Prace Naukowe Wyzszej Szkoly Pedagogicznej w Czgstochowie
Matematyka VI, Czestochowa 1999

The sum operation and link lattices

Joanna Grygiel, Piotr Wojtylak

Abstract

The sum operation, as introduced by Andrzej Wronski, is used
to decompose any finite distributive lattice into its Boolean
fragments. The decomposition is not unique but its maximal
components are uniquely determined. We define an ordering
relation between these maximal Boolean fragments of a given
lattice and use this link ordering to describe the structure of
the lattice.

Suppose that A =< A,<4> and B =< B,<p> are lattices such that
ANB is a filter in A and an ideal in B. Assume that the orderings <4 and
<p coincide on AN B and let us define a binary relation < on AU B by

<a U <p U(L40Z<pB)
Theorem 1 The relation < is a lattice ordering on AU B such that
(1) avb=aVab and aAb=aANab if a,be€A;
(2) avb=aVvpb and aAb=aApb i a,be B,

(3) avb=(aVac)Vpb if a€A\B,beB\A
and ¢ € AN B is any element such that ¢ <g b

(4) aAb=(bABc)Aga if a€A\B,beB\A
and c € AN B is any element such that ¢ >4 a

Proof. One easily shows that the just defined relation is an ordering on
A U B which coincides with <4 on A and and it coincides with < on B.
In result, (1) and (2) clearly hold.

To get (3) one needs to show that (aV4c) Vpb does not depend on the
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choice of the element c. So, let us prove

(5) (avVac)vpb=(avacd)vpb if a€A\B,beB\A
and ¢,c’ € AN B are any elements such that ¢,¢’ <g b
Without loosing of generality we may assume that ¢ <pg ¢'. If this were
not fulfilled one might introduce a third element ¢’ = ¢ Ag ¢’ for which
c<pc’, d <pc and ¢" <g b. Then one would get

(aVA C) Vb= (aVA C") Vig-b'= (aVA C’) Vg b.

Since the orderings (<4) and (<p) coincide on AN B, we also get ¢ <4 c'.
Then by monotonicity of the lattice operations aV4c <4 aVace'. As ANB
is a filter in A, then a V4 c,aVac € ANB. ThusaVsc<paVyc and,
by monotonicity of Vg, it follows that

(aVa C) VB b<p (a VA C’) Vg b.

To show the reverse, let us introduce a fresh element

d=(aVa c') AB ((aVac)Vvpbd)

Since ¢/ <4 aV4 < and ¢ € AN B, then ¢/ <g aVy ¢. Next, ¢! <p
b<p (aVac)Vpband hence by the definition of the meet operation in the
lattice, ¢/ <pd. Weget d€c ANBasd<gaVac € AN B and it means
that ¢/ <4 d. Let us note, moreover, that a V4 ¢ <p (a V4 ¢) Vg b. Hence
aV4 ¢ <p d by the definition of the element d. Then

a<paVpac<Lad

and by the definition of the join operation in A, one gets aV4 ¢’ <4 d. This
yields aV4 ¢’ <p d and hence aV4 ¢ <p (aV4c)Vpb which suffices to get

(aV4 c') Ve b<p (aVac)Vghb.

The proof of (5) is completed. Qur further argument for (3) is standard.
Clearly, (aV4 c) Vp bis a bound of @ and bin AU B. Let = be any other
bound. As b < z, we get b <p z and z € B\ A. By a < z, there is an
element y € AN B such that e <4 y and y <g z. Take ¢ = bAgy. Then
c<pband c € ANB. As ¢ <4 y, by the definition of the join operation
aVyc <4y which yields aV4 ¢ <p y and hence a V4 ¢ <g z. In addition,
b <p z and hence (a V4 c) Vg b <p z, which completes our argument.
Eventually, let us note that (4) follows from (3) by lattice duality O
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The resulting lattice, called a sum of A and B, is denoted by A & B.
The sum operation was introduced by Wroniski [7], and its special case with
ANB = {14} = {0B} by Troelstra [6]. In particular, if B is a two—element
Boolean algebra then A @ B is the same as A®, where @ is the Jaskowski
operation of adding to A the top element ( so called “mast” ), see [4].

Kotas, Wojtylak [3] proved that the closure of the class of all finite
Boolean algebras with respect to the sum operation is the class of all finite
distributive lattices. It means that for every finite distributive lattice D
there is a finite family {B;};er of Boolean algebras such that D is a sum of
that family. In this case we shall write D = @{B;}icr. As the sum opera-
tion is nonassociative and noncommutative, this notation does not give us
any clue about the ordering in which the summation should be performed.
There is no uniqueness of doing it. Despite of this, we are going to prove
that all maximal elements of the decomposition are uniquely determined.

Let D be a lattice. A sublattice Dy of D is said to be a fragment of D,
and we shall write D; C D in this case, if

a<c<b and a,b€e Dy = c€ D, for every a,b,c € D.

If, additionally, D; is a Boolean lattice, then D; is said to be a Boolean frag-
ment of D. Any filter (ideal ) of D is its fragment and, if D is finite, then any
fragment of D is its interval, that is a set of the form {z € D :a < z < b}
for some a and b. Clearly, C is transitive and D; C D, & D, for : = 1, 2.

Theorem 2 Let D, and D, be lattices and B be a complementary lattice.
IfBEDI@Dz thenBE’Dl OTBEDz.

Proof. Let B C D;@®D; and assume that there are elements a € B\ D,
and b € B\ D;. Let 0g be the zero of B and 15 be the unit of B. Since
O < a and a € Dy, then O € D, \ D,. Similarly, we conclude that
1p € Dy \ D,. Since 0 < 1p, there is an element z € D; N D, N B by
the definition of the ordering in Dy @ D;. Let y € B be the complement of
zin B. If y € Dy then 15 = 2z Vy € Dy, which is impossible. Otherwise
y € Dy,8008 =z Ay € Dy, which also contradicts our assumptions. Thus,
BCDyorBCDy andityields BCDyor BCDyas BC DDy, O

Since every finite distributive lattice D is a sum @ of Boolean lattices
B;, then D is also the set-theoretical sum |J B; of its Boolean fragments.
The components of the sum are not uniquely determined as it is possible
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that B; C B; for some 7,j. We call a family {B;} of Boolean lattices a
scarce decomposition of D iff D = @ B; and B; C B; does not hold for any
t # j. As the immediate Corollaries of Theorem 2 we get:

Corollary 1 If a lattice D is a sum @ of a family {B;} of Boolean lattices,
then the family contains all mazimal Boolean fragments of D.

Corollary 2 There is at most one scarce decomposition of any finite di-
stributive lattice D and the decomposition consists of all mazimal Boolean
fragments of D.

It may happen, however, that a finite distributive lattice D does not
have the scarce decomposition. More specifically, it is sometimes impossible
to get D as a sum € of its maximal Boolean fragments without taking
subalgebras of maximal fragments or repeating them in the sum operations.

Let us consider K = {B;}ies the family of all maximal Boolean frag-
ments of a finite distributive lattice D =< D, <> and the ordering relation
on K defined in the following way:

B<B iff 13<1p

for any B, B’ from K.
It can be proved (see [2]) that

Theorem 3 K =< K, <>is a lattice, where, for any By, B, from K, the
infimum B1AB; is determined by all (1,A13)-atoms and the supremum B,V
B, is determined by all (01 V 03)-atoms. 11,01, 14,0, denote, respectively,
the units and zeroes of the mazimal Boolean fragments By and B,.

We shall call the lattice K the link lattice of D.
Figure 1 shows an example of a distributive lattice with its link lattice.
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Figure 1

The link lattices can be applied to solving the problem of scarce de-
composition, because, as we proved in [2]:

Theorem 4 A finite distributive lattice D has a scarce decomposition iff
every (at least two-element) fragment of its link lattice K contains a prime
ideal. '

It is easy to observe that the lattice D in Figure 1 has a scarce decom-
position.
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