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Some Undecidable Statements
of Quite Simple Mathematics
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Abstract

There are well known problems which are not decidable: halting
problem, provability in PA, being a first order tautology, and others.
Since all these problem deal with notions like computability and
provability, they are beyond the scope of ,,usual” mathematics —

mathematical analysis, for instance. Here, we will show a bunch of
examples of simple undecidable statements of such mathematics.

1. Introduction.

It is well known that:

Theorem 1.1 (A. Tarski, 1951, [3]) For every real-closed field F the
theory Th(F) is decidable.

As an immediate corollary of the above we obtain:

Corollary 1.2 The problem of solvability of polonomial equations is de-
cidable in every real closed field.
However, the same is not valid in rings. We have the following;:

Theorem 1.3 (J. Ma,tjasiewi(;z, 1970, [1]) Every recursively enumerable
relation is diofantic, i.e. is of the form:

{17 . wss BNY 2 Ty mas (WL 5 o MARE M) = 0) 3,

for some polynomial W with integer coefficients.
Since there exists nonrecursive recursively enumerable relation, we get:

Corollary 1.4 The problem of solvability of polynomial equations is not
decidable in the theory of integer numbers.

Because, (see [2]), being an integer is definable in the arithmetic of
rationals, we also have:
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Corollary 1.5 The problem of solvability of polynomial equations is not
decidable in the theory of rationals.
The above also gives that:

Corollary 1.6 The properties of being an integer and of being a rational
are not definable in arithmetics of reals.

There are also other undecidable problems which deal with real num-
bers and sequences of reals. We list some of them below and the proofs will
be given in the next paragraph. First, let us accept the following definition:

Definition 1.7 Let § : w — w and let b € w\2.
Then [6], = > new(0n modb) /b™+1. The number [§], will be called the value
of the sequence § with the basis b. Given a positive real r and b € w\2,
the sequence dy(r) : w = w is an b-adic expansion of r iff r = [§,(r)]s.

A real r €< 0,1 > is recursive iff d5(r) is a recursive function.

Of course, the choice of the basis 2 in the above is quite arbitrary —
we easily notice that:

Remark 1.8 A real r is recursive iff d,(r) is a recursive function, for every
bew\2.

Theorem 1.9 Let r be recursive. The following problems are undecidable:
e r is rational.
e r is algebraic of degree n € w\2.

e r contains at least one [does not contain any] occurence of the digit
1 in its b-adic expansion, b € w\2.

e r equals 0.

Definition 1.10 Let x : w — IR be a sequence of recursive reals. The se-
quence x is recursive iff &[x] : w? — w is recursive, where &[x](n, k) =
Jb(Xn)k& nk € w.

We have:

Theorem 1.11 Let x be a sequence of recursive reals. The following
problems are not decidable:

e X is convergent.

e x has no accumulation points.
e r is an accumulation point of .
e X is monotone.

e X is constant.
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2. Proofs.

Let F : w — w be a fixed one-to-one recursive function with a non-recursive
image (e.g. an enumeration of Gédel numbers of PA theorems).

Definition 2.1
Let a and § be any sequences and let, then,

s n
H(a, 5, M)k={ Kbt W e L,

Bk, otherwise

We see that H(a,3, M) is recursive, provided a and (3 are recursive
sequences of integers or recursive reals. Moreover, the mapping transfor-
ming recursive a, 3 and a number M to the sequence H(a, 3, M) is also
recursive. l.e. there exists an algorithm which given finite descriptions of
a, and M makes a ,,program” which computes H(a, 5, M).

Remark 2.2 If a and § are not almost everywhere equal, then
H(a,f,M)=p Me Flu.

Definition 2.3 Let o, : w =& w and let W be a decidable property
of reals. Then let II, g be the following function-program (we use here
a Pascal-like notation):

function II, g(m : Nat):boolean;
var c: Nat;
begin
c:=codeOf(H (e, 8, M));
Ha,ﬁ::is_W(C);
end.
where Nat denotes the type of positive integers.

Proof. (Of Theorem 1.9)

(e) (r is rational)
Let a = §(v/2 — 1) and let § be contstantly equal 0. Let us suppose that
it is decidable weather a real is rational. Then the procedure I, g w(M)

where W is the poperty of being rational, decides wheather M is in F'w.
This is, however, impossible.

(#) (r is algebraic of degree n)

Let r = /2 — 1. Of course r is algebraic and its degree is n. Let a = §,(r)
and let B = &;("/2 — 1). Then [H(a, 8, M)]; is algebraic with degree
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n iff M € H'w. Hence II, g decides wheather M is in F'w, which is
impossible.

(e) (r contains in its expansion the digit 1)
Let a be constantly equal 1, and let 8 be constantly equal 0. Then the num-

ber r 2= [H (e, 3, M)] contains a digit 1iff M € F"w. Hence decidability of

this property would yield decidability of F"w. Also r equals 0 iff M ¢ F'w.
Hence, we obtain undecidability of being equal 0.
3
As a corollary we have:

Corollary 2.4 It is not decidable if a real r is in the Cantor set.

Proof. The Cantor set consists of only these reals which have no digit 2
in their triadic expansions. ]
Now, we will prove Theorem 1.11.

Proof. In the below a and S will denote sequences of real numbers.

() (x is convergent)

Let a be a sequence of reals given by dk 2= M;—lm, k € w and let 8 be
constantly equal 0. Then H(«a, 3, M) is convergent iff M ¢ F'w.

(e) (x) has no accumulation points)
Let o be given by ax = k and let 3 be constantly 0. Then H(a, 8, M) has
an accumulation point iff M ¢ F'w.

(e) ris an accumulation point of x)
This immediately follows from the latter. There 0 is an accumulation point

of H(a, B, M) iff M ¢ F'w.
(e) (x is monotone, constant)

o and (3 as above. Then H (83, a, M) is strictly monotone iff M € F'w. Also
H(a, 3, M) is constant iff M ¢ F'w, ]
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