs

where Ay, px, pg, ax, Os, 75, 73, €5 are material constants.
Equations (36)—(41) can be considered as generalized equations for the
shell theory.

One—dimensional Cosserat continuum
The equation of equilibrium

oL\ _ (XL
Vi - (I-"L) = (YL). (46)

The geometrical relations

()-(2)
YL uy,

81
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The stress—strain relation

ory (0O Cy, (kL
(“L) = (DL 0) : ('YL) ' )

In the Frenet basis the stress tensor, the couple—stress tensor, the strain
tensor and the bend-twist tensor have the following structure

ap = O"\/\A®A+0"\TA®T+G'AUA®V,

pr = AN+ AR T + MA@ v, (49)
YL =7MARA+ AR T+ A QY
KL =K"ARA+ AR T+ kMAQ . (50)

We also present the structure of the line material constants tensors
CL=2UAQRARAR A+ A®TRAQT+ 2t AR v @ AQ v,

DL =2 AQAQAQA+ 27" AQRTQAQ T+ 2y A Qv AQ v.

In a case of one-dimensional Cosserat continuum we can formally write
the equation of compatibility

P 4
oL =-V n{,i +kv@X- R{; , (51)
aj, YL 1L

but due to the structure of tensors 47 and 7 (50) equation (51) is satisfied
identically. This means that dislocations and disclinations cannot exist in
a Cosserat line.

Equations (46)-(48) can be considered as generalized equations for the
rod theory.

The motor analysis is very effective in various investigations of me-
chanics and in the theory of defects in continua (for example, see [4, 13]).

Non—Abelian generalization of the motor calculus was developed by Stumpf
and Badur [18] and Badur [1] (see also [2]).
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