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In our country there is a tradition to penetrate into mathematical the-
ories to great depth, on the contrary we do not deal with applications so
much. I know from my own experience that there are countries where ma-
thematical applications dominate over theories. In my opinion, we should
find an approach which would be somewhere between these two extremes.

During educational process of future teachers of mathematics it is es-
sential to introduce mathematical theories to them deeply. But these the-
ories should be appropriately motivated and we should also show to use
them inside and outside mathematics.

In my presentation I would like to say something about a basis of
modular arithmetic and after it I want to show two different applications
of this topic. In addition to this I would like to point at the passages where
students can use an investigative approach. It will be the only opportunity
to ensure that our students will do the same with their own pupils. The
following text is a part of one of my lectures which is included into the
course called Basis of Abstract Algebra in the English Language.

Definition 1 Arithmetic Modulo n
Let n be a fixed positive integer. For any integers z and y

(z + y) mod n = the remainder upon dividing z + y by n;
(z.y) mod n = the remainder upon dividing z.y by n

Definition 2 Modular Equations
If z and y are integers and n is positive integer, we write

xz = y if and only if n divides z — y.

Consider the equation: 2z =3 mod 5
Solution: z is a solution of this equation if and only if z — 3 = 5k, for some
integer k. Thusis z — 3 = 0,+5,—-5,+10,-10,..., z is a solution of given
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equation if and only if z € {...,-7,-2,3,8,13,...}.

Consider the equation: 2z =7 mod 8

Solution: z is a solution of this equation if and only if 2z — 7 = 8k, for
some integer k. But this equation has no solution, because the left side is
always odd and the right side is always even.

The solution of these two equations can motivate our students to investigate
the conditions under which these equations have a solution. Applying this
method we can get the following theorem.

Theorem 1 When a and n are relatively prime, then equation ax = b mod n
has a solution.

The proof will then be the trainer’s task.

Proof: If a and n are relatively prime then there are integers r and s such
that ar + ns = 1. Then arb+ nsb = b and arb — b= —nsb. Thus arb — b is
divisible by n and rb is a solution to our equation.

Modular algebra has very important place in abstract algebra. We
shall present here only two basic theorems.

Theorem 2 The set Z, = {0,1,2,...,n— 1} for n > 1 is a group under
addition modulo n. This group is called the group of integers modulo n.

Theorem 3 The set {1,2,...,n — 1} is a group under multiplication mo-
dulo n if and only if n is a prime.

Applications of Modular Arithmetic

Modular Arithmetic has a lot of applications inside and also outside of
mathematics. Now we shall describe two applications which are interesting
particularly for teachers.
A) The generation of ,,random” numbers

A method for generating such numbers is to use a recursion formula of
the form

Tn+1 = (az, + ¢) mod m

To use such a formula we must choose the modulus m, the coefficients a, ¢
and an initial value for z.

Example: z,1 = (az, + ¢) mod m
If we choose a =3, ¢c=7,m=8, zg =1, then

21 =314+7=10 2 mod 8
22 =324 T=13 =:5 mod'8
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zg'=:3.5 o T =22 &= HmodB
24=3.64+7=25 = 1mod8

We can see that numbers generated in this way are completely determined
by the choice of parameters and the initial value of zo. So these numbers
are not random at all. But they have many properties that we expect of
random numbers and so are useful for simulation.

Now the students can start to investigate the relation between the
coefficients and modules on the one side (they have to select relatively small
numbers) and the generated numbers on the other side. This is, however a
considerably complicated problem.

B) The assigning of a check digit to an identification number (used
materials are from the USA)

Modular arithmetic is often used in assigning an extra digit to iden-
tification numbers. The purpose of this assigning is to detect forgery or
errors.

Most products sold in supermarkets have an identification number co-
ded with bars that are read by optical scanners. This code is called the
Universal Product Code (UPC). Each coded item is assigned a 12-digit
number. The first six digits identify the manufacturer, the next five cha-
racterize product and the last is a check.

To calculate the check digit we use the dot product for k-tuples.

Identification number ajaqas . . .a;7 satisfies the condition (second vec-
tor is called weighting vector)

(@1, a2,a3,...,a12).(3,1,3,...,1) = 3a; + a3 + 3as + - - - + a;2 = 0 mod 10.
It means that check digits is
(ay,az,as,...,a11).(3,1,3,...,3) mod 10.
We can verify that the number 037000707448 satisfies the above condition:
(0;3,7,0,0,0,7,0,7,4,4,8):(3,1,3,1,3,1,31,3,'1,3,'1) = 90°'= (" mod"10.
Now we shall show two examples of detecting of two types of errors.

Example of a single error (error in ezactly one position):
Correct number is 037000707448, but into computer the number

037000507448
is entered (the seventh digit is incorrect). Then the computer calculates

03+31+73+---48.1=284.
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Since 84 # 0 mod 10, the entered number cannot be correct.

Example of an error involving the transposition of two adjacent
digits:

Our identification number is entered as 073000707448 (second and third
digits have been transposed). By calculating the dot product, we obtain

03+714+33+---+8.1 =82

and 82 # 0 mod 10, so the entered number cannot be correct.

The above mentioned examples can motivate the trainees to investigate
which single errors and errors involving the transposition of adjacent digits
cannot be detected. In the second case they will probably come to the
conclusion that the only undetected transposition errors of adjacent digits
a, b are those where |a — b| = 5.

Let us make a note that at present the products sold in our shops are
mostly designated by 13-digit identification numbers.

The next theorems reveal the relationship between the weighting vector
and its ability to detect errors.

Theorem 4 (Error-Detecting Capability 1):
Suppose an identification number aa; . . .ay satisfies

(a1, asz,...,ak).(wy,wsy, ..., wx) =0 mod n

where 0 < a; < n for each i. Then all digit errors in th i-th position are
detected if and only if w; is relatively prime to n.
Proof: Consider a single error in the i-th position. Let 4; be substituted
for a;. Then the dot products differ by (a; — @;)w;. Thus the error is
undetected if and only if (a; — @;)w; = 0 mod n. If w; is relatively prime
to n, then w; belongs to U(n). (For each integer n > 1, we define U(n)to
be set of all positive integers less then n and relatively prime to n. U(n) is
a group under multiplication modulo n.) Therefore, w;' mod n exists. So
(a,- — d,-)w,-wt-_l = 0 mod n and é; = a;.

If w; is not relatively prime to n, then an error d; with |a; — d;| divisible

by will not be detected.

e AR
ged(w;,n)

Theorem 5 (Error-Detecting Capability 2):
Suppose an identification number aya; . ..a satisfies

(ay,asy,...,ar).(wy,wy,...,wg) =0 mod n
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where 0 < a; < n for each i. Then all errors of the form
NN ¢ PSS R/ 1 P RS B SN/ 1/ T8 SR (1 RS

are detected if and only if w; — w; is relatively prime to n.
Proof: Consider an error of the form

NN AL PSS RPN (1 S R I ¢ 1TSS RO ¢ 71/ S R

Then the dot products of the correct number and the incorrect number

differ by
(aiw; + ajw;) — (ajw; — aiw;) = (a; — a;)(wi — w;)
Thus, the error is undetected if and only if
(a; — aj)(w; — wj) =0 mod n

Let us make a note that after pronouncing Theorem 4 and 5 we should
verify them on a concrete examples.

In the end, we can show one method of assigning a check digit which
does not use modular arithmetic. This method is very interesting, rather
complicated but very efficient.

Check — Digit Scheme Based on Ds

This scheme is based on the dihedral group Djs of order 10 (Ds is a
group of all symmetries of a regular pentagon).

To describe this method we need the permutation a = (0)(14)(23)(58697)
and the table of the dihedral group Ds of order 10. (Here we use 0 through
4 for the rotations and 5 through 9 for the reflections.)

*(0 1 2 3 4 5 6 7 8 9
0j0 1 2 3 4 5 6 7 8 9
1{1 2 3 4 0 6 7 8 9 5
212 3 4 01 7 8 9 5 6
JF¥"#£90 1' 2 8 9 & 6 7
414 0 1 2 3 9 5 6 7 8
215 9 8 7 6 0 4 3 2 1
616 5 D8l ] 2 Qudy 302
1 chncd 8B Qwddill g .3
&8 T u6 VITH 12l
919 8 7 6 5 4 3 2 1 0
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Example of appending a check digit to any n-digit number.
Consider the number 853.

a(3) =
a2 (5)
a’(8)

Then we compute
(Tx6x D) = (1w2)T =871 =2

This scheme detects all single digit errors, all transposition errors of adja-
cent digit and approximately 90% of all other types of errors.

The students can verify it with the help of several concrete examples
(they have to select numbers with a few digits). '
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