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Abstract

It is shown that a chain of type of w + 1 of modal logics:

Tr = Grz + B; D Grz + B; D Grz + B3 D ... D Grz (all
of them are extensions of the Grzegorczyk logic Grz), contains
all and only such modal logics which can be obtained as sets of
formulae that are valid in the Stone spaces of countable supe-
ratomic Boolean algebras. Some topological conditions which

correspond to the Grzegorczyk logic are presented.

Let X be a topological space. F(X) denotes a set of formulae from
the set Lps of all formulae of propositional modal logic (with connectives
=, A, V,=,0,$) that are valid in topological Boolean algebra, TBA, 2X.
Hence E'(X) is a set of formulae that have value X for every valuation of
propositional variables with subsets of X. Necessity functor O is interpre-
ted as a topological interior operation ¢nt (possibility, ¢, as a topological
closure operation cl); the remaining connectives are interpreted in a stan-
dard way (cf. e.g., [16], [17]).

Every Boolean algebra A has it’s corresponding Stone space St A of
ultrafilters on A. The Stone topology of St A is determined bya subbase
of sets of the form s(a) = {F € St A :a € F}, for a € A; hence an interior
operation int is defined.

It is known that, for any topological space X, S4 C E(X), where S4 is
a set of theorems of the logic S4 of Lewis (J.C.C. McKinsey, A.Tarski [11],
[12]). For any discrete space X, E(X) = Tr, where Tr is so called trivial
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logic i.e. the classical logic plus (Op ¢ p). So we have S4 C F(St A) C
Tr, for any nontrivial Boolean algebra A.

The questions arise: What modal logics (extensions of S4) are deter-
mined by Stone spaces of Boolean algebras? What properties of Boolean
algebras - or of their Stone spaces - are reflected by the corresponding lo-
gics? Here we give the answer to these questions in case of countable and
superatomic Boolean algebras. We show that only the logics Grz + B,
for n € N, of extensions of the Grzegorczyk logic Grz can be obtained as
E(St A), for a countable superatomic Boolean algebra A, and that all of
these logics can be obtained in such a way. Moreover, the logic Grz +
B, 41 is obtained in such a way iff the n-th Cantor-Bendixson derivative of
A is finite (Corollary 8). We also show (in Corollary 2) for every countable
Boolean algebra A that the Grzegorczyk axiom is valid in St A iff A is
superatomic.

In the paper we will use standard notions of topology (cf. K.Kuratowski
[ 9], A. Engelking (5]), as well as Boolean algebras and Stone duality (cf.
D. Monk [14]); we will also make use of results from the book of H. Rasiowa.
and R. Sikorski [16].

A. Spaces with a dense-in-itself set - non-atomic algebras.

C.C. McKinsey and A.Tarski ([11], see also [16]) proved, that for any
dense-in-itself metric space X, E(X) = S4. From this it follows

Theorem 1. If A is a countable Boolean algebra, which is not atomic,
then

E(St A) = S4.

Proof. From countability of A it follows that St A is a metric space (see
e.g. [14]). Since A is not atomic, there is @ € A, such that {z € A :
z < a} does not contain any atom; then there is an open dense-in-itself set
U C St A. A mapping f defined by f(Y) =Y NU,forY C St A,is a
homomorphism of the TBA 254 onto the TBA 2V , (see [16], 3.1. p.98).
and hence E(St A) C E(U) = S4. q.ed.
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Corollary 1. E(St A,) = S4, where A, is the w—generated free Boolean

algebra.

B. Some topological conditions corresponding to the Grzegor-

czyk logic.

Grzegorczyk normal modal logic Grz is an extension of S4 Lewis logic

with the formula Grz:
O(A(p— ap) =+ p) = p.

i.e. Grz = S4 +Grz. Grz was introduced by A.Grzegorczyk [7] (see the
proof of Thm.3).

It can be verified that the same set Grz can be obtained, if the logic S4
with the rules Modus Ponens and necessitation ¢/0¢ is extended with a
rule Ry,. defined by: O(¢ — Op) =+ /. The rule Ry, preserves validity
in topological Boolean algebras. It can be checked that a TBA B is a model
of Grz iff for any valuation v in B:

v(O(p — Op) =5 ) =1 implies that v(p) =1,
or, equivalently,
xr # 0 implies that z — cl(clz — 2) #0, for any element z of B.
Observe also that for any X, Grz € E(X) iff
(%) ACcl(A—cl(cdlA- A)), forevery AC X.

Residue in the sense of Hausdorff. F. Hausdorff [8] introduced a notion of

residue of a set res A = cl(clA — A) — (clA — A) or, equivalently, res
A=ANcl(clA- A).
Observe that: res A C A, and res A is a closed set in A ([ 9], p.101).

Residue of transfinite order is defined by induction on ordinals
A =res®A, r1es®t!A =res®A, res’A =[){res®A: a < A}

for a limit ordinal.
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Since the sequence of residues is decreasing, there exists an ordinal (3
such that res®*t1 A4 = res®A; such resP A is called ,,the last” residue.

A set A is called resolvable into an alternated series of decreasing closed
sets Fy, if

A=(Fi-FR)U(F-F)U(Fs— F)U...U(Fy — Faq1)U...,

(cf. K. Kuratowski [9], Ch.I, par.13, pp. 96 -102)

The last residue res®A is empty iff A is resolvable into an alternated
series of decreasing closed sets (cf. [8] and [9], p.103).

Observe also that A— res A = A— (ANcl(clA— A)) = A—cl(clA— A).

Finally, form the above remarks we have the following conditions cor-
responding to the Grzegorczyk logic (some of the points were announced

in [6] without proof).

Theorem 2. For every topological space X the following conditions are

equivalent:
i) Grz € E(X)
i) ACcl(A—cl(clA— A)), for every AC X,
iii) If A#0, then A—cl(clA— A) # 0, for every A C X,
iv) If A#0, then A— res A# 0, for every AC X,

v) FEvery nonempty subset of the space X is resolvable into an alternated

series of decreasing closed sets.

A Boolean algebra is called superatomic (cf. [14]), if it is an atomic
Boolean algebra and every its homomorphic image is atomic. Under Stone
duality superatomic Boolean algebras correspond to scattered spaces in the
sense that a Boolean algebra is superatomic iff its Stone space is scattered.
A space is scattered iff it does not contain a dense-in-itself subset.

A topological space X is called a Frechét space if for every subset A of
X,a € clAiff a = lim a,, for some sequence {a,} of points of A, (see [5]).
A sequence {a, : n € IN} will be denoted shortly by {a,}.
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A topological space X is called a Urysohn space, [5], if for every pair
of distinct points z,y there exist open sets U i V such that z € U,y € V
and clU NclV = 0.

Theorem 3. i)  For every Frechet space X, if X is a scattered space,
then Grz € F(X).
ii)  For every Frechet space X which is a Urysohn space: Grz € E(X)

iff X 1s a scattered space.

Proof. i) Assume, to the contrary, that Grz ¢ F(X). i.e. there is
anr € Aand z ¢ cl(A — cl(clAA)), by Thm.2 ii). Hence, there is an
open neighbourhood U of z such that U N A — ¢cl(clA — A) = 0, hence
r € UNA C cl(clA— A). For every a € UN A there is a sequence
{an} C clA — A such that a = lim a,, a # a,.

By suitable choice of a subsequence of the sequence {a,} one can check
that the set UNA, is a dense-in-itself nonempty subset of X, a contradiction.

ii) Assume, to the contrary that X is not a scattered space, i.e.
contains a dense-in-itself nonempty subset Y.

In order to prove that Grz ¢ F(X), that is (x) is false, it is enough to
find in Y two disjoint sets, A and B and such that A C ¢/B and B C clA,
for, in this case, A C cl(clA — A), and hence A —cl(clA-—A) C A- A=),
therefore Gz is false for any nonempty A. ‘

In the dense-in-itself set ¥ we will construct a sequence {Z,} of sets
in the following way:

. Takea €Y. Put Zp = {a}. (Stage 0). There is a sequence {b,} C Y,
b, € a such that @ = lim b,. By Urysohn condition subsequences of the se-
quence {b,} can be consecutively choosen in such a way that there is a sub-
sequence {c,} of the sequence {b,} and a sequence of open neighbourhoods
Uy, of elements c, such that U, are pairwise disjoint. Put Z; = {c,}. (Stage
1). (A sequence {d,,, : m € IN} will be denoted shortly by {d, }). This
can be repeated: in every U, there is a sequence {d,, ,, } such that ¢, = lim
dnmy @nm # cn and there is a sequence of neighbourhoods V,, ., of points
dn,m, pairwise disjoint. Put Z = {d1 m} U {d2n} U{dsm}U ... (Stage 2).
Again, in every neighbourhood V,, ,,, there is a sequence {d, , x} such that

dnm = lim dy m gk, dnm # dnmk and there is a sequence of neighbourho-
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ods V, m k of points dy , &, pairwise disjoint. Put Z3 = {dy 1 x} U{d1 2} U
{d1'3,k}U. e {dg,l_k}U{dz‘g’k}U. . .{dnwl,k}U{dn'z,k}U{dn'g,k}U. i W AEAYs (Sta.ge
3). This can be continued, and as a result we obtain the sets Z,, Z,, ;1 such
that Z,NZp41 =0,2Z, C clZ,y1, n € N. Now put: A = ZoUZyUZ4U...
and B=2Z,UZ3UZsU.... Thesets A and B have the required properties.
q.ed.

Corollary 2. For every metric space X, Grz € E(X) iff X is a scattered
space. In particular, for every. countable Boolean algebra A, Grz € E(St
A) iff A is a superatomic Boolean algebra.

Remark. Thm. 3 is not true, in general, if the space is not a Frechet one.
There exist spaces X such that Grz € F(X) and X is a dense-in-itself space.
For example so called SI - spaces, introduced by E.Hewitt* and constructed
by means of Zorn’s lemma, are of this kind. They do not contain two dense

disjoint subsets (they are not compact, not Frechet, not metric).

C. Boolean algebras n-th derivative of which is a finite al-

gebra.

Cantor-Bendixson derivative X of a topological space X is defined as
the set of all points of condensation of X. By induction on ordinals Cantor-
Bendixson derivative of rank a, for @ € On, can be defined in a standard

way:
0¥ Loy x(ot+1) _ (X(a))d, XN = ﬂ{X(") oy XY,

for a limit ordinal A.

By the Stone duality, Cantor-Bendixson derivative A(®) of rank a, for
a € On of a Boolean algebra A, can be defined (see [14]).

For every Boolean algebra A let I47(A) be the ideal of A generated
by the atoms of A. We define by induction, for any ordinal, an ideal I, of
A. If I, has been defined, put A(®) = A / 1, the a~th Cantor-Bendizson
derivative A(®) of A, and let 7, : A — A(®) be the canonical homomor-

phism.

*E.Hewitt - A problem in set-theoretic topology, Duke Math. J. 10 (1943), 309-333.
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Define: Ip = {0}, Inp1 = 77 [Lar(A®)]and Iy = { Io: o < A},
for a limit ordinal. s

Since I, C Iy, it follows by induction that {I, : a € On} forms an
increasing sequence of ideals of A . Hence there is an ordinal o such that

I, = Ia+1-

Remark. Vanishing of n—-th derivative of the Stone space, St A(®) = (),
is equivalent to the fact that A" is a trivial Boolean algebra (consisting
of one element). Moreover: A1) is trivial and A(™ is non-trivial iff St
A1) = ¢ and St A(™) # 0 iff St A(™ is a finite space iff A(®) is a finite

non-trivial algebra.

In what follows we say that A is a finite Boolean algebra iff A is a

finite non-trivial Boolean algebra.

Let
Bo = (po A —po), i.,e. By = Falsum

Bty = Opyyy VO(Qpryy = B,), neNN.

Define a sequence Grz + B,, n € IN, of normal modal logics which are
extensions of Grzegorczyk logic Grz with the formulae B,,.

Lemma 1. For every topological space X and valuation v of variables in
the TBA 2X :

a)  v(Bn) 2 X\X®M, forn>1.

b)  For arbitrary scattered space X there is a valuation vy such that
vo(Bn) = X\ XM, for n > 1.

Proof. a) By induction on n we prove: basic step 1°) Let a € X \v(B;) =
X\ v(00py — Opy) = clfint v(p:)]\ int v(pr) = cl{(X\ {a}) Nint v(p1)]\
int v(p1) C (X \ {a}),ie. ac X,

Induction step 2°) is based on an observation: cl(intZn X ™)\ intZ C
X (+1) for every subset Z of X. We have X\v(Bn41) = [X\int v(pay1)]N
clfint v(pass) O (X \V(B,))] C elfint v(puss) N XD\ int (prpr) C X,

b) In a scattered space Xint(A%) # 0; let vo(pr) = X \ X® for
each k.
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19 X\ w(B) =cdXWne[X\ XM =XOnX = X1, Similarly
the induction step:
2. X\ vo(Bny1) = cdX) N[ X (m)\ X (m+1)] = X (1) g e d.

Corollary 3. a) If the n-th Cantor-Bendizson derivative of X vanishes,
XM =0, then B, € E(X).
b)  Moreover if X is a scattered space, then

X" =0 o B, € E(X).

Corollary 4. a)  For every topological space X, if X("+1) = (), then
Grz + B, C F(X).
b) if X is a scattered space, then

Xt =9 and X™ £0 & Grz+ Boyy C E(X)

and B, ¢ F(X).
¢)  For every countable Boolean algebra A :

A s a finite Boolean algebra << Grz + B,y C E(StA)
and B, ¢ E(St A).
The proof follows immediately from Lemma 1 and Corollary 3.

Theorem 4. For every countable Boolean algebra A the following condi-

tions are equivalent:
i) A is a finite Boolean algebra

ii) E(St A) = Grz + B4

Proof. First we present an indirect proof of Thm.4, as it gives a comparison
with some other results in the area. After that we give a sketch of the more
direct proof.

In view of Lem.2 b, it is enough to show that F(St A) C Grz +
B,.1, if A(™ is finite. The proof is based on some properties of the Tarski



16 Extensions of the Grzegorczyk logic determined . ..

translation (McKinsey-Tarski [12]) between intuitionistic logic INT and
modal logic S4 and on the results of [4] on intermediate logics.

Tarski translation ¢ from Lyt into Las, where (Liyt,~, =, A, V) and
(Lap—, —, A, V, O) is the language of intuitionistic and modal logic, respec-
tively, is defined as follows:

t(pi) = Ot(p;), for a propositional variable p;,

t(~ a) = O-1(a),

t{a = B) = O(t(a) — t(8)),

ta A P) = (ta) AL(B))

t(aV B) = (t(a) VE(B)), for o, B8 € LinT.

McKinsey-Tarski [12] showed that: ¢ € INT & t(¢) € S4, for o €
LinT.

M.Dummett i E.J.Lemmon [2] ( cf. also [16]) extended this result:

w € INT +{p;: 1 €I} & t(p) € S4 +{t(p;) : i € I}, A.Grzegorczyk
[7] found a proper extension Grz of S4 logic such that: ¢ € INT & t(yp) €
Grz. L.Maksimova i V. Rybakov [10] investigated modal companions of an
intermediate logic , that is such modal M that, fora € L;yr: ¢ € L &
t(p) € M.

They showed that a set of modal companions of an intermediate logic
L is infinite and contains the smallest logic 7 L = ¢(L) and the largest logic,
denoted by o L. W.J. Blok [1], proved that: ¢ L = 7 L +Grz.

In [4], (cf. also [3]) a sequence of intermediate logics: P,, = INT +P,
is considered, i.e. P, is an extension of the intuitionistic logic INT with
the formula P,, and closed w.r.t. Modus Ponens and Substitution rules,
where P, is defined inductively:

Fo = (poA ~ po)

Prt1 = pny1 V (Pny1 = B); in particular Py = p;V ~ p; (P, gives the
classical logic) . It is shown (cf. Lemma 4 in [4]) that: for every metric and
compact space X,

()
if X(W#£0 and XC+) =0 then E(O(X))=Ppy1,for n>0,

where O(X) is a Heyting algebra of open sets of the space X.
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It is known (cf. [16], where O(X) is denoted by G(X)) that for any
space X, p € E(O(X)) © t(¢) € E(X), that is, E(X) is a modal compa-
nion of E(O(X)). Hence S4 + B4y =7 P,y C E(X).

Now let X = St A.

By means of the mentioned results of Maksimova - Rybakov and W.J.

Blok we have:
S4 + B,y1 CE(X)C Grz + B,

and in view of Corollary 2: Grz C EF(X); finally we have E(X) = Grz +
B,+1. q.ed.

For more direct proof Kripke strucures are used. In particular we use
the completeness result for the logic Grz with respect to finite trees (finite
partial orders) which is due to K. Segerberg [17] . We also apply the
following property of any Kripke structure F, that verifies the formula B,,:

(x*xx) B, € E(F) iff height of F is not greater then n, where F is a
Kripke structure with the relation R, F(F) denotes the set of all formulae
valid in F'. Height of F is defined as the number of elements in a maximal
R—chain ay,...,a, in F' (i.e. a;Ra;y and not a;4; Ra;, for all ¢ < n). This
property can be proved by induction on n.

Let ¢ ¢ Grz + B,41. Form the Segerberg completeness theorem for
Grz there exists a finite Kripke structure , which is a tree and which verifies
Grz and B,;; and such that ¢ ¢ F(F). By (% * *) the height of F is not
greater then n + 1.

We prove that ¢ ¢ E(St A) in two steps.

1°.  We use Kripke structures R,;1,,, which are trees of the height
equal to n + 1 and which in every node, excluding the final node, have
exactly m immediate successors (cf. eg. Ono [15]). By the similar reasoning
as in the proof of Lem.4 in [4] we show that for every m € IN there is an
open and continuous mapping (so called interior mapping, Ch.III, par.3 in
[16 ]) of the space St A ( for which St A(™+1) = () and St A(") £ 0) onto
the tree Ryq1,m. Hence E(St A) C E(Rut1.m)-

Remark. Validity in R, m as a Kripke structure coincide with the validity
in a topological space R,41 ., with the topology of R—closed (upward) sets.

17
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20, Take a tree F of the height not greater then n+ 1 and correspon-
ding tree Rni1,m. It can be defined a p-morphism from R4 ,, onto F.
Hence E(Rnt1,m) C E(F). Finally, from 1° and 2°, ¢ ¢ E(St A). q.e.d.

Corollary 5. For Tr = Grz + B; = Grz +({0p; — Opy) = Grz + S5
we have E(St A) = Tr iff A is a finite Boolean algebra.

Example 1. If A is the algebra of finite - cofinite subsets of the set of
natural numbers IN, then St A is the one point compactification of the set
IN, (Aleksandrov compactification) which is the least compactification of IN.
Then

E(St A) = Grz+B; =Grz +0p, V O(Op, — ($Op; — Opy)).

Example 2. E((w"+1)) = Grz + B,41, for n > 0, where (w" + 1) is the
topological space on the ordinal w™ + 1 with the order topology.

Proof. In the proof of Thm.4 we use Corollary 2 of [4]: P41 = E(O(w"™+
1)), m > 0; hence S4 + B,y = 7 P41 C E(w™ + 1). By means of the
mentioned results of Maksimova - Rybakov and W. J.Blok we have: S4 +
Brnt1 C EF(w™+1) C Grz + By,q1, and by Corollary 1: Grz C E(w™+ 1),
hence E(w™+1) = Grz + B,4;. This can be also proved directly, similarly
to the proof of Thm.4. q.e.d.

Corollary 6. For every compact and scattered metric space X , if X (") £ ),
for every n € N, (in particular if X(®) £ 0 and o > w), then F(X) = Grz.

Proof. From the theorem of Mazurkiewicz and Sierpifiski [13] the space
X 1s homeomorphic to the space (w* @ k + 1) for some countable ordinal «
and n € IN. (Remark: w°® = 1). Since for every n € IN the space (w™ + 1)
is an open subset of (w* e k + 1), hence (compare Example 2) we have:
E(X)=FEw*ek+1)C
CE(1+1)NEw+1)NEW+1)NEWd+1)N...=
= Grz + BN Grz + BN Grz + BaN...= Grz



W. Dzik

We prove the last equality. Assume that ¢ ¢ Grz. Form the Segerberg
completeness theorem for Grz there exists a finite Kripke structure F,
which is a tree and which verifies Grz and such that ¢ ¢ E(F). Since the
structure F is finite, it has a finite hight, say £ € IN. From (x * ) in the
proof of Thm.4 we have Grz + By C E(F). Consequently ¢ ¢ Grz + By

for some k and this completes the proof.

Corollary 7. For every countable and superatomic Boolean algebra A,
if A is infinite, for every n € IN, (in particular, if A@) is an infinite
algebra for some a > w), then E(St A) = Grz.

Finally we have:

Corollary 8. The chain of the type w + 1 of modal logics:
Tr=Grz +B; D Grz+ B, D Grz + B3 D ...D Grz

contains all and only such modal logics that can be obtained as E(St A)

for an arbitrary countable and superatomic Boolean algebra A.
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