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The determination of the amount of buffer space required for keeping
information of messages in service or waiting for service is one of the most
important problems to be solved when designing information processing and
communicating systems [1,9]. We suggest to use queueing theory methods
for solving the problem. But classical queueing theory is not sufficient for
this, because the solution depends much on two main factors: 1) each real
message (or demand in queueing theory terminology) has some random
length; 2) the processing time of the message depends on its length.

If we want to determine the message length as the amount of memory
space required for message information storage, the solution of the problem
presupposes the definition of statistical characteristics of the summarized
messages volume in the system at the given time moment.

The queueing theory is the mathematical instrument rather adequa-
tely representing information processing and communicating systems. To
obtain summarized volume characteristics it is necessary to presume that
the queueing system has some amount of memory space V, expect for a
given number of waiting places (in some cases may be V = o0). Let o(t)
be the demands volume (the total sum of demands lenghts being in service
and waiting for service) at time moment ¢. At arrival moment 7 the infor-
mation of demand with lenght z is dropped into the memory immediately
if V.~ o(r —0) > z, at this moment the summarized volume increases by
z. If V —o(r — 0) < z, the demand will be lost. At the end of the service
of a demand its information leaves the memory immediately, and is doing
so the summarized volume decreases by the demand length. Let ¢ be the
demand length and ¢ its service time.

Let £ depends on the length ¢ only. Let F(z,t) = P{{ < z,{ < t}
be the common distribution function of the random variables ¢ and &.
Let L(z) = F(z,00),B(t) = F(oo,t) be the distribution functions of the
random variables ( and & respectively.

It is obviously, that in real systems inequality 0 < V' < oo takes place,
i.e. o(t) < V. But in the case of dependencies between ¢ and £ we can’t as
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a rule determine characteristics of o(t) process exactly. Generally we can
obtain such characteristics using the next mathematical queueing models:
1) models of queueing systems in which V' < oo and random variables ¢ and
¢ are independent, i.e. F(z,t) = L(z)B(t); 2)models of queueing systems
in which V' = oo and ¢ depends on (, i.e. F(z,t) # L(z)B(t). The case
of systems in which ¢ and ¢ are independent and V = oo is trivial. We
can use the models of the first class in the case of real systems in which
dependence between ¢ and £ is inessential. For these systems we can obtain
characteristics of demands number in the system and determine probability
of demands losing.

If V = oo the determination of these characteristics is impossible as
losses are absent in the system (when the number of waiting places and
other parameters have no restrictions). In this case we can obtain charac-
teristics of o(t) process. After that we can value characteristics of losing
for the system with V' < oo using for example the next inequality [2] for
probability of losing p; :

where Do, (z) is the distribution function of stationary summarized volume
(if the limit o(t) = o exists in the sence of a weak convergence when
t — oo) for the case of V = oco. Thus the analysis of the both classes of
models has a practical sense.

Models of the first class with some additional restrictions were analyzed
in [3], models of the second class were analyzed in [2,4-7]. In [2,8] priority
queueing systems were discussed.

Note, that models of the second class are more interesting from the
mathematical point of view. One of the most general results for such mo-
dels is an analog of the famous J. Little’s formula. So, if we have usual
stationary queueing system without restrictions and renewal of service, the
next relation takes place [7] for the first moment Fo of the random variable
ag.

Eo = Aw E¢ + E((€)],
where A is an intensity of an entrance flow of demands, w; is a first moment

of the queueing time, F(¢£) is a joint 1 + 1-moment of random variables ¢
and .
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