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Abstract. We introduce and study the category AFD the objects of which are
generalized convergence D-posets (with more than just one greatest element) of maps
into a triangle object T' and the morphisms of which are sequentially continuous
D-homomorphisms. The category AFD can serve as a base category for antagonistic
fuzzy probability theory. AFD-measurable maps can be considered as generalized
random variables and ADF-morphisms, as their dual maps, can be considered as
generalized observables.

1. Introduction

In generalized probability theory (cf. [6,11,13,19,20]) basic notions are events,
states (generalized probability measures), and observables (notions dual to
generalized random variables). Difference posets (abbr. to D-posets) of fuzzy
sets have been introduced by F. Kopka in 1992 (see [15]). More general
D-posets (cf. [16]) form a category in which classical, fuzzy, and quantum phe-
nomena can be modeled. D-posets are equivalent to effect algebras (cf. [7]).
Recall that ID (cf. [10,18]) is the category the objects of which are suitable
convergence D-posets of maps into the closed unit interval I = [0, 1] and the
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morphisms of which are sequentially continuous D-homomorphisms. Note that
ID is a suitable base category for generalized probability theory and (unlike
in the classical Kolmogorov probability theory) in ID both observables and
states are morphisms.

The category theory (cf. [14]) and in particular the language of mathe-
matical structures (cf. [1]) is natural and suitable to carry out and describe
various constructions used in the foundations of generalized probability, e.g.
the duality between observables and random variables. The sequential con-
vergence and sequential continuity of the morphisms play a key role (cf. [9]).

We are motivated by the intuitionistic fuzzy probability theory (see [2,21]).
Our goal is to generalize the theory of measurable spaces and measurable maps
developed in [18] replacing the cogenerator [0, 1] by a suitable triangular object
T, to prove a duality theorem, and to indicate some applications to generalized
probability theory.

Recall that in intuitionistic logic the law of excluded middle does not hold.
An intuitionistic fuzzy event A C X is a pair (u4,v4) of membership functions
pa,va € IX such that pa(z) +va(z) < 1 for all z € X. The intuitionistic
fuzzy events are partially ordered ((up,vp) < (pa,va) whenever up < pg
and v4 < vg) and carry suitable operations. Intuitionistic fuzzy probability
sends intuitionistic fuzzy events to closed subintervals of I.

2. D-posets of fuzzy sets

Let X be a set, let X C IX be a family of functions of X into I, for each ¢ € T
let cy be the corresponding constant function, let “<” be the pointwise partial
order on X', and let “©” be the pointwise partial difference defined for v < u by
(uev)(z) = u(x)—v(z), € X. The quintuple (X, <,0x, 1y, ), abbreviated
to X, is a D-poset of fuzzy sets called an ID-poset. The pair (X, X) is called
an ID-measurable space. Let (X, X') and (Y,)) be ID measurable spaces and
let f: X — Y be a map such that vo f € X for each v € ). Then f
is said to be a (¥, X)-measurable map. Let h be a map of an ID-poset )
into an ID-poset X which preserves “the ID-structure”. Then h is said to be
a D-homomorphism.

Denote MID is the category of ID-measurable spaces and measurable maps.
It is known that the category ID and a distinguished subcategory of MID
(consisting of sober objects) are dually naturally equivalent (cf. [10,18]).
Ezample 2.1. Let (2, A) be a classical measurable space. Then A can be
considered as an ID-poset via identifying A € A and its characteristic function
and defining A © B = A\ B whenever B C A.

Ezample 2.2. Let (£2, A) be a classical measurable space. Let P(A) be the set
of all probability measures on A. Let {a} be a singleton. Then each p € P(A)
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is an ID-morphism of A into I = I{%. Denote ev(A) = {p(A); p € P(A)}
and ev(A) = {ev(A4); A€ A}. For X = P(A) and X = ev(A), (X,X) is a
typical ID-measurable space.

3. AFD-system

Denote T'= {(a,b) € I x I, a+b < 1}. Then T carries the pointwise partial
order defined by (a,b) < (¢,d) whenever a < ¢ and b < d, a partial difference
operation defined by (c,d) @ (a,b) = (¢ — a,d — b) whenever (a,b) < (c,d),
and the pointwise sequential convergence defined by (a,b) = Lim,,_,o(an, by)
whenever a = lim,, .o a, and b = lim,, . b,,.

Denote (T, %, @, Lim) the resulting structure; it will be abbreviated to T'
and called the triangle T.

Let X be a set and let TX be the set of all maps of X into 7. If X
is a singleton {a}, then T{% will be condensed to T. Let u € TX. Then
there are two maps u; and u, of X into I such that for each x € X we have
u(z) = (w(x),u,(z)); we shall write u = (ug,u,). In TX there are three
distinguished constants defined as follows:

by = (0x,0x), bx(z) = (0,0) for all x € X;

lx = (0x,1x), lx(x) =(0,1) for all z € X;

rxy = (lx,0x), rx(x) = (1,0) for all z € X.

The system TX carries the pointwise partial order, the pointwise partial
difference (we shall use the same symbols for the pointwise partial order and
the pointwise partial difference on T' and T%), and the pointwise sequential
convergence induced by the triangle 7T'.

Definition 3.1. Let X be a set and let X be a set of maps of X into the
triangle T' such that by,lxy,rxy € X and X 1s closed with respect to the point-
wise partial difference. Then X carrying the pointwise order, the pointwise
partial difference, and the pointwise sequential convergence is said to be an
AFD-system* and (X, X) is said to be an AFD-measurable space. Let (X, X)
and (Y,)) be AFD-measurable spaces and let f: X — Y be a map such that
vofeX for eachve). Then f is said to be a (), X)-measurable map.

In what follows, all AFD-systems will be reduced, i.e., for each z, y € X,
x # y, there exists u € X such that u(x) # u(y).

Denote MAFD the category of AFD-measurable spaces and measurable
maps.

Let (X, X) and (Y,)) be AFD-measurable spaces (remember X and ) are
reduced) and let f: X — Y be a (), X)-measurable map. Define the dual
map f<of Y into X as follows: f9(v) =vo f, veE Y.

“The notion is derived from “antagonistic”.
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Lemma 3.2.

(i) The dual map [ is sequentially continuous and preserves the structure
of AFD-systems.

(ii) Let f and g be measurable maps of X into Y. If f # g, then f9# g°.

Proof. (i) First, let (v,) be a sequence converging pointwise in ) to v. Since
(f2 ) () = v(f(x)) and (f*(vn))(x) = va(f(2)), z € X,n € N, the sequence
(f(vp)) converges pointwise in (X, X) to f9v). Thus f< is a sequentially
continuous map of (X,)) to (X, X’). Second, we have to verify that

a) f<sends each distinguished constant of ) into the corresponding distin-
guished constant of X: f9(by) = by, fY(ly) = lx, and f(ry) =rx;

b) f< preserves the partial order: if u,v € Y and u < v, then f9(u) < f9(v)
in A;

c) f< preserves the partial operation: if u,v € Y and u < v, then f9(vOu) =
= ) © f(u) in X.

Once again, all three conditions follow from the fact that for each w € Y and
for each x € X we have (f%(w))(x) = w(f(x)). For example, if u < v in Y,
e, u(y) < wv(y) for all y € Y, then also (fY(u))(x) = u(f(z)) < v(f(z)) =
= (fY(v))(x) for all z € X, and hence f(u) < f9wv). Other conditions can
be verified analogously.

(ii) Assume that there exist x € X such that f(z) # g(x). Since Y
is reduced, there exists u € ) such that u(f(x)) # u(g(z)). Consequently

(f*(u) (@) = u(f(x)) # u(g(x)) = (97(u))(x) and hence f< 7 g°. O

Definition 3.3. Let h be a map of an AFD-system Y into an AFD-system
X preserving the structure of AFD-systems. Then h is said to be an AFD-
homomorphism.

Let X € TX be an AFD-system. Then each € X can be considered
as a sequentially continuous AFD-homomorphism ev, of X into T defined
by evy(u) = u(z),u € X. Denote X* the set of all sequentially continuous
AFD-homomorphisms of X into T'. For u € X put u*={ev,(u); z € X*} and
X* = {v*; ve X} It is easy to see that X* is an AFD-system and X* is the
set of all AFD-homomorphisms of X* into T'. Observe that if a,b € X', a # b,
then ev, # evy. Indeed, X is reduced and hence u(a) # u(b) for some u € X.

Definition 3.4. Let X C TX be an AFD-system. Then X* is said to be the
sobrification of X. If X = X*, then X and (X, X) are said to be sober.
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Theorem 3.5. Let (X, X) and (Y,)) be sober AFD-measurable spaces and
let h be a sequentially continuous AFD-homomorphism of Y into X. Then
there ezists a unique AFD-measurable map f of (X, X) into (Y,Y) such that
fi=h.

Proof. For each z € X, the composition ev, o h is a sequentially continuous
AFD-homomorphism of ) into T'. Since ) is reduced and sober, there exists
a unique y € Y such that evy, = ev, o h. Put y = f(x). This defines a map
fof X into Y. Let u € Y. Then for each x € X we have (h(u))(x) =
= evz(h(u)) = (evy o h)(u) = evpy(u). Hence h = uo f = f<. It follows
from the preceding lemma that if g is a measurable map of X into Y such
that g9 = h, then f = g. O
Corollary 3.6. Let (X,X) and (Y,)) be sober AFD-measurable spaces.
Then f +— f< yields a one-to-one correspondence between (), X)-measurable
maps and AFD-homomorphisms of ) to X.

4. Duality and applications

Denote AFD the category of AFD-systems and sequentially continuous AFD-
homomorphisms. Denote SMAFD the subcategory of MAFD consisting of
sober AFD-measurable spaces and denote SAFD the corresponding subcate-
gory of AFD consisting of sober objects.

Theorem 4.1. The categories SMAFD and SAFD are dually isomorphic.

Proof. Let (X,X) and (Y,)) be sober AFD-measurable spaces. Denote
F((X,X)) — X and F((Y,))) = Y. Let f be an AFD-measurable map of
(X, X) into (Y,)). Denote F(f) = f9. A straightforward calculation shows
that F' yields a contravariant functor of SMAFD into SAFD and that F'is a
dual isomorphism. [

Observe that the categories AFD and SAFD are isomorphic (indeed, anal-
ogously as in [18] it can be proved that X +— X yields an isomorphism of
AFD and SAFD) and, consequently, AFD and SMAFD are dually naturally
equivalent. It can be shown that AFD can serve as a base category for antag-
onistic fuzzy probability theory, AFD-measurable maps can be considered as
generalized random variables and their duals can be considered as generalized
observables.
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