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Some Applications of
the Resolution on Hypergraphs
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Abstract

We show here some applications of the hypergraph resolution.
The presented methods origin from papers of Cowen [1] and
Kolany [4].

Hypergraph satisfiability and a generalized resolution rule.

A hypergraph is a structure § = (V,€), where V is any set and £
a family of nonempty subsets of V. In the sake of simplicity, we shall
assume that V (and hence also &) is finite. Hypergraphs whose edges are
2-element are called graphs. The elements of V will be called vertices of
the hypergraph G and the elements of £ — its edges. Sets of vertices which
do not contain edges will be called G-consistent, or simply consistent, if
there is no possibility of misunderstanding. Sets which are not consistent
are inconsistent. Sets of vertices will sometimes be called clauses.

Let A be a family of clauses and let o be a consistent set of vertices.
We will say that o satisfies A with respect to G iff c Na # 0, for every
a € A, (see [1,4]). A family of clauses is satisfiable iff some consistent o
satisfies it. We easily notice that colorability of a graph is equivalent to
satisfiability of the family of its all edges.
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ExaMPLE. LetG = (V,&), where

VY =4a,b,c,die, f} and € = {{a, f},{a,b,c},{c,e, f};{b,d,e}}.

it

Then, the family of clauses Ao = {{b},{d},{a,¢},{c, f},{e, f}} is sa-
tisfied by oo = {b,d,¢c, f}, but Ay = AgU{{a,e}} is not satisfiable. Let us,
oppositely, suppose that some o satisfies A;. Then b,d € 0. Hencee & o.
Since {a,e} € A;, we have a € o and since {a,f} € £, we get f € o.
Then neither of e, f is in o, though {¢, f} € A;. Contradiction. A; is not
satisfiable.

The following duality property of hypergraph satisfiability has been
noticed by Cowen in [2]:

THEOREM. (Duality Principle) Let G = (V,€) and let A be a family of no-
nempty clauses. Then A is satisfiable wrt. G iff £ is satisfiable wrt. (V, A).
The following notions can be found in [1,5].

Let e = {aj,...,an} be an edge and let ay,...,0n be clauses. Then
we say that the clause a = |J]_;(@; \ {a;}) results by the resolution on
the edge e from the clauses ay,...,a,. We write then a1,...,a, ke a.

If A is a family of clauses, then the least A closed on the resolution rule
and containing A will be denototed as [A]g. Since the latter set depends
merely on the family .A and the set of edges in fact, we shall also denote it

as [Ale.
The following has been proved in [4]:
THEOREM. Let A be a family of clauses. Then A is satisfiable iff

{} ¢ [Alg.
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EXAMPLE. Let G and A; be as in the first ezample. We have

{a’ €}$ {67 f} '_{a,f} {e} and {b}v {d}= {6} '_{b,d,e} {}

Hence {} € [Ai]g, which proves unsatisfiability of A;.
The following can be helpful by checking satisfiability by the resolution:

REMARK. Ifa€ Aand aC ay. Then {} € [Alg iff {} € [AU {a1}]g-

This lets us omit oversets of already resolved clauses, while searching
satisfiability of a family of clauses. On the other side, if e = {ay,...,a,},
a; € aj, j =1,...,n and Card(e N ;) > 2, for some ¢ = 1,...,n, and if
ai,...,0n Fe o, then a; C a. This implies that, checking satisfiability by
resolution, we can restrict ourselves to clauses with one-element meets with
the edge we resolve on.

Applications.

In this section we show some applications of hypergraph resolution in
deciding the existence of certain objects. Proofs of most of the facts cited
below can be found in [4].

1. (Hyper)graph 2-colorability

let G = (V,€) be a hypergraph. We say that G is 2-colorable
(or simply colorable), if there exists a function s : V — {0,1}
with the property that lle has at least two different elements,
for every non-singleton edge e of G. We have:

THEOREM. Let G be a hypergraph with no singleton edges. Then G is
colorable iff £ is satisfiable with respect to G.

EXAMPLE. Let G = (V,€) be such that
V = {a,b,c,d,e} and £ = {{a,b,c}, {a,d, e}, {b,d}, {c,e}}.

In order to decide its colorability, we must check whether [€]g contains
the empty clause. Because {a,b,c},{b,d},{c,e} (g 4.} {b;c} and {a,d, e},
{c.e}, {b,d} Facpy {d,e}, by the Remark at the end of the first section,
{} € [€lg iff {} € [Alg, where A = {{b,d},{b,c},{c,e},{d,e}}. It is
however easy to see that resolving from A yields supersets of clauses of A
only. Hence £ 1is satisfiable and thus G is colorable.

Some similar method of deciding the 2-colorability was also considered
in [5].
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2. n-colorability

A generalisation of colorability is n-colorability of hypergraphs.
Let G = (V,€) be a hypergraph. A functionk:V — {0,...,n—
1} is an n-coloring of G iff Card klle > 2, e € &, unless e is
a singleton. We say that G is n-colorable iff there exists an n-
coloring of G. We have:

THEOREM. Let G be a hypergraph with at least 2-element edges and let
G° = (V°,£€°), where V° =V x {0,...,n— 1} and

£ = {{(v, (v, 1)} i # 51,5 = 0,0 — 1}U

WHex {j}:e€&,j=0,...,n—-1}.
Then G 1s n-colorable iff the family A° = {{v}x{0,...,n=1}: v € V}
is satisfiable with respect to G°.

EXAMPLE. Let G = (V, &), where V = {a,b,c,d, e} and

£ = {{a,b},{a, e}, {a,d}, {b,c}, {b,d}, {b,e}, {c,d},{d;e}}

(hence G is a graph in fact).

We will decide whether G is 3-colorable. Instead of (v,1), we will write
vi,vEV, i=0,1,2, in the following. We have: ;
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{a0,al, a2},
(b0, b1, b2},
{c0,cl, 2},
{d0,d1, d2},
{e0, el, e2},

---------

{dl1,d2,cl1,c2}
{d1,d2, b0, b2, c2}
(d1,d2,el,e2)
10. {c0,cl,e0,el}
11,. {cb,clidl,d2,el}. . 5.
12. {cl,d1,d2,b0,b2,el} ...
18, {d1,d2,b0,b2,e1}
14. {e0,€2,a0,a2}
15. {d1,d2,al,a2}
16. {d1,d2,e0,e2,a2}
17, {dl,d2,b0,b2,a2,e2} ...
18. {d1,d2,b0,b2,a2}
19. {c0,cl,a0,al}
20. {d1,d2,b0,b2,c0,a0,al}
21. {d1,d2,b0,b2,a0,al} ...
92. {dl,d2,b0,b2, a0}
23, {d1,d2,b0,b2}
24. {d1,d2,b1,b2)
25. {dl,d2,b2}

© NS o~

------

---------

.........

---------

{80,2,¢0,c2} ..........

by 2,3 on {bl,cl},
by 3,4 on {d0,c0},
by 6,7 on {c0,cl},
by 4,5 on {d0,e0},
by 3,5 on {c2,e2},
by 9,10 on {e0, €2},
by 8,11 on {c0,c2},
by 8,11 on {cl, c2},
by 5,1 on {el,al},
by 4,1 on {d0,a0},
by 14,15 on {a0,al},
by 13,16 on {e0,el},
by 13,17 on {e0, €2},
by 3,1 on {a2,c2},
by 8,19 on {cl, 2},
by 8,20 on {cl, c0},
by 18,21 on {a2,al},
by 18,22 on {a2,al},
by 4,2 on {d0,b0},
by 23,24 on {b0,bl},

Hence we obtain that {dl,d2,b62} € [A°] where A° = {{v} x {0,1,2} :
v € V}. Because of symmetry wrt. exchanging 1 with 2, we obtain
{d1,d2,b1} € [A°], hence {d1,d2} € [A°]. Because of the symmetry wrt.
exchanging 0 with 2, we get that {d0,d1} € [A°], hence {d0} and {d2} are
in [A°]. By the resolution on the edge {d0,d2}, we eventually obtain that
{} € [A°], which proves that G is not 3-colorable.

3. (n, k)-colorability

We say that a graph G = (V, E) is (n, k)-colorable iff there is
k:V —{0,...,n— 1} with

Card ({be€V : {a,b} € E,k(a) =k(b)}) < k.

We see that (n,0)-colorability is the usual n-colorability. First
we shall deal with (2, k)-colorability. We have:
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THEOREM. Let G = (V,E) be a graph and let G = (V, ) where

E o= {{0s gy o5 OnF & AU h & .0 = Lo cog by 3 Wisk & 15550 = 1;05:58]
Then G is (2,k)-colorable iff G is 2-colorable, i.e. £ is satisfiable wrt. G.

EXAMPLE Let G = (V, E) be such that V = {a,b,c,d,e} and
. = {{a,d},{a,e},{b,c},{b,d},{c. e}, {d,e}}.

d je
b c

In order to decide the (2, 1)-colorability of G, we must decide the colora-
bility of G = (V, €), where £ = {{a,b,d},{a,c,e},{a,d. e}, {b,c,d}, {b,c,e},
{b,d,e},{c,d,e}}. Since {b,c,e},{a,c,e},{c,d,e} Fap4) {c,e}, the sati-
sfiability of € is equivalent to the satisfiability of {{a,b,d},{a,d,e}.{b,¢c,d},
{b,d,e},{c,e}} wrt. £. Since {b,c,d},{b,d,e} Ficey {b,d}, the duality
principle lets us conclude that (2,1)-colorability of G reduces to satisfia-
bility of Ag wrt. Ao, where Ay = {{b,d},{c,e},{a,d,e}}. Resolving on this
set, however, gives supersets of its elements, only, what one perceives after
a closer, inspection of the following table:

bd ce |ade
{dlae
bd X - J
e|ad
ce - X
c
d|b e] c
ade X
ae ad

As it concerns (n, k)-colorability for n > 2, we have the following:

THEOREM. Let G = (V,E) be a graph and let G = (V,&), where V =
V x{0,...,n—1} and
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€ = {{(v,9);(v1;,9),..., (Vg8 } 2 "i=0,...,n—1,
{’U,’Uj} EEaj =1,...,k Uy #U[,j -‘/—‘l,],l= 177k} U
U {{(5),(w0)}: veVi#jij=0,..,n—1}
Let, moreover, A = {{v} x {0,...,n =1} : v € V}. Then G is (n,k)-
colorable iff A is satisfiable with respect to G.

PROOF.

(=) Letk: V = {0,...,n—1} be an (n, k)-coloring of G. Then & itself is
consistent and satisfies A wrt. G.

(<) Now let o C V satisfy A wrt. G. Then o is a function and it (n, k)-
colors G. .

4. Colorability of edges

Let G = (V,£) be a hypergraph. A functionx: & — {0,...,n—
1} is an n-coloring of edges of G iff no two edges with the same
color meet the same vertex. I.e. Card {k(e): vEe} > 2,
for v € V. A hypergraph G° = (£,£°), where £° = {{e €
£: v €e}: v €V} is called the dual hypergraph to the hy-
pergraph G. We easily see that n-colorability of edges of G
is equivalent to usual n-colorability of the dual hypergraph G°
of G.

5. Systems of Distinct Representatives

Let Ay,..., A, be a family of nonempty finite sets. A System
of Distinct representatives, SDR, for Ay,...,A, is a sequence
M1, ..., iy Of different elements with u; € A;,1=1,...,n.

THEOREM. Let Ay,...,A, be as above and let G = (V,&) be such that
V={(j,8) : a € 4,5 =1,...yn}and

&= {{(.73 a)v (.71 b)} : aab = Ajaa 7& b}U
U{{(jaa')a (iaa)} tac Ai N Ajai '-I'é ja i’j = 1:- o 7n}}'

Then A1,...,A, has a SDR iff A is satisfiable wrt. G, where A =
{{7} %ds: 3.7 1,...,n}
EXAMPLE. Let A ={2,4}, B ={1,3,5} and C = D = {2,4}. In order
to decide the ezistence of SDR for A, B,C, D, we have to find out weather {}
is in [{{A2, A4},{B1, B3, B5},{C2,C4},{D2,D4}}]s, where £, amongst
others, contains edges {A2,C2}, {A2, D2}, {C2, D2}, {A4,C4}, {A4, D4},
{C4,D4}. We have:



A. Kolany

1. {A2, A4},

2. {B1,B3,B5),

3. {C2,C4},

4._{D2,D4},

5. {A2,C2} by {1,3} on {A4,C4}
6. {D2,C2} by {3,4} on {C4, D4}
V. G2} by {5,6} on {A2, D2}
8. {D4} by {4,7} on {C2,D2}
9. {A2} by {1,8} on {A4, D4}
10. {} by {7,9} on {A2,C2}

This proves that A, B,C,D has no SDR.
The problem of existence of SDRs is also known as the marriage problem
(see [3]).
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