Free algebras over some varieties

Alina Wojtunik

0.

Let $\tau: F \to N$ be a fixed type of algebras, where F is the set of fundamental operation symbols and N is the set of non-negative integers. If φ is a term of type τ we denote by $F(\varphi)$ the set of all fundamental operation symbols occurring in φ and by $Var(\varphi)$ the set of all variables occurring in φ . If φ is a term then writting $\varphi(x_{i_0}, \ldots, x_{i_{m-1}})$ we shall mean that $Var(\varphi) = \{x_{i_0}, \ldots, x_{i_{m-1}}\}$. Let F_0 be a subset of F.

Definition 1 (see [3]) An identity $\varphi_1 = \varphi_2$ of type τ will be called F_0 -regular iff $F(\varphi_1) \subset F_0$, $F(\varphi_2) \subset F_0$, and $Var(\varphi_1) = Var(\varphi_2)$.

Definition 2 (see [3]) An identity $\varphi_1 = \varphi_2$ of type τ will be called F_0 -symmetrical iff $F(\varphi_1) \cap F_0 \neq \emptyset$ and $F(\varphi_2) \cap F_0 \neq \emptyset$.

If A is a set we denote by Fin(A) the set of all non-void finite subsets of A. Let $F_1, F_2 \subset F$ and $F_1 \cup F_2 = F$, $F_1 \cap F_2 = \emptyset$ and $\{f \in F : \tau(f) = 0\} \subset F_2$. Let \mathbf{K} be a variety of algebras of type τ . We denote by $\mathrm{Id}(\mathbf{K})$ the set of all identities of type τ satisfied in each member of \mathbf{K} . Denote by $\mathbf{K}_{F_1}^{F_2}$ the variety of type τ defined by all F_1 -regular identities and all F_2 -symmetrical identities belonging to $\mathrm{Id}(\mathbf{K})$, \mathbf{K}_{F_1} - the variety of type $\tau \mid F_1$ defined by all identities of type $\tau \mid F_1$ belonging to $\mathrm{Id}(\mathbf{K})$.

In [3] we defined a construction S(A) called the sum of an upper (F_1, F_2) –semilattice ordered system A of algebras. In [3] we showed that if

(c) an identity $\varphi(x,y)=x$ belongs to $\mathrm{Id}(\mathbf{K}),$ where $F(\varphi(x,y))\subset F_1,$

e v as follows

then an algebra \mathfrak{A} belongs to $\mathbf{K}_{F_1}^{F_2}$ iff \mathfrak{A} is the sum of an upper (F_1, F_2) -semilattice ordered system of algebras from \mathbf{K}_{F_1} and some algebra from \mathbf{K} .

In this paper we show that if **K** is nondegenerated and satisfies (c) then an algebra is a free algebra over $\mathbf{K}_{F_1}^{F_2}$ iff it is the sum of an upper (F_1, F_2) –semilattice ordered system of free algebras over \mathbf{K}_{F_1} and some free algebra over **K**. The case $F_2 = \emptyset$ was considered in [2].

1.

In [3] we defined the following system and construction.

Definition 3 A quadruple

(1)
$$\mathcal{A} = \langle (F_1, F_2), (I, \leq), \{\mathfrak{A}_i\}_{i \in I}, \{h_i^j\}_{i,j \in I, i \leq j} \rangle$$

will be called an upper (F_1, F_2) -semilattice ordered system of algebras if it satisfies the following conditions:

(i)
$$F_1 \cup F_2 = F$$
, $F_1 \cap F_2 = \emptyset$, $\{ f \in F : \tau(f) = 0 \} \subset F_2$.

- (ii) (I, \leq) is join-semilattice; if $F_2 \neq \emptyset$ then (I, \leq) has the greatest element u.
- (iii) \mathfrak{A}_u is an algebra of type τ and $\mathfrak{A}_u = (A_u; F^u)$; for every $i \in I$, $i \neq u$, \mathfrak{A}_i is an algebra of type $\tau \mid F_1$ and $\mathfrak{A}_i = (A_i; F_1^i)$, where $A_i \cap A_j = \emptyset$ if $i \neq j$.
- (iv) The set $\{h_i^j\}_{i,j\in I,i\leq j}$ satisfies the following:
 - (a1) for every $i, j \in I$, $i \leq j$, h_i^j is a mapping of A_i into A_j ;
 - (a2) for every $i \in I$, h_i^i is an identity map on A_i ;
 - (a3) for every $i, j \in I$ such that $i \leq j \neq u$, h_i^j is a homomorphism of \mathfrak{A}_i into \mathfrak{A}_j ;
 - (a4) for every $i \in I$, $i \neq u$, h_i^u is a homomorphism of \mathfrak{A}_i into the reduct (A_u, F_1^u) of \mathfrak{A}_u ;
 - (a5) for every $i, j, k \in I$ such that $i \leq j \leq k$ we have $h_j^k \circ h_i^j = h_i^k$.

For an upper (F_1, F_2) -system \mathcal{A} of algebras we define an algebra $\mathcal{S}(\mathcal{A})$ of type τ as follows

$$\mathcal{S}(\mathcal{A}) = (\bigcup_{i \in I} A_i; F^{\mathcal{S}}),$$

where for $f \in F$, $a_j \in A_{i_j}$, $j = 0, ..., \tau(f) - 1$ the operation $f^{\mathcal{S}}$ is defined by the formula:

$$f^{\mathcal{S}}(a_0, \dots, a_{\tau(f)-1}) = \begin{cases} f^k(h_{i_0}^k(a_0), \dots, h_{i_{\tau(f)-1}}^k(a_{\tau(f)-1})), & \text{for } f \in F_1 \text{ and} \\ k = \sup\{i_0, \dots, i_{\tau(f)-1}\} \\ f^u(h_{i_0}^u(a_0), \dots, h_{i_{\tau(f)-1}}^u(a_{\tau(f)-1})), & \text{for } f \in F_2. \end{cases}$$

The algebra $\mathcal{S}(\mathcal{A})$ is called the sum of the upper (F_1, F_2) -semilattice ordered system \mathcal{A} of algebras.

In [3] we proved the following:

Theorem 1 If a variety \mathbf{K} of type τ satisfies (c) then an algebra \mathfrak{A} belongs to $\mathbf{K}_{F_1}^{F_2}$ iff \mathfrak{A} is the sum of an upper (F_1, F_2) -semilattice ordered system of algebras $\{\mathfrak{A}_i\}_{i\in I}$, where $\mathfrak{A}_i \in \mathbf{K}_{F_1}$ for $i \neq u$ and $\mathfrak{A}_u \in \mathbf{K}$.

2.

Let **K** be a nondegenerated variety of type τ satisfying (c) and $\mathcal{W}(G) = (W(G); F^{\mathcal{W}(G)})$ be a free algebra over $\mathbf{K}_{F_1}^{F_2}$ with the set G of free generators. We denote by \circ the binary function induced in $\mathcal{W}(G)$ by a fixed term $\varphi(x, y)$ from (c) (see [3]). Let $g_1, \ldots, g_n \in G$ where $g_i \neq g_j$ for $i \neq j; i, j = 1, \ldots, n$ and $\mathcal{C}(\{g_1, \ldots, g_n\}) = (\mathcal{C}(\{g_1, \ldots, g_n\}); F_1^{\mathcal{C}})$ be a subalgebra of the reduct $(W(G); F_1^{\mathcal{W}(G)})$ of $\mathcal{W}(G)$ generated by the set $\{c_1, \ldots, c_n\}$, with

(2)
$$c_k = g_k \circ g_1 \circ \ldots \circ g_{k-1} \circ g_{k+1} \circ \ldots \circ g_n \text{ for } k = 1, \ldots, n.$$

Lemma 1 $C(\{g_1,\ldots,g_n\})$ is a free algebra over \mathbf{K}_{F_1} with the set c_1,\ldots,c_n of free generators.

Proof.

Let

(3)
$$\varphi_1(x_{j_1}, \dots, x_{j_m}) = \varphi_2(x_{j_{m+1}}, \dots, x_{j_{m+s}})$$

belongs to $\mathrm{Id}(\mathbf{K}_{F_1})$ and $a_1,\ldots,a_m,a_{m+1},\ldots,a_{m+s}\in C(\{g_1,\ldots,g_n\})$. We procedee analogously as in Lemma 1 from [2], namely: Each a_j can be expressed by generators c_k and because of (2), by g_1,\ldots,g_n . Let

(4)
$$a_j = \psi_j^{\mathcal{W}(G)}(g_1, \dots, g_n),$$

where $F(\psi_j) \subset F_1$, each of g_1, \ldots, g_n actually occurs for $j = 1, \ldots, m, m + 1, \ldots, m + s$. Since the identity

(5)
$$\varphi_1(\psi_1(x_1, \dots, x_n), \dots, \psi_m(x_1, \dots, x_n)) =$$

$$= \varphi_2(\psi_{m+1}(x_1, \dots, x_n), \dots, \psi_{m+s}(x_1, \dots, x_n))$$

is F_1 -regular and belongs to $\mathrm{Id}(\mathbf{K})$, so it is satisfied in $\mathcal{W}(G)$. Thus by (4) and (5) $\varphi_1^{\mathcal{C}}(a_1,\ldots,a_m) = \varphi_2^{\mathcal{C}}(a_{m+1},\ldots,a_{m+s})$ and $\mathcal{C}(\{g_1,\ldots,g_n\}) \in \mathbf{K}_{F_1}$.

We observe that c_1, \ldots, c_n are different. Obviously $\{c_1, \ldots, c_n\}$ is a set of generators of $\mathcal{C}(\{g_1, \ldots, g_n\})$. We shall prove that if an identity $\varphi_1 = \varphi_2$ holds on $\{c_1, \ldots, c_n\}$ then $(\varphi_1 = \varphi_2) \in \mathrm{Id}(\mathbf{K}_{F_1})$.

Let $\varphi_1^{\mathcal{C}}(c_{j_1},\ldots,c_{j_m})=\varphi_2^{\mathcal{C}}(c_{j_{m+1}},\ldots,c_{j_{m+s}})$ and $c_{j_k}\in\{c_1,\ldots,c_n\}$ where $k=1,\ldots,m,m+1,\ldots,m+s$. Denote by $\varphi(x,y)=x\circ y$. Then $\varphi_1^{\mathcal{W}(G)}(g_{j_1}\circ\ldots\circ g_{j_1-1}\circ g_{j_1+1}\circ\ldots\circ g_n,\ldots,g_{j_m}\circ\ldots\circ g_{j_m-1}\circ g_{j_m+1}\circ\ldots\circ g_n)=\varphi_2^{\mathcal{W}(G)}(g_{j_{m+1}}\circ\ldots\circ g_{j_{m+1}-1}\circ g_{j_{m+1}+1}\circ\ldots\circ g_n,\ldots,g_{j_{m+s}}\circ\ldots\circ g_{j_{m+s}-1}\circ g_{j_{m+s}+1}\circ\ldots\circ g_n)$ hence the identity

 $\varphi_1(x_{j_1} \circ \ldots \circ x_{j_1-1} \circ x_{j_1+1} \circ \ldots \circ x_n, \ldots, x_{j_m} \circ \ldots \circ x_{j_m-1} \circ x_{j_m+1} \circ \ldots \circ x_n) = \varphi_2(x_{j_{m+1}} \circ \ldots \circ x_{j_{m+1}-1} \circ x_{j_{m+1}+1} \circ \ldots \circ x_n, \ldots, x_{j_{m+s}} \circ \ldots \circ x_{j_{m+s}-1} \circ x_{j_{m+s}+1} \circ \ldots \circ x_n) \text{ is } F_1\text{-regular and belongs to } \mathrm{Id}(\mathbf{K}_{F_1}^{F_2}). \text{ So it belongs to } \mathrm{Id}(\mathbf{K}_{F_1}).$ Thus by (c) the identity $\varphi_1(x_{j_1}, \ldots, x_{j_m}) = \varphi_2(x_{j_{m+1}}, \ldots, x_{j_{m+s}})$ belongs to $\mathrm{Id}(\mathbf{K}_{F_1}).$

Let $F_2 \neq \emptyset$, $f_0 \in F_2$ and $b_0, \ldots, b_{\tau(f_0)-1} \in W(G)$. Let $G' = \{\varphi^{\mathcal{W}(G)}(g, f_0^{\mathcal{W}(G)}(b_0, \ldots, b_{\tau(f_0)-1}))\}_{g \in G}$. Denote by $\mathcal{P}(G')$ the subalgebra of $\mathcal{W}(G)$ generated by the set G' and $\mathcal{P}(G') = (P(G'); F^{\mathcal{P}(G')})$.

Lemma 2 $\mathcal{P}(G')$ is a free algebra over **K** with the set G' of free generators.

Proof. Let

(6)
$$\varphi_1(x_{j_0},\ldots,x_{j_{m-1}})=\varphi_2(x_{j_m},\ldots,x_{j_{m+s-1}})$$

belongs to $\mathrm{Id}(\mathbf{K})$ and $a_0,\ldots,a_{m-1},a_m,\ldots,a_{m+s-1}\in P(G')$ so for $j=1,\ldots,m-1,m,\ldots,m+s-1$ we have

(7)
$$a_{j} = \psi_{j}^{\mathcal{W}(G)}(\varphi^{\mathcal{W}(G)}(g_{0}^{j}, f_{0}^{\mathcal{W}(G)}(b_{0}, \dots, b_{\tau(f_{0})-1})), \dots, \varphi^{\mathcal{W}(G)}(g_{n_{j}-1}^{j}, f_{0}^{\mathcal{W}(G)}(b_{0}, \dots, b_{\tau(f_{0})-1})))$$

where $g_s^j \in G$. But

$$\varphi_{1}^{\mathcal{W}(G)}(\psi_{0}^{\mathcal{W}(G)}(\varphi^{\mathcal{W}(G)}(g_{0}^{0}, f_{0}^{\mathcal{W}(G)}(b_{0}, \dots, b_{\tau(f_{0})-1})), \dots, \varphi^{\mathcal{W}(G)}(g_{n_{0}-1}^{0}, f_{0}^{\mathcal{W}(G)}(b_{0}, \dots, b_{\tau(f_{0})-1})), \dots, \varphi^{\mathcal{W}(G)}(g_{n_{0}-1}^{0}, f_{0}^{\mathcal{W}(G)}(b_{0}, \dots, b_{\tau(f_{0})-1})), \dots, \varphi^{\mathcal{W}(G)}(g_{n_{m-1}-1}^{m-1}, f_{0}^{\mathcal{W}(G)}(b_{0}, \dots, b_{\tau(f_{0})-1})))) = \\ = \varphi_{2}^{\mathcal{W}(G)}(\psi_{m}^{\mathcal{W}(G)}(\varphi^{\mathcal{W}(G)}(g_{0}^{m}, f_{0}^{\mathcal{W}(G)}(b_{0}, \dots, b_{\tau(f_{0})-1})), \dots, \varphi^{\mathcal{W}(G)}(g_{n_{m-1}}^{m}, f_{0}^{\mathcal{W}(G)}(b_{0}, \dots, b_{\tau(f_{0})-1})), \dots, \varphi^{\mathcal{W}(G)}(g_{n_{m+s-1}}^{m+s-1}, f_{0}^{\mathcal{W}(G)}(b_{0}, \dots, b_{\tau(f_{0})-1})), \dots, \varphi^{\mathcal{W}(G)}(g_{n_{m+s-1}-1}^{m+s-1}, f_{0}^{\mathcal{W}(G)}(b_{0}, \dots, b_{\tau(f_{0})-1}))))$$

since the identity

 $\varphi_{1}(\psi_{0}(\varphi(x_{0}^{0},f_{0}(y_{0},\ldots,y_{\tau(f_{0})-1})),\ldots,\varphi(x_{n_{0}-1}^{0},f_{0}(y_{0},\ldots,y_{\tau(f_{0})-1}))),\ldots, \\ \psi_{m-1}(\varphi(x_{0}^{m-1},f_{0}(y_{0},\ldots,y_{\tau(f_{0})-1})),\ldots,\varphi(x_{n_{m-1}-1}^{m-1},f_{0}(y_{0},\ldots,y_{\tau(f_{0})-1})))) = \\ = \varphi_{2}(\psi_{m}(\varphi(x_{0}^{m},f_{0}(y_{0},\ldots,y_{\tau(f_{0})-1}),\ldots,\varphi(x_{n_{m}-1}^{m},f_{0}(y_{0},\ldots,y_{\tau(f_{0})-1}))),\ldots, \\ \psi_{m+s-1}(\varphi(x_{0}^{m+s-1},f_{0}(y_{0},\ldots,y_{\tau(f_{0})-1})),\ldots, \\ \varphi(x_{n_{m+s-1}-1}^{m+s-1},f_{0}(y_{0},\ldots,y_{\tau(f_{0})-1})))) \\ \text{is } F_{2}\text{-symmetrical and belogs to Id}(\mathbf{K}). \text{ Thus by } (7), (8)$

$$\varphi_1^{\mathcal{C}(G')}(a_0,\ldots,a_{m-1})=\varphi_2^{\mathcal{C}(G')}(a_m,\ldots,a_{m+s-1})$$

and $\mathcal{P}(G')$ belongs to $\mathrm{Id}(\mathbf{K})$.

Let $\mathfrak{A}=(A;F^{\mathfrak{A}})$ belongs to \mathbf{K} and h_1 is a mapping $h_1:G'\to A$. Take a mapping $h_2:G\to A$ such that $h_2(a)=h_1(\varphi^{\mathcal{W}(G)}(a,f_0(b_0,\ldots,b_{\tau(f_0)-1})))$ for $a\in G$. $\mathcal{W}(G)$ is a free over $\mathbf{K}_{F_1}^{F_2}$, so h_2 can be extended to a homomorphism h of $\mathcal{W}(G)$ into \mathfrak{A} . Since $x\circ y=x$ is satisfied in \mathfrak{A}_u so

(9)
$$h(\varphi^{\mathcal{W}(G)}(a, f_0(b_0, \dots, b_{\tau(f_0)-1}))) = \varphi^{\mathfrak{A}}(h(a), h(f_0^{\mathcal{W}(G)}(b_0, \dots, b_{\tau(f_0)-1}))).$$
Since $\mathfrak{A} \in \mathbf{K}$, so

(10)
$$\varphi^{\mathfrak{A}}(h(a), h(f_0^{\mathcal{W}(G)}(b_0, \dots, b_{\tau(f_0)-1}))) = h(a) = h_2(a) = h_1(\varphi^{\mathcal{W}(G)}(a, f_0(b_0, \dots, b_{\tau(f_0)-1}))).$$

Thus by (9), (10) $h \mid P(G')$ is a homomorphism being an extension of h_1 .

Theorem 2 If **K** is a nondegenerated variety satisfying (c) then an algebra $\mathfrak{A}(G) = (A(G); F^{\mathfrak{A}(G)})$ is a free algebra over variety $\mathbf{K}_{F_1}^{F_2}$ with the set G of free generators iff $\mathfrak{A}(G) = \mathcal{S}(A)$, where A is an upper (F_1, F_2) -semilattice ordered system of algebras satisfying (1) and

$$(1^G) \ I = Fin(G) \cup \{G\}, \ u = G, \le = C.$$

- (2^G) \mathfrak{A}_i for $i \neq G$ is a free algebra over variety \mathbf{K}_{F_1} with the set $\{a_{(k,i)}\}_{k \in i}$ of free generators, \mathfrak{A}_u is a free algebra over variety \mathbf{K} with the set $\{a_{(k,G)}\}_{k \in G}$ of free generators.
- (3^G) For $i \le j$, $i, j \in I$, $h_i^j(a_{(k,i)}) = a_{(k,j)}$.
- (4^G) For $i \leq j$, $i, j \in I$, h_i^j is the embedding of \mathfrak{A}_i into \mathfrak{A}_j^* , where $\mathfrak{A}_j^* = \mathfrak{A}_j$ if $j \neq G$ and $\mathfrak{A}_G^* = (A(G); F_1^{\mathfrak{A}})$.

Proof (\Rightarrow) . The proof is based on Theorem 1 from section 1. Consider a relation R in $\mathfrak{A}(G)$ defined by

$$aRb \text{ iff } \varphi^{\mathfrak{A}(G)}(a,b) = a \text{ and } \varphi^{\mathfrak{A}(G)}(b,a) = b.$$

Using Theorem 4 (see [3]) one can prove that $\mathfrak{A}(G)$ is the sum of an upper (F_1, F_2) -semilattice ordered system of the form (1), where elements a, b belongs to the same A_i iff aRb. Let $g_1, \ldots, g_n \in A(G)$ and $g_i \neq g_j$ for $i \neq j$, $i, j = 1, \ldots, n$. To use Lemma 1 from section 1 we put $c_k = g_k \circ g_1 \circ \ldots \circ g_{k-1} \circ g_{k+1} \circ \ldots \circ g_n$. Using R we can show that every \mathfrak{A}_i for $i \neq u$ is generated by $\{\varphi^{\mathfrak{A}(G)}(g, f_0^{\mathfrak{A}(G)}(b_0, \ldots, b_{\tau(f_0)-1}))\}_{g \in G}$ where f_0 is some operation symbol belonging to F_2 . By Lemma 1 \mathfrak{A}_i is free over \mathbf{K}_{F_1} and by Lemma 2 \mathfrak{A}_u is free over \mathbf{K} . Since every \mathfrak{A}_i is generated by some $c_{j_1}, \ldots, c_{j_{n_i}}$, where c_{j_s} is generated by some $g_{j_1}, \ldots, g_{j_{n_i}}$ for $s = 1, \ldots, n_i$. We can put $i = \{g_{j_1}, \ldots, g_{j_{n_i}}\}$, put u = G. Then we can substitute \leq by \subset . In [3] h_i^j was defined as follows: for $x \in A_i$, $b \in A_j$ $h_i^j(x) = x \circ b$. Thus conditions (3^G) and (4^G) are also satisfied.

Proof (\Leftarrow) . The fact that $\mathcal{S}(\mathcal{A}) \in \mathbf{K}_{F_1}^{F_2}$ follows from Theorem 1. The fact that $\{a_{(i,\{i\})}\}_{\{i\}\in I}$ is a set of generators of $\mathcal{S}(\mathcal{A})$ follows from the formula $a_{(k,j)} = a_{(k,\{k\})} \circ a_{(i_0,\{i_0\})} \circ \ldots \circ a_{(i_{n-1},\{i_{n-1}\})}$ for $j = \{k,i_0,\ldots,i_{n-1}\}$ and the formula $h_{\{i\}}^G(a_{(i,\{i\})}) = a_{(i,\{i\})} \circ b$ where $b = \psi^{\mathfrak{A}(G)}(a_{(i,\{i\})},\ldots,a_{(i,\{i\})})$ for an arbitrary term ψ with $F(\psi) \cap F_2 \neq \emptyset$. The fact that every element $a \in \mathcal{S}(\mathcal{A})$ has the unique representation on the set $\{a_{(i,\{i\})}\}_{\{i\}\in I}$ (as a realization of some term) follows from the definition $\mathcal{S}(\mathcal{A})$.

Literatura

1. S. Burris, H.P. Sankappanavar, A course in universal algebra, Springer-Verlag, New York, Heidelberg, Berlin, 1981.

- 2. J. Płonka, On free algebras and algebraic decompositions of algebras from some equational classes defined by regular equations, Algebra Universalis, vol.1, fasc 2, 1971, 261–264.
- 3. A. Wojtunik, The generalized sum of an upper semilattice ordered system of algebras, Demonstratio Mathematica, vol.XXIV, No 1-2, 1991, 129-147.

L. Ary an orka Peano PA jest it oria 1 go ezabi pi witadan indez obsezense do legila prydylate w zedentwe sose ia nastęgują reb akcionatow barakterycujących spacyficzne arytmetyczne wiespości 0 (zera), 5 (operag następniko), + (dodawana) oraz × (umożenia liceb cuturalnych).

And The contract of the contr

 $V = (A \cup A \cup A) \times (A \cup A$

owejch w kieratusze rzważene są różne wenianty fanguesky, wersje zykowe systemu. Przykładowo, PA jest skończenie aksjomatyzowalaym odsystemem, PA zewierajacym aksjomaty dyskretnie uporządkowanych odłycierścień. Rozweżne sa ponadło róższerzenia PA symbolami funk-

entic), — (normies weetedma); — (porvadelt), Argungtyks Losburgers jast fragmentent 24 vojcapka (l. 25 vozp. (ber amezenis), System on a przecwieństwie do ingych wspomnistyph tura; werigh i werisal (w. 24, jest przkray galasy tzaroistnieje relumencyjna metoda gospoznawania, tez Arytanestray galasy tzaroistnieje relumencyjna metoda gospoznawania, tez Arytane-

projected modern and consequence formule A(x) project $B_{p}P_{1}(T,x) = P_{1}(T,x)$ and the project A(x) project A(x) project $A(x) = P_{1}(T,x) = P_{2}(T,x)$ and $A(x) = P_{2}(T,x) = P_{3}(T,x)$ and $A(x) = P_{3}(T,x) = P_{3}(T,x)$ and $A(x) = P_{3}(T,x) = P_{3}(T,x$

Nodyhkujac odpowiednio pososiaje arsjumaty Pajouzyninjeniy uzw. atytmetyke porzadkowa. OA równoważnajtrodycyjnie. Paj Pontewaz ruzważane będa dalej aspekty teprii formalnych zależne od aksjomatyzacji, a pie tylko od relacji dewodli wości, wszystkie wprowadzone wersję Pa musza być rozróaniane. W pracy nie będzia obowiazywała zapropogowana przez A. Tarskiego