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This handbook is intended to present basic practical issues in theoretical
mechanics (statics), as well as the strength of materials and machine parts.
Each chapter contains a concise theoretical introduction, basic calculation
formulas, examples of typical calculations and tasks for individual work.
Finally, there are reference tables and alist of used and recommended
literature.

The handbook was created in cooperation between the Jan Dtugosz
University in Czestochowa (Poland) and Kryvyi Rih State University
of Economics and Technology (Ukraine). It is intended for engineering
students, including those majoring in safety engineering, innovative
technologies and modern materials or any related fields.
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PREFACE

Applied mechanics consists mainly of three interrelated departments:
theoretical mechanics, strength of materials and machine parts. The main
purpose of this course is to provide engineering students with knowledge
and skills that will enable them to solve engineering problems concerning
individual parts of structures and machines in practice, taking into account
their reliability and efficiency. The computational examples presented in the
handbook make it possible to optimize the design of both the entire machine
and its specific parts, enabling to minimize the occasional contradictions
between reliability and efficiency that may arise during designing process.

The script sequentially presents the basic theoretical issues for each
section and then shows several examples of solutions to typical problems
in mechanics, strength of materials and machine design. After each topic, the
student is given the opportunity to choose and solve practical tasks. Tasks
are constructed in a manner to present multiple choices, which promotes
understanding and consolidating knowledge of previously learned topics.
The tasks, due to the formulated solution schemes, can be used for individual
practical computational work ofthe student both in and out of class.
The handbook deals with static systems, which are based mainly on the laws
of solid mechanics.



CHAPTERI
THEORETICAL MECHANICS

1.1. Flat covering force system

General information

A convergent force system - is asystem offorces whose lines
of action intersect at a single point, called the point of convergence. There is
a planar convergent force system when the lines of action of all these forces
lie in the same plane, and a spatial convergent force system when the lines
of action of the forces lie in different planes.

A system of forces whose lines of action lie in the same plane and
intersect at a single point is called a planar convergent force system.

Basic calculation formulae
Equally acting convergent force system in the geometric method
of determination

ﬁ:ﬁ1+ﬁ2+...+ﬁn:

'M:
o~ l'

_.
Il
[y

Analytical (computational) method for determining the equivalent
force in a converging force system

(—) - - - - = >
! R, = F,, + F,, + F3,;in general form R, = Z i

n
lféy = ﬁly + ﬁzy + 1333,; in general form ﬁy = Z ﬁiy

or
{R cosa = F; cosa; + F, cos ay + F3 cos aj
Rcos 3 = F; cos By + F, cos 8, + F5 cos B3

The value of the modulus (absolute value) of the resultant force vector
is determined by Pythagoras' theorem:

R= [R2+R2

The direction of the resultant force vector R is determined by its so-

called directional cosines (cosines ofthe angles ofthis vector R with
the coordinate axes):



R, R,
cosa —F,cosﬁ =%

Equilibrium conditions of a converging force system

Geometric condition for the equilibrium of a converging force system

y

n
i=1
The equivalent of such a force system will be zero when the force

polygon is closed, i.e. the origin of the first force vector coincides with the end
of the last force vector (Fig. 1.1).
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S

Fig. 1.1. Force balance

The geometric equilibrium condition can be used to solve some statics
problems using a graphical method.
The way to proceed in such a case is as follows:
1. select the body whose equilibrium will be considered;
2. discard the bilges, replacing them with reactions;
3.using the equilibrium condition, create aclosed polygon of forces,
determining unknown quantities (in most cases the reactions of the ties).

Analytical equilibrium condition for a converging force system

In an abbreviated form, the equilibrium conditions of a convergent
force system in the plane are written as follows:



ZXzO
ZYzO

A system of such forces in space has three equations in equilibrium:
ZX =0

J Z Y =0

> z-0

When solving static problems using the analytical method, the following

sequence of steps should be followed:

1. select the body (point) whose equilibrium we are considering;

2. discard the bilges, turning them into reactions;

3. introduce the coordinate system and arrange the equilibrium equations;

4. using the equilibrium condition, determine the unknown quantities
(in most cases the reactions of the nodes);

5. perform a verification of the results using an equation that was not used
in the solution, for example by creating an equilibrium equation along
a different coordinate axis or using a geometric method.

When choosing the position of the axes of the coordinate system, it is
advisable to arrange them in such a way that as many unknowns as possible
are perpendicular to their axes.



Examples of calculations

Example 1.1. Determine the reactions in the bars (Fig. 1.2) at F = 50 kN.

Data:
F=50KkN

Fig. 1.2. Reactions forces in
bars

Fig. 1.3. Force distribution in
the implemented coordinate
system

Searched for:
N1, N2-7?
Solution

1. We get rid of the nodes by replacing them
with reactions (Fig. 1.2). Reactions in bars occur
along the bar and their direction is chosen
according to the deformation. The rod BC under
force F is in tension, so the reaction N1 will be
towards the support in the direction opposite
to the deformation, the rod AC under force F
is in compression, so the reaction N> will be
towards the direction away from the support.

2.We introduce the coordinate system and
decompose the forces acting on it (Fig. 1.3).

3. Write down the equilibrium conditions for the
given system of forces.

ZFy=0;

N;cos60°—F =0
F 50-103

N, = = = 100 kN;
1™ cos 60° 0,5 00 kN;

ZFX=0;

—N; cos30°+ N, = 0;
N, = N, cos 30° = 100 - 103 - 0,87 = 87kN.

Verification

Examples of ways to verify calculations:

10
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Fig. 1.4. Force projections on
the x' axis

Fig. 1.5. Force triangle

Option 1

We determine the projections of forces

on another axis, for example, x”(Fig. 1.4)

ZFx,=0

—N; + N, cos 30°+ F cos 60° =0
—~100+87-0.87+50-0.5=10
0=0
The reactions were calculated correctly.

Option 2

We draw a force triangle (Fig. 1.5) and, using
the ratio ofthe sides of the triangle,

determine the reactions in the bars.

60° = —
cos Nl

N oo f 50 10°
17 cos60° 05

. N,

sin60° = —

Ny

N, = N, sin60° = 100 - 103 - 0.87 = 87 kN

=100 kN

The reactions were calculated correctly.

We will apply the sine theorem (Snellius
theorem) - the sides of a triangle are
proportional to the sines of the opposite

angles, so:
Ny N, F

sin90°  sin60° sin30°

_ Fsin90° 50-10%-1

M= 30 = 05 100KN
_ Fsin60° _50-10%-0.87 _ 67 kN
27 sin30° 0.5 -

Reactions were determined correctly.

Answer: N1 =100 kN; N2 = 87 kN.

11



Example 1.2. Determine the reactions in the cantilever bars (Fig. 1.6, a)
when:
F=3kN;a=30° f=65°.

Data: Searched for:
F=3KkN N1, N2-?
a=30°

B=65°

NN

a b
Fig. 1.6. Bracket: a - distribution of forces in the bracket; b - force triangle

Solution
1. Graphical method

Plot the force vector F on a scale of

—F—OlkN
.u'F_F_ mm
So
-~ F 3 kN
F = = N = 30 mm
HF 01—
mm

Bar reactions are always directed along the bars. After analysing
the deformation of the bars (tension or compression), choose the direction
of the reactions. We then create a force triangle (Fig. 1.6, b). We measure
the vectors Ivli IVZ and, taking into account the scale factor, calculate
the reaction values N; and N::

N; =4.73 kN, N, = 2.62 kN.
For greater accuracy, the use of graphic software is recommended.

12



2. Analytical method
Choose the X and Y axes. For convenience, we orient the X-axis along
the N; force (Fig. 1.6, a)
We set up two equilibrium equations and determined the unknown
reactions:
ZFy =0, N;cos55°—Fcos25°=0,
_ Fcos25°
17 cos55°
Z E, = 0,—N, + N; cos 35° — F cos 65° = 0,
N, = 4.74 cos 35° — 3 cos 65° = 2.62 kN.

= 4.74 kN,

Answer: N1 =4.74 kN, N2 = 2.62 kN.

Example 1.3. a weight of G = 60 kN is suspended by a rope, thrown over
block a and leading to winch D. Determine the reactions in bars AC and BA
of the crane (Fig. 1.7).

Data: Searched for:
G =60KkN S1-7852-7?
g
B Solution
1. The reactions ofbars AB and AC are
; | directed along the bar.
o It is clear from the bar load analysis that bar
/| AB is in tension, so the reaction S; is directed
; 30° from point a to point B.
/] D Therod AC is compressed, so the reaction S
/¢ is directed from point C to point A.
¢ The rod AC is compressed, so the reaction S;
is directed from point C to point A.
Fig. 1.7. Force distribution in The force in the rope T'is directed along the

the calculated system rope from point ato point D as the rope is

stretched by the load G. Itis obvious that T'=G.
2. We choose to arrange the X and Y axes in such a way that one of the
reactions (for example S1) is directed along one of the axes.
Two equilibrium systems can be arranged for such a system:

13



Zpy =0
S,c0830°—G —Tcos30°=0
_ G+Tcos30° 60-10°+60-10°-0.87

27 cos30° 0,87

Zszo

—S51 + S5, c0s60°+ T cos60° =10

= 129 kN

S; = S,¢c0s60°+ T cos60° =129 - 103 0.5+ 60 - 103 - 0.5 = 94.5 kN

Answer: §1 =129 kN, S2 = 94.5 kN.

14



Task 1.1. Determine the reactions in the cantilever

Individual tasks

(calculation)

The data for the task is shown in Table 1.1.

Table 1.1. Initial data for Task 1.1

rods under force F.

8_ % a| p| F E % al| fp F _:g % al| fp F
o o o o o o o

S § kN c>‘?s é kN § ﬁ kN
1 10({20| 20 | 17 451 40 | 95 | 33 70| 30 | 42
2 1 20| 15| 30 | 18 c 60| 10 | 100 | 34 9 60 | 40 | 44
3 30 (50| 40 | 19 65| 15 15 | 35 65| 25 | 46
4 40 | 25| 50 | 20 40| 30 | 18 | 36 50| 45 | 48
5 15|80 | 60 | 21 60 | 20 16 | 37 30| 35 52
6 ) 25170 70 | 22 6 70 | 25 14 | 38 10 40 | 45 54
7 55 45| 80 | 23 80| 30 12 | 39 50| 50 56
8 201 75] 90 | 24 65| 35 | 10 | 40 35| 40 | 58
9 5180|100 | 25 30 | 45 22 | 41 30| 95 62
10 3 10| 70| 25 | 26 7 40 | 35 24 | 42 11 20 | 110 | 64
11 45| 50| 35 | 27 45 | 40 26 | 43 02 120 | 66
12 3060 | 45 | 28 50| 30 28 | 44 15| 115 | 68
13 30 (40| 55 | 29 10| 100 | 32 | 45 30 | 45 72
14 4 20 30| 65 | 30 8 15| 95 34 | 46 12 20| 60 74
15 15120 75 | 31 20 | 110 | 36 | 47 30| 50 76
16 25|25 | 85 | 32 251105 | 38 | 48 40 | 45 78

15



Schemes to Task 1.1

&

8IL AL ELS
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Task 1.2. Determine the values and direction of the node reactions
for the schemes shown below. The data for the task is shown in Table 1.2.

Table 1.2. Initial data for Task 1.2

Var.no | Scheme ? ’f kQN Var.no | Scheme 0:’ . k(l?\l
1 30 50 20 17 30 50 20
2 40 45 22 18 c 35 50 25
3 1 25 60 30 19 25 60 10
4 45 30 25 20 10 70 40
5 15 60 40 21 5 30 28
6 20 50 50 22 10 35 16
7 2 25 55 48 23 6 15 | 40 2
8 30 45 30 24 10 | 45 40
9 50 20 32 25 10 60 32
10 55 20 46 26 15 55 40
11 3 40 30 28 27 7 20 50 50
12 45 25 30 28 5 65 40
13 10 70 60 29 45 | 40 15
14 15 70 30 30 50 35 12

4 8
15 35 40 10 31 55 30 40
16 20 45 15 32 60 20 45

17



Schemes to Task 1.2

VIR
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1.2. Force pairs and moment of a force about a point

General information
Pair of forces - two equal and parallel forces directed in opposite
directions that do not lie in a straight line (Fig. 1.8).

£

a b
Fig. 1.8. Pair of forces:
a - determining the arm; b - determining the sign of the moment of the force pair

Moment of force with about a point
A force that does not pass through the point of attachment of the body
causes the body to rotate around that point and the effect of such a force on
the body is assessed by a moment.
The moment of force about a point (pole) is called the vector ﬁo
multiplied by the distance between the direction of this vector and the point
at which we want to calculate this moment (Fig. 1.9, a).

-

M():F'F

| sy
E@\g

Fig. 1.9. Moment of force relative to a point:
a - arm; b - determining the sign of the moment

A perpendicular line drawn from a point to the line ofaction
of the force is called the force arm h.

19



Basic calculation formulae

Power couple moment

M(F,F") = Fh

The arm h of a force pair is the shortest distance between the lines
of action of the force pair.

The moment is considered positive if the force pair rotates the body
in a counterclockwise direction (Fig. 1.9, b). The unit of measure
of the moment of a force pair M(F, F') is Nm. The moment of a force pair
is equal to the algebraic sum of the moments of the pairs forming the system:

n
M = ZMl
i=1

For pair equilibrium it is necessary and sufficient that the algebraic
sum ofthe moments of the pairs ofthe system is equal to zero (pair
equilibrium condition):

M ZM 0

To balance a force pair system, it is necessary to apply a pair of forces
of equal modulus and directed in opposite directions. Such a pair of forces
is called balanced.

Several pairs of forces can be applied to a body. Two pairs of forces are
equivalent if, given other equivalent conditions, their action on the body
is the same. Since a pair of forces is characterised by a pair moment, pairs
of forces lying in the same plane will be equivalent if they have the same

moment (same magnitude and direction).
The moment of force F relative to point 0 is denoted Mo (F):
Mo(F) = Fh

The unit of measure My(F) is Nm.

The sign principle of moments. a moment is considered positive
if the force attempts to rotate the body relative to agiven point
in a counterclockwise direction and negative if it is clockwise (Fig. 1.9, b).

Varignon's theorem. The moment concerning any point O
of the resultant of two forces is equal to the sum of the moments of these forces
concerning point O.

Mo(R) = )" Mo(FD)
i=1

20



Examples of calculations

Example 1.4. Determine the pair of equivalent forces given (Fig. 1.10).

10 N
03m

10N

Answer choices

15N
04 m 15N 015m 15N 15 N
! 0,2 m 12m
15N 19N
15 N 15 N
a b c

d

Fig. 1.10. Variants for defining a pair of equivalent forces

Solution
Since a pair of forces is characterised by a moment of force, pairs of forces
lying in the same plane will be equivalent if they have the same moment
(same magnitude and direction).

The moment of a given pair is:
M(F)=F+-h=15-0.2=3kNm
so the c variant is correct. For this pair, the direction and moment coincide

with the given
M(F)=F-h=15-0.2 =3kNm

Answer: c.

21



Example 1.5. Determine the moments of forces acting on bar AC (Fig. 1.11)
relative to points 4, B, C, if: F1 =10 N; F2 =20 N; F3 =30 N; lss =1 m; [pc = 2 m.

Data: Searched for:
F1=10N XMy-?7EMp-?
F2=20N XMc-?
F3=30N

lip=1m

Ipc=2m

Solution

Write down the equations of moments
relative to points 4, B, C:

EMA = _Fz'lAB+F3'Sin6OO'lAC =
=—-20-1+4+30-0.866-3 =57.9 Nm,

Fig. 1.11. Force distribution in the bar Y Mg = —F; -sin30°- Iz + F3 - sin60° - [, =
—10-0.5-14+30-0.866-2 = 46.96 Nm,

ZMC=—F1'Sin30°'lAC+F2'lBC=—10'0.5'3+20'2=25Nm.

Answer: XMa=57.9 Nm, Mg = 46.96 Nm, XM¢ = 25 Nm.

22
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Individual tasks

(calculation)

Task 1.3. Determine the values of moments of forces acting on bars ABCD

concerning points 4, B, C, D. Data for the task is shown in Table 1.3.

Table 1.3. Initial data for Task 1.3

2 8
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1.3. Flat arbitrary force system. Determination of reactions at the supports

General information

Flat arbitrary force system - is a system of forces applied to a body
whose lines of action are arbitrarily distributed in the same plane (they
do not intersect at a single point).

Parallel force transfer theorem. The equilibrium of a solid body will
not be disturbed if a force acting on the body is transferred parallel to itself
to any point of the body, or by adding a pair of forces whose moment is equal
to the moment ofthat force relative to the point to which the force
is transferred.

The parallel force-displacement theorem is a fundamental statistical
theorem for the reduction of any system of forces acting on a solid body
to a force and force pair.

Reduction of a plane system of arbitrarily distributed forces

Reducing a force system involves replacing it with another system that
is equivalent to the first, but simpler.

Theorem. a system of forces can be reduced to an equivalent system
consisting of one force applied at an arbitrary pole of reduction O and a pair
of forces of torque M. aflat system of arbitrary forces is equivalent to one
force, the principal vector of the system, which is added at the centre
of the system, and one pair of forces, the principal moment of the system
(Fig. 1.13).

Fig. 1.12. The main torque of the system

24



Basic calculation formulae
Principal vector of an arbitrary plane force system
The geometric sum of the forces of the system is called the principal
vector of the system.

n
ﬁmain =F1)+F2)+F3)+...=ZE
i=1
Principal vector modulus of a plane system of arbitrary forces

n
Fain = Py, + Fo, + Fy = > Fy
i=1

n
Fmain=F1y+F2y+F3y+...=ZFiy
i=1

mainy main,,

then Fuin = JFZ + F?

Direction of the principal vector modulus of a plane system
of arbitrary forces
Fmainx

cos(Fpain, X) = P

Main moment of a plane system of arbitrary forces

n n
Mmain = Ml + MZ + M3+: ZML :ZMO(FL)
i=1 i=1

Conditions of equilibrium of a plane system of arbitrary forces
Geometrical equilibrium conditions
Finain = 0, Mpmgin = 0.

Analytical equilibrium conditions
The first form of the equilibrium condition for a plane system

of arbitrary forces
n n
ZFix = O:ZFiy = 0;
i=1

i=1
n

zMi :zn:Mo(Fi) =0
i=1

i=1
In short, it can be written down:

ZFix = O,ZFiy = O'ZMO =0
Other variants ofthe notation ofthe equilibrium condition can
be found in the literature, for example:

25



ZX = O,ZY = O,ZMA =0,
where ), X and )} Y - the sum of the projections of the active and reactive
forces of the system on the coordinate axes (i.e. all the external forces);
>M, - the sum of the moments of all the external forces of the system
(active and reactive) relative to any point A.

The second form of the equilibrium condition for a plane system
of arbitrary forces

ZMAZO,ZMB ZO,ZMC:O

where 4, B, C - arbitrary reference points of the system's moments of force;

The third form of the equilibrium condition for a plane system
of arbitrary forces

ZMA - O,ZMB - O,ZFiX -0
Conditions of equilibrium of a plane system of parallel forces

The first form of the equilibrium condition

ZFiy :O,ZMO =0

The second and third form of the equilibrium condition

ZMA:O'ZMB =0

Recommended sequence of operations when solving a planar system
of arbitrarily distributed forces

1. Determine which body's equilibrium should be taken into account
in this task.

2. Treating this body as free, apply to it all the forces and reactions
of the bonds acting on the body.

3. Arrange the equilibrium conditions using the form of the conditions
that lead to the simplest solution and determine the unknowns.

4. Check calculations using equilibrium conditions not used in this task.

26



For simpler equations it is worthwhile:
1. When determining the equation of projection, draw a coordinate
axis perpendicular to one of the unknown forces.
2.When determining the equation of moments, choose the point where
the most forces intersect.

Determination of reactions in the support
The basic three types of support:
Sliding articulated support (Fig. 1.13, a). This support gives only one
reaction - Ray, which is directed along the normal to the resistance surface;
Non-sliding articulated support (Fig. 1.13, b). The support allows
rotation about the joint and can be replaced by two-component forces acting
along the coordinate axis;

Fig. 1.13. Determination of reactions in supports:
a - articulated sliding; b - articulated non-sliding; c - in the support

Bracket (Fig. 1.13, c¢). No displacements are possible. Under
the influence of external forces, two reactions Rax, Ray and a reaction moment
My occur at the restraint point, preventing rotation.

Conditions of equilibrium

ZFix = O,ZFiy = O,ZMA =0
Each equation has one unknown and is solved without substitution.

To check the correctness ofthe solution, an additional equation
of moments is used concerning an arbitrary point on the beam, for example, B:

2M3=0
ZMA =0,ZMB =0,2Fix ~0

27



The equations of moments are defined by the anchor points
of the beam. Since the moment of the force passing through the anchor point
is 0, one unknown force remains in the equation.

From the equation ) M, = 0 the reaction Rgyis determined.

From the equation ) Mz = 0 the reaction Ray is determined.

From the equation } F; = 0 the reaction Rgxis determined.

To check the correctness of the solution, an additional equation is used

z Fiy =0
In solid equilibrium, where three points can be chosen that do not lie
on the same line, it is convenient to use a system of equations of the second

form.
ZMA = O,EMB = O,ZMC =0
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Examples of equations

Example 1.6. Determine the principal vector ofthe force system

and the principal moment of the system concerning point B (Fig. 1.14), if:
F1=10KkN; F2 =16 kN; F3=12 kN; M = 60 kNm.

Data: Searched for:
F1=10kN Fmain - ?
F2=16 kN Mumain - ?
F3=12kN
M =60 kNm

v L 4m ;) Solution

F;

1. Determine the principal vector
F, of the force system.
The principal vector is equal to

M~  the geometric sum of the vectors of the

Fig. 1.14. The system of forcesand force system:
moments

Fnain, = F1,c0s45° —F, =10-0,71-16 = —8.9KkN;
Fmainy = Fly + Fzy + F3y+. .= ?=1 Fiy;
Fmainy = —Fly cos 45° + F3y =-10-0,71+12 =4.9KkN;

Frain = \/Friainx + Fain, =V (=89)2 + 4,92 ~ 10 kN.
2. Determine the principal moment of the system of forces about point B.

The principal moment of a force system is equal to the algebraic sum
of the moments of all the forces of the system concerning the reference

point:
n
Mingin = Z Mg (F})
i=1
ZMB =_F1COS450'2+F2'2+F3'4_M

ZMB=—10-0.71-2+16-2+12-4—60=5.8kNm.

AI’ISWBT' Fmain = 10 kN, Mmain = 58 kNm
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Example 1.7. Determine the reactions in the supports (Fig. 1.15), if:
Fi=10kN; F2=30kN,M=5kNm,a=2m,b=4m,a=30°=45°

Data: Y Searched for:
F1=10 kN F Ay Rev ) Rax-7 Ray-?
F2=30kN —:A ral, [ s x Re-?
M =5KkNm 7 P 75 g
a=2m - Y A
b=4m “ - i - -t b ’ -l a -
a=30° Fig. 1.15. The system of forces and moments
p=45°
Solution

1. Introduce the coordinate system and mark it on the scheme
(Fig. 1.15).

2. Convert the supports into the corresponding reactions and mark
them on the scheme (Fig. 1.15). We choose the direction of the reactions
arbitrarily.

3. Determine the reactions in the supports.

To determine the reactions in the supports, we use the third form
of the equilibrium condition for a plane system of arbitrary forces.

ZMA=0,ZMB =O,ZFL-X -0

To check the correctness ofthe solution, we use the following
additional equation
EFl’y=0

Adopt the sign principle, counterclockwise torque is positive.

EMA=0:

Fisina-a—M + F,sinf - (a+b) + Rg,(2a + b) = 0;
R _—Fsina-a+M—-F,sinf-(a+b) —10-sin30°-2+5—30-sin45°-(2+4)
By — 2a+b B 2:2+4
= —16.6 kN.

A minus sign indicates that the reaction is in the opposite direction.

ZMB =0;

Fisina-(3a+b) — M — F,sinf-a— Rpy(2a + b) = 0;
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ZFiX = 0;

Ficosa — Ry, + F,cosf3 = 0;
Ryy = Ficosa + F,cosf =10 - cos30°+ 30 - cos45° = 30 kN.

Verification
z Fi, =0;
—F;sina + Ryy + F;sin + Rg,, = 0;
—10-0.5+ 0.3 +30-0.71 — 16.6 = 0;
0=0.
Reactions were determined correctly.

Answer: Rax = 30 kN; Ray = 0.3 kN; Rpy = -16.6 kN.

Example 1.8. Determine the reactions in the supports (Fig. 1.16), if:
F1=10kN,q=15kN/m, M = 20 kNm.

Data: P Searched for:
F1=10kN Ry r f__g Ry Rax - ? Ray - ?
q=15KkN/m N | g Rsy-?
M =20 kNm Al i AB a

fa‘x e cd

3m | 2m | 1m 0,5m

Fig. 1.16. The system of forces and moments

Solution

1. Enter the coordinate system and mark it on the diagram (Figure 1.16).

2. Convert the supports into the corresponding reactions and mark them
on the diagram (Fig. 1.16). Choose the direction of the reactions arbitrarily.

3. Substitute the distributed load for the equivalent force that is applied
at the centre of the diagram (Fig. 1.16):

Q=q-1=15-1=15kN
4. Determine the reactions in the supports.
To determine the reactions in the supports we use the third form

of the equilibrium condition for a plane system of arbitrary forces

ZMA=O,ZMB =O,ZFiX=0

To check the correctness of the solution, we use the following additional
equation
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ZFiyZO

Adopt the sign principle. The counterclockwise torque is positive.

—F;5in30°-3—M — Q5.5 + Rp, - 6.5 = 0;

_ Fysin30°-3+M+Q-55 10-05-3+20+15-5.5

_ = = 18 kN;
By 6.5 6.5
—Rpy - 6.5+ F;sin30°-3.5— M + Q1 = 0;
Fysin30°-35—-M+Q1 10-05-35-20+15-1
Ray = oo = =z ~ 2 kN;

ZFix = 0,
F;cos30°+ Ry = 0;
Ry, = —F; cos30° — F; cos30° = —10- 0.87 = —8.7 kN.

A minus sign indicates that the reaction is in the opposite direction.

Verification
Y. F;, = 0; —F; sin30° + Ryy — Q + Rpy = 0;
~10-0,5+2— 15+ 18 = 0;
0=0.
Reactions were determined correctly.

Answer: Rax = -8.7 KN; Ray = 2 kN; Rpy = 18 KN.
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Individual tasks
(calculation)

Task 1.4. Determine the reactions in the supports is shown in Table 1.4

Table 1.4. Initial data for Task 1.4

Var. | F1, | Fy, M, a, B |a | b |c¢ Calculation scheme

no | kN | kN | kNm ° ° m|m| m

1|51 2 [30]60]1]1]2

2 |10l 2| 4 |45[30 212

3 |15 3| 6 |60 |45 1|21 by MO

4 |8 4] 8 [30[30]1]1]2 /\f‘

5 6|5 | 10 | 45|60 |2 | 1] 2

6 (12| 6 | 12 | 60 |50 | 1| 2 | 1 Ay - A ’%;
7 12007 | 15 [ 30|45 |1 |12 S S P P\
8 |15]| 8 | 18 | 45 |30 | 2 | 1 | 2

9 | 4 |10] 14 | 60 |50 | 1| 2 | 1

10 | 2 |12] 20 |50 |60 [ 1|12

11| 1]5] 1 |30|60|1]|1]2

12210 2 [45[30 212

13| 3 |15] 3 |60 |45 |1 |2 |1 I M A
14 | 4 | 8 4 (3030 [1]1]2 u -+

15| 5| 6| 5 |45 |60 |2 1] 2 %
16 | 6 |12 6 |60 50121 7A7 7557
17 | 7 |20 7 | 3045|112 ) ) — S
18 | 8 | 15 8 45 {30 | 2 | 1| 2 -~ e >l >
19 |10 4 | 10 | 60 |50 | 1| 2 | 1

2012 2] 12 |50 |60 | 1|12

2020 7 | 15 |30 |45 | 1| 1|2

22 15|/ 8 | 18 |45 |30 | 2 | 1|2

23| 4 (10| 14 |60 |50 | 1|2 |1 F I

24 | 2 [12] 20 [50 |60 | 1] 12 ™

25| 1 5] 1 30|60 |1]1]2 \

26 | 2 | 10| 2 |45 30| 2| 12| 4 B 7557
27 | 3 |15| 3 |60 |45 |12 |1 . R4
28| 4 | 8] 4 [30[30]1]1]2 -~ >
29| 56| 5 | 45|60 2|12

30| 6 |12 6 | 6050|121
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Task 1.5. Determine the reactions in the supports. Initial data is shown in

Table 1.5.

Table 1.5. Initial data for Task 1.5
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1.4. Determination of the centre of gravity of flat shapes

General information

Material bodies consist of elementary particles whose position
in space is determined by their coordinates. The gravitational forces of each
particle concerning the Earth can be considered as asystem of parallel
forces, and the equivalent of these forces is called the gravity of the body
or the weight of the body.

The centre ofgravity ofabody is the centre ofparallel forces
of attraction of all elementary particles of the body. The centre of gravity
is the geometric point of application of the force of gravity, which may be
outside the body (e.g. a disc with a hole, a torus, an angle, a hollow sphere, etc.).

Basic calculation formulae
Centre of gravity of plane bodies and geometrical plane figures

C XimApxg Agxg + Apxy e+ Apxy,
- ?zlAi B Al +A2+...+An

_ Z?:lAiyi _ Alyl + A2y2 + e+ Anyn
yC ?zlAi Al +A2+...+An
where 4; - area of the part of the figure, mm?;

Xi, yi — coordinates of the centre of gravity of the part of the figure, mm.

Formulae x; = )i, A;x; is called the static moment (Sy) of a plane
cross-section (figure). The static moment ofthe area ofaplane body
concerning an axis in the plane of the body is a geometrical characteristic
that is equal to the product of the area of the body and the distance from its
centre of gravity to that axis. Then the coordinates of the centre of gravity
of the section can be expressed in terms of the static moment:

n Sy
ZAL-XL' = Sy; Xc = X
i=1

nA = Sy ye =
Zl iYi = Oyxs YC_Z
=
The axes that intersect the centre of gravity are called central axes.
The static moment about the central axis is zero.
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Center of gravity some simple figures
The position of the centres of gravity of simple geometric shapes can
be calculated using the relevant formulae (Fig. 1.17).

R hI _‘T_ /d-“-f\
TS e Y
 —_ A N ITIRN f! jo- 4B
c i
a b c d

Fig. 1.17. Position of the centres of gravity of the figures:
a - circle; b - square, rectangle; c - triangle; d - semicircle

Methods for determining the position of the centre of gravity

Analytical methods
Symmetry method. If a homogeneous body has a plane, axis or centre
of symmetry, the centre of gravity lies either on the plane of symmetry, the axis
of symmetry or the centre of symmetry, respectively. This property reduces the
number of coordinates of the centre of gravity that need to be determined.
Given this property, the number of the centre of gravity coordinates to be
determined is reduced.

{72

a b c d
Fig. 1.18. The centre of gravity of:
a - a segment of length [; b - a circle; ¢ - a parallelogram, rhombus or parallelogram;
d - aregular polygon

The centre of gravity of a segment of length [ is at its midpoint
(Fig. 1.18, a). The centre of gravity of a circle or a circle of radius R is at its
centre, i.e. at the point of intersection of the diameters (Fig. 1.18, b).
The centre of gravity of a parallelogram, rhombus or parallelepiped
is at the point of intersection of the diagonals (Fig. 1.18, ¢). The centre
of gravity of a regular polygon is at the centre of the inscribed
or circumscribed circle (Fig. 1.18, d).
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Method of division (subdivision). A composite figure is divided into
a series of simple figures for which the position of the centre of gravity
is known or easy to determine (Fig. 1.19, a).

F - " }'

v ~ . o
-
; ORP
i = +— L Y
v T o - - "
ol - - -
; ) . X . - X
L] i e
L - -
—> | | X ”
Xa i >
- = > XA
P
a b

Fig. 1.19. Determination of the centre of gravity of figures:
a - by the method of division (subdivision); b - by the method of negative areas

Then the position of the centre of gravity of the whole figure is
determined according to the formulae

. :Z(Aixi)
¢ XA
_ 2(A;y)
Ve = A,

A for the figure shown in Fig. 1.20, a the centre of gravity
_Aprxg Ay %
A+ 4,
Ayt Ay,
Ye = T A 1 4,
Here x;, yi - coordinates of the simple figure, A; - its area.

Xc

The negative (positive) area method - is aspecial case of the
division method. As in the subdivision method, acomplex shape is
subdivided into a set of simple shapes for which the position of the centre
of gravity is known or easy to determine, but where holes or voids exist, it is
convenient to represent in terms of a “negative” cross-sectional area. For
example, the figure in (Fig. 1.19, b) can be represented as two rectangles, one
of which has a negative cross-sectional area. The centre of gravity is then

determined as follows
_Aprxg— Ay xg

e T A - 4
:A1'}’1—A2'J/2
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The integration method. It is used in cases where the first three
methods cannot be used to determine the centre of gravity. If the figure has
a fairly simple contour described by a well-known equation (circle, parabola,
etc.), an elementary place or band is selected and analytical integration is
performed. If analytical integration is difficult, numerical integration
methods are used.

Experimental methods

Experimental methods are used when bodies have a complex shape,
configuration, large size and mass for which other methods are not suitable
due to complexity and cumbersomeness. For example, various machines
or their parts (aircraft, cars, etc.).

Suspension method. It consists of the fact that when a body or figure is
suspended at any point, the centre of gravity is at the same vertical as the point
of suspension. To determine the position of the centre of gravity of a plane
figure, it is sufficient to suspend it alternately at any two points and draw
the corresponding verticals, for example, by lines, and the point of intersection
of these lines corresponds to the position of the figure's centre of gravity
(Fig. 1.20, a).

suspending point
=7
B A
Z

N _ —

B v N,
L, a
centre of gravity
l
a b

Fig. 1.20. Determination of the centre of gravity:
a - suspension method; b - weighing method

Weighting method. Requires measuring the weight of the whole body
as well as the separate parts of the body. If the mass is known (for example,
of an aeroplane), the rear wheels are placed on ascale (Fig. 1.20, b)
and the reaction Np is determined using the weight readings. Then one
of the equations of equilibrium is laid out; the most convenient
is to determine the sum of moments concerning point A:
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zn: My(F;) =0
i1

m-g-a—Np-1=0
From here, the unknown value of g, the position of the aircraft's centre

of gravity, is determined:

Nyl

a=—

mg
In this way, the experimental method is faster and more convenient,
especially when it is necessary to determine the centre of gravity of a plane
figure that is difficult to divide into simpler elements. However, this method
is less accurate than the analytical method, which is more accurate but more

difficult and time-consuming,.
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Examples of calculation

Example 1.9. Determine the positions of the figure's centre of gravity

(Fig. 1.21).
J Solution
200
1. To determine the -centre
I~ of gravity ofafigure we will use
GG | : s
S @,[ 3 [N\ the analytical method of division and
R > o : -
Sy | Y 2 .l negative areas. We divide
0| _mo X 4 the complex figure into simple
) components: arectangle, atriangle

and a circle. We give them numbers
and place them on the shape
of the figure (Fig. 1.21).

2. Create an XY coordinate system and determine the centres of gravity
of the components of the composed figure:

Fig. 1.21. Section to Example 1.9

1 - arectangle - asymmetrical figure whose centre of gravity
is at the point of intersection of the diagonals, its coordinates are:
200 100
X, = - = 100 mm; y; = - = 50 mm; C4(100;50)

2 - atriangle - the centre of gravity is either at the point of intersection
of its midlines or at the point of intersection ofthe lines, located
at a distance of 1/3 from the perpendiculars, its coordinates are:

350 — 200 100
——5——=250mm; y; = —— = 33 mm; C;(250;33)

3 - acircle - a symmetrical figure, the centre of gravity of which is at its

x, = 200 +

centre, its coordinates are:

200 100

The specified coordinates and points ofthe centres of gravity
of the components of the plane figure are plotted in Fig. 1.21.
3. Determine the cross-sectional area of the components of the plane
figure:
1 - rectangle
Ay =100 -200 = 20000 mm?

2 - triangle
A =0.5(100- (350 — 200)) = 7500 mm?
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4 ' 4‘

4. Determine the coordinates of the figure's centre of gravity.

As the circle represents the negative part of a plane figure, it takes
the value of the area with a minus.
_ Ayxy + Ayxy — Azxs 20000 - 100 + 7500 - 250 — 707 - 100

=142
A, + Ay — A; 20000 + 7500 — 707 mm

Xc

_ Ayyr + Ayy, — Azys 20000 - 50 + 7500 - 33 — 707 - 50
Ry Ty 20000 + 7500 — 707

The coordinates of the centre of gravity €(142;45), let us mark them
on the figure (Fig. 1.21).

=45 mm

Example 1.10. Determine the centre of gravity ofthe composite
section (Fig. 1.22), which contains: a 5x100 mm plate and rolled products: C-
bar C10 and I-section 116.

Comment. Often frames are welded y Y
from different profiles to form the :
required profile. This reduces material
consumption and results in ahigh- ‘
strength structure. For standard rolled |J
profiles, the geometrical characteristics |
are known and are regulated by the

.S;ection Cio

SIIII S I
i,

Y

o=l
~ Beam gzé
2 s
.\‘\\\\\§k S\ .shset 5x100
i cceci2d 18

Fig. 1.22. Section for E le 1.10
relevant standards. ' ectionfor txample

Data: Searched for:
5 x 100 mm sheet C-?
C-bar C10
I-beam 116
Solution

1. Define the XY coordinate system, label the figures with numbers and
take all the data from tables D.58 and D.59:

1 - channel section (C-bar) C10; height h1 = 100 mm; width b1 = 46 mm;
Zo = 14.4 mm;

2 - I-beam [16; height h2 = 160 mm; width b2 = 81 mm;
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3 - metal sheet: heigth h3 = 5 mm; width b3 = 100 mm.

2. Determine the coordinates of the centres of gravity of each figure:
1 - C-bar C10:
xy=0mm; y; =a+hy +2z5=5+ 160+ 14.4 = 179.4 mm,;

C1(0;179.4)
2 - I-beam [16:
h, 160
X, = 0mm; y, =a+?=5+7=85mm
C,(0;85)

3 - metal sheet:
x3 = 0mm; y; =%=g=2.5mm
C5(0; 2.5)
Specified coordinates and centres of gravity points of each part
of the plane figure are marked in Fig. 1.22.

3. Determine the areas of each figure:
From the tables D.58 and D.59:
1 - C-bar C10:

A; = 1090 mm?;
2 - I-beam [16:

A, = 2020 mm?;
3 - metal sheet:

A3 =a-by;=75-100 = 500 mm?.

4. Determine the coordinates of the figure's centre of gravity:

X, = 0 mm,
Ayyy + Ay, + Ay 1090 - 179.4 4 2020 - 85 + 500 - 2.5
Ve = = =102 mm.
A+ A, + Az 1090 + 2020 + 500

The coordinates of the figure's centre of gravity €(0; 102) are marked
on the figure in Fig. 1.22.

Example 1.11. Determine the centre of gravity of a plane figure (Fig. 1.23)
using an experimental method.
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Solution

We put holes 4, B and D on the flat figure at
arbitrary points (preferably at the greatest
distance from each other). The flat Figure 1
issuspended on needle 2 first at point A
and then at points, B and D. With the help
of weight 3, fixed at point 2, avertical line is
marked on the figure, which repeats the position
of the thread. The centre of gravity of Figure 1
will lie at the point of intersection of the vertical
lines drawn when the figure is suspended

at points 4, B and D (Fig. 1.23). Fig. 1.23. Section to
Example 1.11

As aresult of the experiment, we have obtained three lines that do not
intersect at a single point, but form a triangle. To draw the centre of gravity Ce
of the flat figure, determined by the experimental method, we will draw three
centre lines and at the point of their intersection, we will mark the point C,
and then use aruler to determine its coordinates: xcc =78 mm; yce = 45 mm,
then Ce (78;45).

2
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Individual tasks

(calculation)

Task 1.6. Determine the centre of gravity of the composite section

shown in Table 1.6.

Table 1.6. Initial data for Task 1.6

Var. Rolled product range Sections
no No. 1 No. 2
1 10 18
2 12 16
3 14 14
4 16 12
5 18 10
6 20 10
7 18 12
8 16 14
9 14 16
10 12 18
11 10 30
12 12 16 No.1
13 14 14
14 16 22 No.2
15 18 18
16 10 22
17 22 10 N-:?.{ \‘f\'a. 1
18 12 14
19 18 16 N2
20 20 10
21 10 30
22 12 16
23 14 14 No.I
24 16 22
25 18 18
26 20 —
27 16 — 20xF6xh No.d
28 18 -
29 22 — 90x3px6
30 24 -
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CHAPTERII
STRENGTH of MATERIALS

2.1. Tension and compression

Tension and compression are among the simplest and most common
deformations of asolid body. They can occur in elements of almost all
engineering and construction structures. Cables, screws, axial turbine blades,
and compressors are subjected to tension while building columns are
subjected to compression.

A rod is subjected to tension or compression by balanced external
forces acting along its axis. Under the action of these forces, the cross-section
of the rod experiences only one internal force, the longitudinal (normal)
force (N). Its value is equal to the algebraic sum of all axial external forces
acting on one side of the cross-section. Forces directed away from the cross-
section are considered positive, while those directed towards the cross-
section are considered negative. a positive force (N) corresponds to tension,
while a negative force (N) corresponds to compression.

Calculation of normal stresses in the cross-section of the rod

Normal stresses at all points in the cross-

<—€‘ C} section ofthe rod are the same and are

determined by the formula:

Fig. 2.1. Normal stress in the N

o=—,

A

where N - is the longitudinal force in the cross-section;
A - is the cross-sectional area ofthe rod (Fig. 2.1). The sign
of corresponds to the sign of N (positive for tension and negative
for compression). The unit of stress is Pascal (Pa).

1Pa=1N/m?; 1 MPa=1-106 N/mz2.

rod

Formulas for calculating deformations and displacements
in the cross-section of a rod
Absolute deformation - elongation in tension (Fig. 2.2a) and shortening
in compression (Fig. 2.2b) - in the elastic deformation range is calculated
according to Hooke's law:
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N1
T E-A
where [ - is the length of the deformed region (Fig. 2.2, a, b);

E - is the longitudinal modulus of elasticity (Young's modulus), which

is one of the elastic properties of the material.

Al

The product EA is called the stiffness of the cross-section in tension
(compression).

The deformation area is the part of the rod where the values of N,
aand E are constant or change according to the same laws. The boundaries
of the regions are the end sections and sections where at least one of these
values changes.

If the rod has n sections, its absolute deformation is equal to the algebraic
sum of the deformations of all sections:

N

Al:z itb
L E; - A;
=1

The displacement & ofone region relative to another is equal
to the deformation of the rod section between these cross-sections.

The relative longitudinal deformation of the section is given by:

Al
€77

In the elastic deformation range, there is a relationship between stress
and relative deformation:

oc=¢-E
The relative transverse deformation (narrowing or widening) is given by:
, Aa
g =—-—
a

where Aa=a—a’ —isthe change in the cross-sectional area (Fig. 2.2).

=
I
b

®¢ B i

= Al

[ A ] >

<P - >
A b

Fig. 2.2. Deformation in uniaxial state of stress:

3 ‘@# —F>

b
27087

a - elongation with contraction; b - shortening with widening
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The relationship between relative transverse and longitudinal
deformations is given by:

g=—-v-¢
where v- is Poisson's ratio, an elastic property of the material.

For isotropic materials 0 < v <0.5.

Strength calculations

Strength conditions:
Omax — Z <k

where N — axial force in the region of highest normal stresses;
A — cross-sectional area of the rod in this region;
k — allowable stress of the material.

For a deformable material, the allowable tensile k: and compressive k.

stresses are the same: k: = k. =k
R,

"]
where Re- yield strength of the material; [n] — safety factor. For deformable

materials [n] =1.4 + 1.6.
For a brittle material, k- and k. are different. Therefore, the strength
conditions for tension and compression are written separately:

O-Tmax = Z -

where k- and k. - ultimate strength limits of the material for tension
and compression, respectively;
[n] — safety factor.
For brittle materials, [n] =2.5 + 3.0.

Three types of problems were addressed
using strength of materials conditions
Strength verification. We calculate omax and compare it with k:
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Omax = Z ok
If omax < k, the strength of the component is ensured.
Determination of the rod's load-bearing capacity.

(a) calculate the permissible axial force:
[N|<A-k
(b) establish the relationship between axial forces and external forces,
and based on this relationship, determine their permissible values ([F] or [q]).
Selection of cross-section. Required cross-sectional dimension:
N
Az—
When determining the dimensions of a geometrically constant cross-
section, the area a should be expressed in terms of one of its dimensions.
Rolled sections are selected according to standard tables of profiles.

Stiffness calculation
The calculation uses the stiffness condition:

A= [4],

where A—the actual deformation of the rod or displacement in the structure;
[A] — the permissible value of deformation, which is accepted based
on the conditions of normal operation of the structure.
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Examples of calculations

Example 2.1. For the rod shown in the drawing (Fig. 2.3, a), plot
the normal forces and, based on the strength condition, determine
the dimensions of the cross-sections in all areas. It is given that the cross-
sections are circular, the rod is made from greycast iron EN GJL-150,
with a safety factor n = 3. The internal forces and lengths are as follows:
P1 =50KkN, P,=80KkN, P3=40kN,a=0.5m,b=1.0m,c=1 m. Draw a sketch
of the rod and the force and displacement diagrams for the rod's cross-
sections.

Procedure:

1. Determine the permissible stresses: calculate the allowable stress
based on the material properties and safety factor.

2. Determine the axial Force (N) in each segment: use the section
method to calculate the axial forces in the different segments of the rod.

3. Plot the axial force diagram: draw the axial force diagram to scale.

4. Select the cross-section: choose the cross-sectional dimensions
for these results.

5. Draw the displacement diagram: to plot the displacement diagram,
first determine the absolute deformation in each segment according
to Hooke’s Law.

6. Determine the displacement of Kkey sections: calculate
the displacement for the significant cross-sections ofthe rod and plot
the displacement diagram based on the obtained data.
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Fig. 2.3. Diagram of the bar to Example 2.1:
a - system of forces in the bar; b - force diagram; c - cross-section of the bar in its
individual compartments; d - displacement diagram of the bar cross-sections

Solution
1. Determine the allowable stresses:
From Appendix D, select the values for the grey cast iron EN-GJL-150,
necessary for the calculation: R»,= 150 MPa, R = 650 MPa, E=1.2-10> MPa.

R, 150
kr=7=T=SOMPa;

. 65
ke=—F=—-=217MPa

2. Determine the Axial :

Force N in the Rod's Cross-Sections Based on the Section Method: We
do not need to determine the support reactions since the rod is fixed only
at the leftmost cross-section. Consequently, the forces will be determined
based on the known forces on the right side: N = ). B..

Define the segments: segment I - AB, segment Il - BC, segment III - CD.

Determine the axial forces N for each segment:
Segmentlo<x, <a
N, =P, = 50kN
Segmentlla<x,<a+b
N, =P, —P,=50—80= —30kN

50



SegmentIll a+b<x,<a+b+c
Ny =P, —P,+P;=50-80+40= 10kN

The calculations indicate that in segments I and III, the rod is subjected
to tensile forces, while in segment I], it is subjected to compressive forces.

It is important to note that the mass of the rod was not considered
in the calculations due to its negligible value compared to the external loads.

3. We make a graph of N at any scale (Fig. 2.3, b).

4. Using the strength conditions, we calculate the diameter of the bar
at each segment:

N N 4A
Omax :ZS k,so A Zzandd = == 1.13VA

N; 50-103 s 5
1=k_=50-106=1.10 m- =10 cm*; d; = 3.57 cm
.
N, 30-103 s 5
Ay =~ =577 796 = 0-138-10" m” = 1.38 cm*; d; = 1.33 cm
T
_N; 10-10°

37k _W=0,2-10‘3m2=2cm2; d; =1.6cm
T

Draw a diagram of the forces acting in the rod (Fig. 2.3, c).
5. To draw adisplacement diagram, using Hooke's law, you need

to determine the absolute strain in each area:
Ni " li

Al; =
¢ EAl

Extension of the It segment

N, -a 50-103-0,5

Al = =
Y7 E-4, 12-101-1.0-1073

=0.0208-10"%2 m = 0.0208 cm

Compression of the Il segment

Ny b —30-10%-1,0

Al = =
27 E-A, 1.2-10'1-0.138-1073

=—0.181-10"?m = —0.181 cm.

Extension of the Il segment

N;-c 10-103- 1.5

A = =
=% ‘43 1.2-1011-0.2-1073

= 0.0625- 1072 m = 0.0625 cm.

6. Determine the displacements of individual sections and from the data
obtained, we draw displacement diagrams.

The vertical displacement ofany section is equal to the change
in the length ofthe part ofthe rod that is between the given section
and the inelastic support (starting point). Determine the displacements

of individual areas of the rod:
6D == 0
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6c = Al; = 0.0625 cm
g = Al — Al, = 0.0625—-0,181 = 0.1185 cm

84 = Al — Al, + Al = 0.0625 — 0.181 + 0.208 = —0.0977 cm
From the results, we draw a displacement diagram (Fig. 2.3, d).

The displacement of the section A is equal to the absolute deformation

of the whole rod
6, = Al = —-0.977 mm

Example 2.2. Select the dimensions of the AB beam on which there
is a continuous load (Fig. 2.4). Material - steel S215.

f“\ b
g=60 kN/m
o
=
| i

[=7m

Fig. 2.4. Forces acting on the beam to Example 2.2
Procedure:
1. Determine the reaction of the support.
2. Determine the required cross-sectional area of the bar from the strength
conditions.
3. Determine the required profile from the cross-sectional area.
4. Check the strength of the adopted cross-section.
Solution
1. Convert the continuous load to a concentrated force N.
2. Establish the equilibrium equation

EMB =0;

—N:sin75°:74+q-7:35-q-1-05—-F-1=0
60-7-35-60-1-05-30-1
N = ,
sin75°-7
3. Determine the required cross-section of the rod from the formula:

= 208.6 kN

Az’

=%
> 208610713 10 m? = 13 em?
= 160 - 106 = 1. m- = cm
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For S215 k=160 MPa (table D.2).

4. Knowing the cross-sectional area, we determine the required shape
of the profile. Two angle bars should have a cross-sectional area of 13 cm?,
therefore one A;=6.5 cm2. From Table D.60, we take 2 angle bars 70 x 5 with

cross-sectional area A; = 6.86 cm? each.
A=2-6.86=13.72 cm?
5. Check the strength of the adopted section:

N

7=7
. 208.6- 103 152 - 105 = 150 MPa < 160
=1372-10-% m? )

The strength condition has been met.
Answer: For the rod, a cross-section of two 70 x 5 angles was adopted.

In the case of a circular rod section, we use the formula:

d? 4A
A= ”T Sd= /? = 113VA = 1,13v9.93 = 3,56 cm

Round the calculated value to the standard value from Table D.63
d=36 mm = 3.6 cm.

Verification:
2 2
1) A="2=314-2*-1017 cm?
4 4
. 3
2) 2 =222 = 205.1 MPa < 210 MPa.

Durability has been assured.
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Individual tasks
(calculation)

Task 2.1. Carry out strength calculations and determine tensile and
compressive deformations (schemes for the task), the rod was made of grey
cast iron EN-GJL-150 for which k-= 150 MPa, k.= 650 MPa, E = 1.2-105 MPa.
Ignore the mass ofthe rod. The data for the calculations are shown
in Table 2.1

Table 2.1. Initial data for Task 2.1

P1 ‘ P Ps3 a b c d e
Var. no
kN m

1 2.5 4 2 1 2 1 2 1
2 1 6 4 2 1 2 2 1
3 2 5 8 2 1 3 2 1
4 10 24 15 2 4 1 2 2
5 7 2 4 1 2 2 2 1
6 11 6 8.5 1 2 1 1 1
7 34 11 6 2 1 2 1 1
8 2 6 5 1 3 1 2 1
9 1 2.5 1.5 3 1 1 3 1
10 5 7 1 2 2 1 1
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Schemes for Task 2.1
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Task 2.2. Select the cross-section of the rod holding the crossbar (see
the schemes for the calculation). Material - steel S215.

Schemes for Task 2.2
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2.2. Statically non-determinable structures

General information

There are many structures in which the internal forces cannot
be determined using the equations of statics alone because the number
of unknown forces in these structures is greater than the number
of equilibrium equations. These tasks are called statically indeterminate.

The difference between the number of unknowns and the number
of equations of statics determines the number of redundant unknowns
or the degree of static uncertainty. When there is one redundant unknown
the element is called statically indeterminate once, when there are two, it is
called statically indeterminate twice, and so on.

General methods for solving statically non-equivocal systems have
been developed: the static equilibrium equations are supplemented with
additional displacement equations based on the commonality
of deformations reflecting the specificity of the structure's action and with
relations expressing the dependence ofthe displacements of structural
elements on forces. It is convenient to follow the following sequence:

Static aspect ofthe problem. Arrange the equilibrium equations
for a single structural element, taking one ofthe forces as statically
indeterminate.

Geometric aspect of the issue. Determine the relationship between
the deformation ofindividual structural elements based on the total
deformation. The equations obtained are the equations of total deformation.

Physical aspect ofthe issue. Based on Hooke's law, we express
the deformation of structural elements by statically indeterminate forces
acting on them.

Synthesis. By solving the static, geometric and physical equations
together, we determine the unknown forces.
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Examples of calculations

Example 2.3. For a statically indeterminate rods system (Fig. 2.5),
determine the dimensions of the cross-sections of the rods from the strength
condition, if it is known that the ratio of their cross-sections A1 : A2 = f3,
the bars are made of steel S215; the factor of safety n = 1.6. The horizontal
beam AD is completely rigid, the external forces and geometric dimensions
are:

kN

F =10KkN; g = 20 E;a=30°;a=2m; b=05m; =05 1=2m; [, =34m
__._..a;'.;c’

Ny

l1=2m
1

CIZEDI(NJ"FI"I < F=10kN
AL 4TI didh '

—d

AT~ [ _ ?
AY o=
b=05m| [ a=om

]

a=2m

Fig. 2.5. Diagram of a statically indeterminate bar system to Example 2.3

Solution
1. For steel S215 in Table D.1 we find the values ofthe mechanical
properties of the material, necessary for calculations: E = 2-105 MPa
and R.= 240 MPa.

The allowable stresses will be:
k=R 2% s upa
n 1.5

2. Using the section method, we determine the unknown N; and N; forces
in the rods, aligning their direction with an arbitrary deformation character
of the rod system (for example, as shown by the dashed line in Fig. 2.5,
the first rod will be in compression and the second in tension). To determine
the forces N; and Nz, we will consider the equilibrium of the system with
the interaction of internal forces and reactions in the supports:

ZMB=0

Ny-l+Ny-a'sina—q-2-a>—F-2-a=0 (2.1)

N,-05+N,-2-05-20-4-2-10-4=0
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0.5:N; + N, = 200 (2.2)

The use of two other equilibrium equations (3X = 0 and }Y) makes no

sense since they contain unknown reactions Hg and Vg, which need not be

determined. Thus, the system is one time statically indeterminate, because

using the equations of statics, three equilibrium equations can be
determined, and four quantities are unknown: N1, N2, Hg and V.

3. Write an auxiliary equation for the deformed state of the system
(Fig. 2.6).

N
o4
' 8
A
é

Fig. 2.6. Deformed state of the system

From the similarity AAA B and ACC;B we have — = Z, from where CC:

Al
ccy
id determined from ACC,C,

Al
sina
The compatibility equation will then be of the form:
Aly a
Al,/sina ~b (2.3)
According to Hooke's law, we express deformations by unknown forces:
N -l
E-A
Ny -1,
E- A,

CC]_ =

All =

Alz =

After transformations, we get:
Nl'll'Sina'_Nz'lz'B'bzo

N,-2-05-2—N,-34-0.5-0.5=0

2N, — 0,85N, =0 (2.4)
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4. Solving the equilibrium equations (2.2) and the deformation equations

(2.4), we obtain the normal forces in the rods:
N; = 70 kN; N, = 165 kN
5. According to the strength conditions, we determine the required cross-
sectional areas of the two rods:

N, 70-103
> S—=—=0. . -3 2 25
Ayz =1 =0438-107m (2.5)

N, 165-103
> — =1, . -3 m?2 2.6
A2 S =T oe=103-10"m (2.6)

According to the task, the ratio of the cross-sectional areas should be:
B=A;:4A,=05
According to the condition (2.5) A;=0.438-10-3 m? and knowing the value
B, we calculate

A
A, = Fl = 0.876 - 10"3m?,

which does not satisfy condition (2.6). Therefore, to satisfy both
conditions, we will take A2 = 1.03 - 10-3 m2 from (2.6).

Then A4, = A, = 0.525 - 1073m? instead of 0.438-10-3 m2,

In this case, the stresses acting in the two bars will equal:

M 70100 L MPa<k = 160 MP

1= 4 T0515-103 as k= a
N, 165103

o, =2 = — 160 MPa = k = 160 MPa

A, 1.03-1073
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Individual tasks
(calculation)

Task 2.3. Arigid beam is supported by an articulated fixed support
and attached to two elastic rods (see diagrams for the task).
From the strength calculations, determine the value of the load P. The data
for the calculations can be found in Table 2.2.

Procedure:

1. Using the section method, determine the forces acting in the sections.

2. To determine the forces, consider the equilibrium of the system taking
into account the loads applied to the beam and the reactions in the supports.

3. Arrange the auxiliary deformation compatibility equation by considering
the deformed state system of the system and the ratio of forces.

4. From the strength condition, determine the maximum value of the load P.
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Table 2.2. Initial data for Task 2.3
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2.3. Geometric characteristics of cross-sections

General information

For uniaxial tension, compression and shear, the geometrical
characteristic of the cross-section of a member was the cross-sectional area,
which fully determined the member's resistance to deformation. However,
for bending, torsion and complex deformations, this characteristic is not
sufficient.

The strength and stiffness of a beam for a given material and length
depend on the dimensions and shapes of the cross-section. The geometrical
characteristics of the cross-sections are used to quantify this relationship.

The ability to determine the required geometrical characteristics
is essential for calculating the strength and stiffness of beams under different
types of deformation.

Geometrical characteristics of flat sections

Moments of interia
The static moment of inertia of a planar section concerning any
axis that lies with it in one section is the sum ofthe products
of the elementary areas dA of the whole section and their distances to this
axis (Fig. 2.7), i.e.:

Sy = [,y dA, Sy=[,x"dA
yﬂ
Static moment unit - [m3]. A
Applying the theorem on the sum X .
of moments of systems of forces: x / ?
B1dA
Se=[y-da=a-y. —
A P y Ye
Syzjx-dA=A-xc, 0 X
A
where a - is the area of the entire section; Fig. 2.7. Cross-section of a bar

X, yc - coordinates ofthe centre with an xy system

of gravity of the section.
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The static moment can take on positive or negative values. If the axis
concerning which the static moment is determined passes through the centre
of gravity of the section xc = 0 and y.= 0, then its static moment is zero:

Sx=A-0=0
S,=A-0=0

The static moments ofthe composite section are expressed

by the formulae:

where A; - areas of the components of the composite section;
Xi, Vi - coordinates ofthe centre ofgravity of the components
of the section relative to the x and y axes.

The determination of the coordinates ofthe centre of gravity
of the composite section is carried out using the formulae:

‘= Y Ax;
W
Je = XAy
© YA

If asection has two axes of symmetry, then the centre of gravity
is located at their intersection. If the section has one axis of symmetry, then
the centre of gravity lies on this axis and only one coordinate is required
to determine its position.

The axial moment of inertia of a planar section concerning any axis that
lies in the same plane is the sum of the products of the elementary surfaces
dA by the square of their distances from the axis (Fig. 2.7). It is calculated
from the formula:

Jx = f y*dA

A

Jy = fxz dA,
A
where x, y — distance from the axes relative to which the moment of inertia

is determined. Unit of moment of inertia — [m?*].

Axial moments of inertia are always positive and cannot be zero.
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The polar moment of inertia of a planar cross-section J, relative to any
pole ‘0’ that lies in the plane of the cross-section is the sum of the products
of the elemental areas dA by the square of their distances from the pole, i.e.:

Jo = f p?dA
A

where p - is the distance of the elementary surface dA from the pole (Fig. 2.7).
If the pole coincides with the origin of the coordinate system, then
the relation is satisfied:

Jo =Jx +]y

Unit of polar moment of inertia — [m*].
The polar moment of inertia is always positive and cannot be zero.
The centrifugal moment ofinertia of a cross-section is the sum
of the products of the elemental areas dA and their distances from the axes x
and y. It is calculated from the formula:
Jxy = fx -y dA
A
The centrifugal moment can be positive, negative or zero. If at least

one of the two mutually perpendicular axes is an axis of symmetry, then
the centrifugal moment of inertia of the section about such axes is zero.

Table 2.3 may be used to calculate the geometrical characteristics
of simple shapes concerning their central axes and, for sections, these are
taken from the tables in Appendix.
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Table 2.3. Moments of inertia of selected plane figures

Rectangle ya
7\ A=h-b
h . _bR®  hb?
/ X ]x E; ]y - 12
\i
-t b >
Square A A=a?
A 4
a X= Jx = ]y = E
/
P
Circle y . d?
T4
X _ nd* _ 4
Jx =1y = 5 = 0.05d
Ring
y A B nD? md?
4 4
L nD*  nd* M e 4
X Jx=ly = ey S g0 —dD = (D" —dY)
Semicircle s nd?
A 8
y Y.
NN NN v
» X, _
d X Jx _]y

—»

Jx, = 0.00686d*, ], = 0.025d*
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Moments of inertia with displacement of the coordinate system

The axes passing through the centre
of gravity of the section are called the central
axes (x, yc) and the moments ofinertia

concerning them are called the central /’ \Q
moments of inertia. < & >

A4 “ Ll
If the moments ofinertia Jx, Jyo Jxgc k/ Xc
(4]

concerning the central axes x, y.(Fig. 2.8) are
known, the moments of inertia concerning 0
the axes x and y, which are displaced parallel

A
o3
/

Fig. 2.8. Cross-section of a bar

to the central axes, are determined according .
with an xy system

to the formulae (Steiner's theorem):
Jx=Jx, +a*-A Jy =]y +b*-A Jxy =Jxy, +a-b-A
where a, b - coordinates of the centre of gravity (x, y).

The centrifugal moment of inertia should take into account the signs
of the a and b coordinates of the centre of gravity.

Calculation of moments of inertia of compound sections
The moments of inertia of a composite section are calculated as the sum
of the moments of its parts:
Je= D Uk, Iy= > Sy = ) Jhase
If the cross-section has an opening, it is convenient to consider it as part
of a figure with a “negative” area.

Moments of inertia under rotation of the coordinate system
Vi

Fig. 2.9. Cross-section of a bar in a rotated coordinate system
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The moments of inertia of the section concerning the x’, y' axes rotated
by an angle a from the Input x, y axes (Fig. 2.9) are calculated using

the formulae:
J = Jxcos® a4+ ], sin®a — J, sina

Jy = Jysin® a + ], cos® @ — [, sina

]x'y' _ ]x _]y

“sin2a + Jyy, - cos 2a

The positive reference direction of the angle is clockwise.
The centrifugal moment of inertia of angles concerning parallel offset

axes:
yh B
w‘,.?\\ Isosceles angle
g - Jxo =]
(xx] (=) \x ]xy B i 8 2 .
Yi
“\\
Non-armed angle
o x ]xy = i\/(]x _]u)(]y _]u)
- AN
The “+” and “-“ signs depend on the position of the angle section

in the coordinate system.
The geometrical characteristics of the sections for rolled sections
are taken from the catalogue tables.

Principal axes and principal moments of inertia
Principal axes are axes for which the centrifugal moment of inertia
is zero and the axial moments of inertia reach extreme values.
The angle a, which determines the position of the principal axes,

is calculated according to the formula:
2.,
J.—1,
The moments of inertia about the principal axes are called principal
moments of inertia and are calculated according to the formula:

tg2a =

/8



Jmax =
min 2

Jetdy (Jx ;Jy)z s

One ofthe principal axes is rotated by an angle a to the x-axis,
and the other is perpendicular to it.

Principal axes passing through the centre of gravity ofa section
are of practical importance. They are called the central principal axes.
The moments of inertia concerning these axes are called principal central
moments of inertia. They are used in calculations.

Section strength indices
The bending strength indices of sections are calculated about
the principal central axes according to the formula:
VVx: Jx — ]y

J’max’ yo

)
Xmax

where Wy, W), - indices of section bending strength;

Xmax, Ymax — distance of the furthest point of the cross-section from its
major central axis.

Unit of strength index - [cm?3]. The indices are not additive!

Formulas for flexural strength indices for simple sections:

rectangle: W, = bThz W, = thz
a3
square: W, = Vl/y = 3
circle: W, = ”1—‘163 W, =W, = ”3—‘123 =0,1d3
_ D}

d
, W, = 1-—a*)=02D3(1—a*),a=—=
ring: 16 D,

D, - outer diameter, dw — inner diameter.
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Examples of calculation

Example 2.5. Determine the principal moments of inertia
and the strength indices ofthe section, which consists of two angles
of dimension 56 x 56 x 4 and C-bar C18 (Fig. 2.10).

, Y,
A % YA A
<
a _
Q 2 Sy Yoin
\
- C - »
Y VAT AN S X
N RN
Vel & A A )
Yyy =y -
C, c, oy
b, b, Y max
2
1 y

A

Fig. 2.10. Calculation scheme to Example 2.5
Solution

1. Divide the section into rolling profiles (Fig. 2.10). It consists of two
angles 56 x 56 x 4 and C-bar C18, we label them 1, 2, 3.

2. Determine the centres of gravity C;, Cz, C3, using data from the table
corresponding to each profile.

3. Enter the coordinate system. The y-axis coincides with the axis
of symmetry, and we will take the x-axis through the centre of gravity
of the angles.

4. Determine the coordinates of the centre of gravity of the entire section.

Since the y-axis coincides with the axis of symmetry it passes through
the centres of gravity of the section, therefore x. = 0.

Determine the y. coordinate using the formula:

XAy Ayt Ay, A3y
Ye="va, AL+ Ay + A

Using the tables in the appendix, we determine the area of each profile
and their coordinates of the centre of gravity.

A1=4.38 cm?, y1=0;

A2=4.38 cm?, V2= 0;

A3z=20.7 cm?, y3=zo(angle) + zo (C-bar) = 1.52 + 1.94 = 3.46 cm.

The coordinates of y1 and y; are equal to zero because the x axis passes
through the centres of gravity of the angles.
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Substitute the values obtained into the formula for calculating y.:
2-4.38-0+20.7-3.46

Ye = T2 438+ 207
Denote the centre of gravity by the letter c in Fig. 2.10.

Draw the main central axes. Connect the y. axis to the axis of symmetry,
and take the x. axis through the centre of the c section perpendicular
to the y. axis. The axes y. and yz coincide.

From tables D.58 and D.60:

C-bar C18:a=20.7 cm?2, zo=1.94 cm, Jx=86 cm?, J,=1090 cm*.

Angle bar 56 x 56 x 4: a =4.38 cm?, zo=1.52 cm, Jx=J, = 13.1 cm?,

Jx, = 20.8cm*, ], =5.41 cm*
Determine the principal moment of inertia about the x. axis of the whole
section (using Steiner's theorem)
Joo= ) Jh =S TR+,
];C = Jye1 + a?A; = 13,1+ 2,432 - 4.38 = 38.96cm*
where a1=y.=2.43 cm.

=2.43 cm

From Fig. 2.10, it follows that A1= A2 =4.38 cm and a1 = az=y. = 2.43 cm,
SO J3, =J2, = 38.96 cm*
J3. =Jxes + a5+ Az =86+ 1.03%-20.7 = 107.76cm*,
where
(3 = Zoo_par T Z0gngie — Yo = 1.94 + 1.52 — 2,43 = 1.03 cm
there
Jx, = 2-38.96 + 23.48 = 185.88cm*

Determine the principal moment of inertia about the y. axis of the entire

section:

]J’c = zjjl/c =]31’c +]32’c +]33;c
Jy. = Jy,, + biA; = 13,1 + (=1.52)% - 4.38 = 23.22 cm*

where by = =z, ., = —1.52 cm
J2 =], +b3F, = 13.1 + 1.52% - 4.38 = 23.22 cm*
where b, = Z0gngie = 1,52 cm

J3. =Jy,, + b3Fs = 1090 + 02 - 20.7 = 1090cm*
where bz = 0 (Vcc-beam is coincident with y.).
Then:
Jy, = 2-23.22 + 1090 = 1136.44 cm*

Determine the strength index relative to the x. axis of the entire section:
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W, =
x ymax
185.88
Wy, = Jre _ = 28.55 cm?®
Ymax 6'51
185.88
W, = Jxe. = = 30.52 cm*
Ymin 6.09

where
Ymax = 56 = 20, + Ve = 5.6 — 1.52 +2.43 = 6.51 cm

Ymin = 7 + 5.6 —6.51 = 6.09 cm

Determine the strength index relative to the y. axis of the entire section:
Jy _ 1136.44
9

= 126.27cm?

]/Vy:

Xmax

where Xmax = 18/2 =9 cm.

Example 2.6. For agiven cross-section, determine the position
of the principal central axes and the values of the principal central moments
of inertia (Fig. 2.11).

Data:
strip 240 x 10
isosceles angle 110 x 110 x 8

C-bar C20
Solution

1. Draw the cross-section to any scale and enter the coordinate systems
passing through the centre of gravity of each of its components xi, y1; x2, y2;
x3,y3 (Fig. 2.11).

2. Calculate and extract the geometrical characteristics of the components
from the assortment tables.

Strip: area A1=24 -1 =24 cm?;

moments of inertia:

2413 4 2431 4
]xl —T—Zcm ']3’1 —7—1152cm

Angle 110 x 110 x 8 from table D.60: area A2=17.2 cm?,

moments of inertia:
]xz =]y2 = 98 Cm4;

Jmax = 315 cm?,

82



Jmin = 81.8 cm*
]max _]min . 315 - 81,8
Jxy, = -, M 2(—45°) = — 5
C-bar C20 from table D.58: area As= 23.4 cm?;

moments of inertia:

= —116.6 cm*

Jx, = 1520 cm*,J,,. = 113 em*, ], = 0
3. Introduce an additional coordinate system xo , yo in such a way that
the whole section is in the first quadrant (this is not obligatory, but
itis convenient since with such achoice ofaxes the coordinates
of the centres of gravity of the components of the section have positive

values) and determine using formulae the positions of the centres of gravity
concerning these axes:

CApx Ay x,+Ayoxy  24-12417.2-34234-21.93
B AL+ Ay + Ag B 24 +17.2 4+ 234

_Al'Y1 +A2'y2 +A3y3_240.5+17.24+23.4'11
- AL+ Az + As B 24+17.2 + 234

Xc

=13.2cm

c

= 5.24 cm

We visually check that the position of the specified centre of gravity
is correct: it is in the area of the triangle C;C2C3, so the calculation can be
continued.

lyu Y ER Yy
. 2.3
=30
- LN
N x,=12.0 _\
x=217
LA
Y
o, c, Xy
| )
- C < x,
= - o
2 d s
il
3 Cj' :I: -
I NN [,
N SRR NE Y A T RN X
s v ya
v I £
= =]
- I
=
x=1312
24

Fig. 2.11. Calculation scheme to Example 2.6




4. Through the calculated centre ofgravity C pass the central axes
of the sections x. and y. and concerning these axes we determine
the coordinates of the centres of gravity of the component figures.

To check the correctness of the determination of the centre of gravity
of the section and the coordinates of the centres of gravity of the simple
components concerning the central axes x., y. we calculate the static
moments of the section concerning the axes xc and y.:

Sx, = A1 —Ye) + A2 (V2 — yo) + As(ys — y.) = 24(0.5 - 5.24) +
+17.2(4 —5.24) + 23.4(11 — 5.24) = —135.088 + 134.784 = —0.304 cm

Sy, = A1 (g —xc) + Ax(x2 — x0) + As(x3 — x.) = 24(12 — 13.2) +
+17.2(3 — 13.2) + 23.4(21.93 — 13.2) = —204.24 + 204.282 = 0.042 cm
The values of the static moments are close to zero. This shows that
the coordinates of the centre of gravity were calculated with a high degree
of accuracy. So the position of the central axes was determined correctly.

5. We determine the axial moments and the centrifugal moment
of inertia concerning the central axes x. and y.:

3 3
Jy. = Z[]yc] = Z[]h + (o — x)?Aj]
i=1 i=1
= Jy, + (1 = %)% - A+, + (0 — x)% - Ay + ]y, + (03 — x.)% - Ag

= 1152+ (12 — 13.2)?- 24 + 198 + (3 — 13.2)? - 17.2 + 113 + (21.93 — 13.2)?
-23.4 = 5070.43 cm*

3 3
]xc = Z[]xc] = Z[]xl + (yi - YC)ZAi]
i=1 i=1
=]x1 + On _YC)Z - Aq +]x2 + (&2 _YC)Z Ay +]x3 + (v — YC)Z - Az

=2+ (0.5~ 5.24)% - 24 + 198 + (4 — 5.24)% - 17.2 + 1520 + (11 — 5.24)? - 23.4
= 3062.02 cm*

Centrifugal moment of the entire section:

3 3
]ch’c = Z[]xcyc] = Z[]xiYi + (xi - xc)(yi - yC)Ai] =]x1y1 +
i=1 i=1

+(x1 - xc)()’l - yc) - Aq +]x2y2 + (xz - Xc)()’Z - yc) - Ay +]x3y3 +
+(xs —x)(¥s — yo) - A3 = 0+ (12 — 13.2)(0.5 — 5.24) - 24 — 116.6 +
+(3—13.2)(4—5.24) - 17.2 4+ 0 + (21.93 — 13.2)(11 — 5.24) - 23.4 = 1414.12cm*

6. Calculate the position ofthe principal central axes and determine
the values of the principal central moments of inertia:
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vy, 2-1414.12

= = 1.408
Jy, —Jx. 5070.43 —3062.02

tg2a, =
2ay = 54.62° = ay = 27.31°

Since J,, < J,,, the axis of least stiffness x (J,, = /i) is inclined at ap <45 ° to
the xc axis, the axis of greatest stiffness y (J, = Jma,) is perpendicular to it. The
angle ay is postponed counterclockwise (ap > 0).

_Jx. Ty,
Jmax = — +\/

& ;1y5>2 o2,

min

2
+ 1414.122
2 2 )

= (4066.225 + 1734.406) cm*

_3062.02 +5070.43 + \/(3062.02 —5070.43

_ _ 4
]ymax = 5800.63 ’]xmin = 2331.82 cm

7. Verification.
For verification, we check the following conditions:
1) the sum of moments about any pair of central axes of the section should
be constant:
Jx +Jy = 5800.63 + 2331.82 = 8132.45cm*
Jx, +Jy, = 3062.02 + 5070.43 = 8132.45cm*
Condition (1) is met:
Jx + 1y = Jx, 1y,
2) the centrifugal moment of inertia of the section concerning the principal
central axes must be zero. We calculate the centrifugal moment of inertia J,,,:

Jxe =1y 3062.02 — 5070.43

Ty = £sin 2ag + Jyy, €OS 2y = 5 sin 54.62° +

+1414.12 cos 54.62° = —818.76 + 818.77 = 0.01 cm*

Relative error
0.01

818.765
Condition (2) is also satisfied: J,, = 0. It means that the calculation has

100% = 0.001% < 2%

been carried out correctly.
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Individual task
(calculation)

Task 2.4. Determine the moments ofinertia (axial and centrifugal)
and bending strength indices concerning the major central axes (see scheme
for the task). The variant number is determined from the list.

Procedure:

1. Determine the coordinates of the centre of gravity of the entire section.

2. Determine the axial moments and centrifugal moments concerning
the central axes.

3. Determine the position of the major central axes.

4. Determine the values of the major central moments of inertia
of the section.

5. Determine the bending strength indices relative to the major central
axes of the section.
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Schemes for the Task 2.4
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Task 2.5. Determine the position of the principal central axes, the values
of the principal central moments of inertia and the bending strength indices
(see diagram for the task).

Procedure:
1. Determine the coordinates of the centre of gravity of the entire section.
2. Determine the axial moments of inertia and the centrifugal moment
of inertia of the section concerning the central axes.
3. Determine the position of the principal central axes.
4. Determine the values ofthe principal central moments of inertia
of the section.
5. Determine the bending strength ratios concerning the major central
axes of the section.
Initial data:
the cross-section contains: C-bar C20, [-beam 120, isosceles angle
100 x 100 x 10, and non-isosceles angle 80 x 50 x 6.
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Schemes to the Task 2.5
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2.4. Torsion

General information
Torsional deformation occurs when a moment (pair of forces) acts
on the rod in a plane perpendicular to the bar axis.
The internal moment M; in any cross-section ofthe bar is equal
to the algebraic sum of the torques applied on one side of the cross-section
M= M.

Principles for determining the sign of M;

Concerning the cross-section, the acting moment is positive when
itinduces a clockwise rotation and negative when it induces a counter-
clockwise rotation.

In calculations, the relationship between the torque Ms; (Nm),
the power P (W), the angular velocity w (s1) or the number of revolutions
per minute n (rpm):

M = g Nm
It is known from a course in theoretical mechanics that angular velocity:
w=75 (),
then: M, = 2 Nm or M, = 9551 Nm
In the cross sections, only shear stresses [t], arise with torsional

deformation, which for the shafts are:

—MSMP
T—VI/:) a

where W, - is the torsional strength index, which is: W, = ]70;

r - radius,
Jo— polar moment of inertia;
For the full section:

For the ring section:
nD3(1—a%) d
0 ZZTZ 0.2D7 (1 - a®),a :D_VZV

D, - outer diameter , dw — inner diameter.

The angle of twist of the section is determined from the formula:
M-l
G-Jo

(p:@-l:
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where O - relative torsion angle;
[ - section length;
G - transverse modulus of elasticity of the material (MPa);
GJ, - characterises the stiffness of the section under torsion.

Strength condition:

M; <k
T =—=
max w, s
where Tmax — Maximum shear stress occurring in the rod section;

Ms— torque;
W, - torsional strength factor;
ks— allowable torsional stress ( ks =0.5 + 0.6 k).

Stiffness condition:
@ M rad
gmax— l _G]O S [9] m
where Omax — the maximum relative torsion angle that occurs in the rod section;
M; - torque in the section;

[6] - permissible relative torsion angle.

Three types of problem
1. Checking the strength of a structural element (verifying calculations)
Tmax = 3 < k- strength condition.

2. Section selection of a structural element (design calculations)
— in terms of strength:

for full section d > 3/%

. . d
for ring section D > *|—"" where a = =
mks(1—a%) D,

— in terms of stiffness:
for full section d > 4/ 32Ms
nG[0]

. . 4 32M d
> —= =W
for ring section D > /n’G[G](l—a“)’Where =3

rad

3. Verification of stability (operational):
M, < W,k
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Examples of calculation

Example 2.7. Pairs of forces act on a steel beam through three pulleys

M1, M2, M3 (Fig. 2.12, a). Make diagrams of M; moments and rotation angles ¢
of the sections, verify the strength and stiffness of the beam if diameter

d=70 mm, shear modulus G = 8-10% MPa, permissible relative rotation angle

[0] = 1.5 deg/m.

Solution

1. Drawing up torque diagrams.

Calculate the value of the torque
for each segment:

Mg, =M, = 2kNm
Mg, =M;+M, =2+1=3kNm
Mg, =My +M;+M3=2+1—7=—4kNm

Plotting adiagram ofthe M;
torques (Fig. 2.12, b).

2. Plotting a diagram of the torsion
angles.

The torsion angle of a segment is
calculated according to the formula:

_g.l= M -1
v G-Jo
. . md*
Polar moment of inertia: J, = =

The stiffness GJ, along the whole shaft

M, M, M,
Ag™ 1 ™ -
~a a 1 gl Ty fa]
a}:’—;l—{—-u—-J——n———--—-
A &
4 o | o] 3
Ha T-il—l-
X\3 it L
o -
_IZI,E m| 0,3 m| 04m _
3
&=
b) I$ Ms KN m
4 477
Q) W/ 0,1-10°3 Rad
4,24

Fig. 2.12. Rod diagram to Example 2.7:

a - load diagram; b- diagram of torsional

moments; c - diagram of torsion angles
of beam sections

is constant, so the deformation sections are consistent with the load sections.

Then:
6= 6" g 10t 100 3 T2 0N pacaan
Jo=Gr3y = 32 - m
Calculate the angles of rotation on each section:
Mg -]y 2-10%-0.4

= = = 4.24-1073rad

Y1776, T 188574 e

Mg, ), 310%03 103

$2 = ),  isssra 4.77 - 10™°rad
M, - —4-103+0.2
gy = ls = —4.24-10%rad

G/,

188574

We begin to plot the torsion angles ¢ relative to the fixed cross-section A:

pa=0;

O = @4+ @3 =0+ (—4.24-1073) = —4.24 - 103rad
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Oc=Ps+ @3+ @, =0+ (—4.24-1073) +4.77-1073 = 0.53 - 10 3rad

Op=Pat o3+ @+ @; =0+ (—4.24-1073) +4.77-1073 4+ 4.2-1073 = 4.73 - 10 3rad
Based on the obtained data, we create a graph of the twist angles ¢

(Fig. 2.12, ¢).
3. Check the strength conditions of the shaft:
Tmax S kS
M M 16-4-103
Mol _ [Msp| = 59.4-10° N/m? = 59.4 MPa

fmax = Ty T nd = 3.14(70- 10-3)3

59.4 MPa < 70 MPa - the strength condition is satisfied.

4. Check the shaft stiffness condition:
Bmax S [9]
|Ms, | 4-103
= L omaxl _ =212-10"2m™!.
Omax =, ™ = 188574 0 m™ o7

1,22 deg/m < 1,5 deg/m - the stiffness condition is satisfied.

o

= 1.22 deg/m

Example 2.8. For the shaft (Fig. 2.13, a), loaded as shown in the figure,
determine the diameters and twist angles ofindividual sections, given
[6] = 0.03 rad/m, material: S215 steel, safety factor n = 1.5; shear modulus
G = 8:10* MPa, shaft angular velocity ® = 80 rpm, N; = 30 kW, N> =15 kW,
N3=22 kW.

N1=30kW  No Nz=15kW Nz=22kW
— - —-

—F.
1 3 3
a) = | t L
— ) ) B
- = -— —
ﬂ':3 m b=2 m c= 15 m
4622
r
b) LT Me 1
LT &, kNm
I
<) 5 %.1.102 Rad
853 6,2 ﬂ“ﬂu\
10,11
-
Ty
oy -
g s el
k.

Fig. 2.13. Shaft load diagram:
a - shaft load; b - torques diagram; c - torsional angle diagram
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Solution
1. Determine the torques transmitted by the pulleys using the formula:

N
M=—

w
_30-103_375N
1=7g0 m
_18-10°_ oosn
2 = 80 = . m

. 3
My =22 = 275 Nm

80
The torque (Mpy) is calculated based on the equilibrium condition

of the shaft:
ZML- =M, — My + M, + My = 0; My = 375 + 187.5 + 275 = 83.75 Nm

2. Calculate the torque on each segment of the shaft using the sectioning
method:
Mg, = —M; = —375Nm
M, = —M; + My = =375 + 837.5 = 462.2 Nm
M, = —M; + My — M, = —375 + 837.5 — 187.5 = 275 Nm
Make a plot of torques (Fig. 2.13, b).

3. Determine the diameters of the shaft for each segment using the torsional

strength criteria:

Tmax = 2 < ks, Where kg = (0.5 +0.6) ke, ke = 7

e
n

For S215 steel, we have k, = % 0.5 = 80 MPa.

W _ nd? tand. > 16 - M,
0= qp AN = kg

3 16375
3.14-80-10°

dy = =298-10"2m, d; = 30 mm

3 16-462,5

d, =
2 3.14-80- 106

=3.08:10"?m,d, = 31 mm

3 16-275

45 = 1374-80- 106

=2.59-10"2m,d; = 26 mm

Hl%

4. Determine the diameters ofthe shaft for each segment based on

the condition of sufficient torsional rigidity:
M, m-d*

=< h = —
0 .= [6],then ], 7
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|32+ M

then d; >

= 60
d = 32-375 =359-102m; d, = 36
1< |314-8-101°-0.03 m; 4 = 6 mm
dy = |20 g gty =37
2% |314-8-1019-0.03 m; dz = 5/ mm
do= 32:275 =329-10"2m; d; = 33
3% |314-8-101°-0.03 m; dz = 25 mm

Ultimately, we adopt:
d, = 36 mm; d, = 37 mm; d; = 33 mm
With these diameters, both the torsional rigidity and the strength criteria
are satisfied. Then sketch of the shaft (Fig. 2.13).

5. To construct the twist angle diagram, the twist angle of the shaft along
its segments must be determined using the following formula:

M
Qi = G Jo,

_ Mga ~375-3-32 53107 rad
176, 8-101°-314(3.6-102)F ra
 Mgb 462.5-2 32 28102 rad

b2 =, T 8-1010-314(37-10-2)% ra

Msc 275-1.5-32 .
= =443-10"“rad

Y376, 8-101-314(3.3 - 10-2)*

As a fixed reference, we conditionally consider the segment of the shaft
where the zero-angle pulley is located. Concerning this reference, we plot the
twist angles of the segments of the shaft, thereby constructing the twist angle
diagram (Fig. 2.13, c).

The first segment: ¢, = —8.53 - 1072 rad.

The second segment: @, = 6.28 - 1072 rad.

The third segment: ¢, + @3 = (6.28 + 4.43) - 1072 = 10.71 - 1072 rad.
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Individual task
(calculation)

Task 2.6. For a given shaft (see schematics for the task), on which pulleys
are mounted and where forces act (table below), determine the diameters and
twist angles of its segments, given [0] = 0.03 rad/m, material: S215 steel, safety
factor n = 1.5; shear modulus G = 8:10* MPa, shaft angular velocity ® = 80 rpm.
Procedure:

1. Determine the torques.

2. Determine the torques on the shaft segments.

3.From the strength condition, determine the diameters ofthe shaft
for each segment.

4. From the torsional rigidity condition, determine the diameters
of the shaft for each segment.

5. Determine the twist angle of the shaft for each segment and plot
the twist angle diagrams.

Table 2.4. Initial data for Task 2.6

Var. | N1 N N3 N4 a b c d e
no kW m

1 10 30 20 20 1 2 1 2 1
2 20 15 10 25 2 1 2 2 1
3 40 15 25 30 2 1 3 2 1
4 5 8.5 10 3.5 2 4 1 2 2
5 8 8 10 6 1 2 2 2 1
6 6 16 20 2 1 2 1 1 1
7 4 16 10 10 2 1 2 1 1
8 20 10 18 12 1 3 1 2 1
9 24 6 10 8 3 1 1 3 1
10 4 12 10 6 1 2 2 1 1
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Schemes for Task 2.6
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2.5. Bending

General information

Bending, where only the bending moment is present, is called pure
bending.

Bending, where both the bending moment and shear force are present,
is called transverse bending.

The planes in which the principal central axes of inertia lie are called
the principal planes of the beam.

If the plane of action of the force coincides with one of the principal
planes of the beam, i.e., the bending axis of the beam lies in the plane of the
force, the bending is called planar or simple.

If the plane of the force does not coincide with any of the principal
planes of the beam, i.e., the bending axis of the beam does not lie in the plane
of the force, such bending is called skew bending.

Shear force and bending moment

In simple transverse bending, the cross-sections of the beam
experience: shear force Q and bending moment M,.

The shear force Q at the considered cross-section numerically equals
the algebraic sum ofthe projections ofthe forces acting on one side
of the section.

The bending moment M; at the considered cross-section numerically
equals the sum of the moments of all forces and couples of forces acting on
one side of the section concerning the z-axis.

Sign convention
The shear force is positive if the external force tends to rotate the beam
clockwise relative to the given section, and negative if in the opposite
direction (Fig. 2.14).
The bending moment is positive if the beam bends with a sagging
curvature (Fig. 2.14).

106



NEThe oy

M ® M Q
f=—= «\—
Fig. 2.14. Principle of determining forces and bending moments

Drawing diagrams of bending moments and tangential forces

Methods of verification Qi M diagrams

In the segment where continuous loading is present, the Q diagram
takes the form of an inclined line, while the My diagram is a parabola.

In the segment where continuous loading is not present, the Q diagram
takes the form ofaline parallel to the beam axis, and the My diagram
is an inclined line.

At the point where a concentrated force is applied, the Q diagram
shows a jump in the absolute value equal to this force.

In the cross-section where acouple of forces are applied, the M,
diagram shows a jump in the absolute value equal to this moment.

In edge cross-sections, the bending moment is zero. The exception
is cross-sections where a couple of forces (bending moment) are applied.

Calculating the strength of beams under normal stresses
The formula for the bending strength condition:

M, qx
o= <k
W,
where W, = Jz_ _ section modulus concerning the z-axis;
Ymax

k — allowable stress of the material.

Three types of problems are solved using bending strength cond.
Verification of the beam strength (verification calculations).

Omax 1S calculated and compared with k.

max

W,
Selection of the beam cross-section (design calculations). The required
cross-sectional dimension is calculated

<k

g =

max

k

W, >
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The values of W, and W, for I-beam, channel and angle profiles
are selected from the catalogue tables. For square and circular cross-
sections:

W, =— = a=36-W,

O wevie = o=
0.1

Beam load-bearing capacity calculations. The maximum bending

moment is calculated:
Mmaxg k - WZ

Calculating the strength of beams under shear stresses
In simple transverse bending, both normal stresses o, and shear

stresses 1, occur in the beam's cross-sections, which are calculated according
to the formula:

_ Qmax Szmax

Tmax = J, b ’
where Qmax — shear force occurring in the cross-section;
Sz may— Static moment concerning the neutral axis of the cross-section

of a section that is on one side of a line drawn through the point under
examination, parallel to the neutral axis;

J-— moment of inertia of the entire cross-section concerning the neutral
axis;

b - width of the cross-section (in the case of variable width, the value
of b is taken at the level of the point of interest).

Calculation of the stiffness of a beam under bending
In bending a beam, the beam's axis deflects, causing points along this
axis to shift. However, the distances are sufficiently small compared
to the length of the beam, so their direction can be considered perpendicular

to the beam's axis. These displacements are referred to as deflections.
vi

q

At p bbby
e ] B

7

Fig. 2.15. Diagram of forces acting on the beam
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The curve along which the original axis of the beam rotates under
the action of external forces is called the deflected axis ofthe beam
or the elastic line. Deflections at different cross-sections vary and depend on
the distance z (Fig. 2.15) from the chosen coordinate system (in this case,
0 coincides with point 4), that is, y. = f{2).

The angle formed by the tangent to any point k on the deflected axis
with its initial position is denoted by € (Fig. 2.15). The angle 8 defines
the rotational displacements of the cross-sectional plane of the beam under
bending and is called the angle of deflection of the beam cross-section.

The formula for the stiffness condition

Linear or angular displacements of the cross-section should not exceed

the permissible value:
f=Ifl
where f - is the maximum deflection of the beam;

[f] - is the permissible deflection of the beam.

The permissible deflection ofthe beam [f] depends on the
definitions and operating conditions of the designed structure. For example,
for a manual crane [f] = 1/400; for an electric crane [f] = 1/700; for machine
shafts used for cutting metals [f] = 0.0005 to 0.0010/ (I - distance between
beams).

The permissible angle of deflection is typically 0.001 rad.

To calculate the deflection of the beam, we use the universal elasticity
equation.

M(2)?* P(2)®  q(2)* M(z - 2)° P(z - b)? q(z —c)*
2!E]x+3!E]x+4!E]x+z 21E], +Z 3UE, T 41E],

f(2)=fot0z+

2 3 _ _ 2 — 3
9(Z)=90+&+P(Z) q(2) +ZM(Z] Q) P(ZZ!E]b) 4 q(3Z!E]C)

EJ, 2'EJ, + 31E],
- denote factorial;

oy
!

where
fo, @ - input parameters (deflection and angle of deflection of the left
cross-section of the beam);
a, b, c - abscissa of sections where moments M, acting forces P,
and the starting point of the load q occur;
EJx - stiffness of the beam cross-section;
Deflection fo and angle & are calculated based on the beam's fixation
condition.
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Examples of calculations

Example 2.9. For abeam loaded as shown in Fig. 2.16, plot

the diagrams of Q and M,.

Solution
1. Determination of the reactions at
the supports ofthe beam. For
symmetric loading:
P 10
Ry=Rp=>=—=5kN

2. Plotting the shear force scheme Q

0<x, 52

Q(x1) =Ry

Q(x; = 0) = 5kN,
0(x; = 2) = 5kN

Red o p=10HkNR5A
A f 5

|

2m > 4L LI

| |
s T :
1

Mg, KNm ,«nﬂﬂmﬁ*qmﬂ*m\

Fig. 2.16. Beam loading scheme

a kN [T

0 < x, <20
Q(xz) = Rp
Q(x; =0) = —=5kN,Q(x, = 2) = —5kN
3. Plotting the bending moment diagram M
0<x, 52
M(x1) = Ra-x1; M(x1=0)=R4-0=0,M(x1=2)=Rs-2=52=10kNm
0<x; <52
M(Xz) = RB'Xz; M(X2= 0) =RB' 0= 0, M(Xz= 2) = RB -2=5-2=10KkNm
Based on the obtained data, we create the diagrams Q(x) and Mg(x)

(Fig. 2.16).

Example 2.10. For abeam loaded as shown in Fig. 2.17, plot

the diagrams of Q and M.

Solution
1. Determination
of the reactions at the supports

of the beam.
Ry= Ry =L%R,= Ry=""= 12kN

2. Plotting the shear force diagram Q.

0<x<6
Qx)=Ry4—q-x
Q(x=0)=Ry;—q-0=12KkN

R.g 3 L ‘.7:4 kN/m RE‘
MEXEEXEXXEERER I
2 S w.

12
Q, kN

A )
Mg, kNmbeertT1LLL it | T
Fig. 2.17. Beam loading scheme
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Q(x=6)=R,—q-6=12—4-6=—12kN
4. Plotting the bending moment diagram M.

0<x<6
M(x)=RA-x—q'TxZ;
M(x=0)=RA-0—q'02=0kNm
q - 62 4.62

=12-6— = 0 kNm

M(x=6)=R, 6—

In the section where Q = 0, the diagram M; has the maximum bending
moment. We calculate the maximum M, For this purpose, we set
the transverse force equation to zero and determine the point where

the extremum occurs:
R, 12
Q) =Ry—q-x=0then x = —=—=3kN
q
q-3? 4-32
=12-3 - = 18 KNm

M(x=3)=R,-3 -
Based on the obtained data, plot the diagrams Q(x) and Mg(x) (Fig. 2.17).

Example 2.11. For abeam loaded as shown in Fig. 2.18, plot
the diagrams of Q and M,.

Solution 1 {F»SkN/m PR
7] 1
1. Plotting the shear force diagram Q. AIRYVYVIYY I ¥
0<x<3 1| P=1aknt Xy
Q(xy) =P, —2 .
Q(xy =0) =P, =6kN «dam |, 3m
Q(x1=3)=P1=6kN o
Q(xz) =P, —P,+ q(xz _ 3) ‘ T ;HH [IRiRNNNl Q kN
= = —_ — — — . ]
Q(x; =3) Pl_ Pg ;;Nq(3 3)=6—-14+5-0 ) — My, KNm
T /,
Qx;=7)=P,—P,+q(7—-3)=6-14+54 A 1k
26 18
= 12kN

Fig. 2.18. Beam loading scheme

2. Plotting the bending moment diagram Ms.
0<x; <3
M(x; =0)=—P;-0=0kNm
M(x; =3)=—P,-3=—6-3=—18kNm

3S.7C2S7
q(x; —3)?
M(x2)=—P1-x2+P2(x2—3)—zT
q(3—3)2 5-02
M(x,=3)=—P, 3+ P,(3-3) - = —6-3+14-0—>——=—18kNm

2
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q(7 —3)? 5 - 42
M(xz=7)=—P1-7+P2(7—3)—T=—6-7+14-4— > = —26 kNm

We calculate the maximum value of M;(xz) at the location where the shear
force becomes zero in the second segment. We set the transverse force
equation to zero:

Q(x) =P, —P,+q(x; —3)=0

P1 - PZ + q * xz - x2 - 3 = 0 :> x2 = —P1+I;2+Q'3 = _6+154+5.3 = 4._6 m
5- (4.6 — 3)2
M(x, =4.6) =—6-4.6+14-(4.6 —3) ——— = —11.6 kNm

Based on the obtained data, we create the diagrams Q(x) and M;(x) (Fig. 2.18).

Example 2.12. Based on the strength and stiffness conditions,
determine the required size of the C-bar for the beam (Fig. 2.19), given that

the permissible deflection [f] = 1[/400, the permissible stress k
and the modulus of elasticity E =2 - 10> MPa.
Data: iz AR, Searched for:
[f]1=1/400 - P=20 kN i C-bar -?

k=210 MPa A~ B_%I;_
E=2-105MPa 1;’ [=3m _‘
Fig. 2.19. Beam loading scheme

Solution
From the equilibrium conditions, determine the support reactions
of the beam:
YMy=0;, Mr—P-1=0; My=P-1=30-3=60kNm
YY,=0;, R,—P=0;R;=P=20KkN; Ry=P=20kN
Determine the maximum bending moment:
M(x) =—-P-x
Mx=0)=-P-0=0
M(x=3)=-P-3=-20-3=—60kNm
From the strength condition, select the cross-section:
Myax 60 -10°

W, = =0.286-10"3m3 = 286 cm3

k ~ 210-10°
The beam's cross-section consists of two C-bars so one C-bar
286
M/x = T = 143 cm3
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From the Table D.58, C-bar C20 has abending strength index
Wx= 152 cm3 and a moment of inertia J/x= 1520 cm*. Therefore, for two C-
bars:

W, =2-152 = 304 cm3
J, = 21520 = 3040 cm*
Verify the stresses:

O-max = W S k
X
60 - 103 9 N
Omax = W = 0.197-10 W = 197 MPa < 210 MPa

The strength is ensured.

According to the stiffness condition, select the beam cross-section:
f=<If]
l

3
[f] =200~ 200 — 0.0074 m = 7.4 mm

The universal elasticity equation for a beam:
2 X3
fx) = fo +90x_MRm+RA6T]x
The deflection fo and the angle 6o from the beam's support condition

are equal to zero; therefore, the maximum deflection for the given case is:
12 13  —-3PI3+PI pP3
28], V6B, 6B, 3E,
20-103.33
fmax = =35 01T 21820 108
The maximum deflection exceeds the permissible deflection value,

fx=1=3m)=-Pl

0.0296 m = —29.6 mm

so a different C-bar needs to be selected. We determine the required
moment of inertia for the new C-bar:

f =
]>P-l3= 20-103 - 33
X=3E[f] 3-2-1011-7.4-1073

For one C-bar Jx=12162 /2 =6081 cm*

From the Table D.58, we select C-bar C33 Jx = 7980 cm*.

Finally, we adopt C-bar C33, thus, the stiffness condition is satisfied.

3

35 <]

=12.162-10"°m* = 12162 cm*

Example 2.13. Verify the serviceability of a cantilever wooden beam
(Fig. 2.20), given that yf = 1.2 (load safety factor), service condition factor
Yc = 1.1; and the computational strength R = 15 MPa.
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Data: Searched for: . #'okN/m 1 P25 kN

yf=12 The serviceability éA REIXIX! iHB 3 %
Ye=1.1 of the beam - ? “ X e O /
" ™
R=15MPa _ogm | 12m | "4 45em
A 444 g il
/]
4 30
4 Q, kN
2 ﬁlw O Mz kNm
4 446
80186
Fig. 2.20. Beam loading scheme
Solution

1. Determine the design load.
Qeatc =qyf =10-1.2 =12KkN/m
P.oic=P-yf=25-1.2=30KkN
2. Plot the shear force diagram Q.
0<x <12
Q(x) = Peaic * Geaic * X1
Q(x = 0) = Peqic + Gearx 30 kN
Q(x=1,2) = Pegie + Geqic - 1.2 =30 + 12 1.2 = 44.4 kN
12<x <2
Q(x) = Peaic + Geaic * 1.2
Q(x =1,2) = Pegie + Geaic * 1.2 =30 + 12+ 1.2 = 444 kN
Q(x =2) =Pgic + Geare - 1.2 =30 + 12 - 1.2 = 44.4 kN

3. Make a scheme M,.

M(x, =0) = —Poy, 0 — - — 0kNm

-1.22 12-1.22
M(, =12) = Py 1.2 — q“"CT =-30-1.2—

12<x <2
M(x) = —=Peaic " X — qeaic " 1.2 - (x — 0.6)
M(x, =1,2) =-30-1.2—-12-1.2- (1.2 — 0.6) = —44.6 kNm
M(x,=2)=-30-2-12-1.2- (2 - 0.6) = —80.16 kNm
Based on the obtained data, plot the diagrams Q(x) and Mg(x) (Fig. 2.20).

Determine the bending strength index for a rectangular cross-section:
bh? 15 -307?
We=We="="%
Check the serviceability of the beam. From the strength condition:
Mg = 80.16 KNm < Mynax
Mmax <k - Wy=vyc-RWy=1.1-15-106-2250-106=37125 Nm = 37.3 kNm

The actual bending moment M; is greater than the design moment Mmax.

= 2250 cm?3
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Conclusion: The serviceability of the beam is not ensured; it is necessary
to either reduce the load or increase the cross-sectional area
of the rectangle.

Example 2.14. From the conditions of strength and stiffness, select
the dimensions of the beam's cross-sectional area (Fig.2.21).

M = 80 kNm
q = 20 kN/m q = 20 kN/m P = 40 kN

T AT IITY
/7«'437 2m Em”f?z 2m »‘

Fig. 2.21. Beam loading scheme

For the loaded beam:
1. Determine the values of shear forces Q; and bending moments Mgi

and plot their diagrams;

2. From the strength condition, determine the required dimensions
of the beam for three cross-sectional variants:

a) circular cross-section;

b) rectangular cross-section (where h/b = 2);

c) I-beam cross-section.

Choose the most rational cross-sectional shape among the three options
and justify the choice.

3. For the selected rational cross-section, plot the normal and shear stress
diagrams. Determine the equivalent stress for this beam.

4. Check the stiffness of the beam with the chosen cross-section using
the strength condition, given that [f] = 0,001[; E = 2-105 MPa; k= 160 MPa.

Solution
1. From the equilibrium conditions, calculate the support reactions
of the beam.
YMy=0;,—-q-2-1-M+Rg—q-2-5-P-6=0
+q-2-1+M+q-2-5+P-5 20-2-1+80+20-2-5+40-6
B~ 4 - 4
ZMA:O;RA-4+q-2-3—M—q-2-1—P-2=0

= 140 kN
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—q-2-3+M+q-2-14+P-2 —=20-2-34+804+20-2-1+40-2
RA= =
4 4
Verification:

ZY=0—RA—q-4—P+RB=O
—20—-80—40+140=0
2. Determine the transverse forces Q
0<x; <2
Qx1) =—Ry—q-x
Q(x; =0)=—-R;,—q-0=-20—-20-0=—20kN
Q(x; =2)=—-R;—q-2=-20—-20-2=—60kN
2<x,<4
Q(xz2) = =Ry —q - x;
Q(x;=2)=P+q=-20-20-2=—60KkN
Q(x; =4)=—-R;—q-2=-20—-20-2=—60kN
0<x3<2
Q(x3) =P+q-x3
Q(x3=0)=P+qg-0=40+20-0=40KkN
Qx3=2)=P+4+q-2=40+20-2=80kN
3. Determine the bending moment M.

= 20 kN

OSX1S2
2
q-Xx1
M(x1) = —Ry %y — 2
. 02
M, =0)= —R,-0 — L7 — 0 kNm
q-2
M(x; =2) = —R; -2 = ——=—80kNm
2<x, <4

M(xy) = —Rgx, —q-2(x,— 1)+ M
M(x,=2)= —R,-2 —q-2(2—1)+M = 0kNm
M(x,=4)= —R;-4 —q-2(4—1)+M = —120kNm

0<x3<2
2
- X
M(X3) == —PX3 - q 23
q-0°
M(x;=0)= —P-0 — = 0 kNm
q-2°
M(x3=2)= —P-2 — > = —120 KNm

4. Plot the diagrams for Q and Mg, considering that in two intervals there
is a uniform load q. In this case, the M; diagram is a parabola, with the bulge
oriented in the direction opposite to the load. In the second interval, the M,
diagram is bounded by straight lines (Fig. 2.22). As shown in the diagram,
the maximum moment My = 120 KNm occurs at the section where x = 4 m.
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q =20 kN/'m l.L: 80 kNm A q =20 kN/m

R, / 1 I Ry / i IP:AOKN
Y vy RRR
707 2m 2m ”:’i’ 2m|
—1 o XQ- Lf’->
) SN 1131 hvivns o0
SRR - |
0 _Q_U.LQ Mg, KNm

120

Fig. 2.22. Diagram of shear forces and bending moments for the beam of Example 2.14

5. From the normal stress strength condition, select the required cross-

sectional dimensions of the beam:

_ Mmax

Omax = <k

x

Required bending strength of the beam cross-section:

. 3
160-10
For a circular cross-section of the beam, we have:

nd3
W, = —, then
x 32’

3132W, _ 3(32-750-10"° 31 1
d= = >4/7.643-1073>197-10"°3>197-10"' m = 19.7 cm
T 3.14
nd? _ 3.14-20?

We assume d = 20 cm, A="

= 314 cm?

The stresses acting in the beam will be:
. 3
Omax = MV’;:" = A:IT’Z? = 3.11240_ 01_(2)03 32 =153-10° % =153 MPa
32
The stresses in the beam are:
153 — 160
160
For a rectangular cross-section of the beam:
bh?

W= g

-100% = —4,4% < [5%]

N | S

.h? K3

because b==% then w, =2— =2,
2 6 12

1
h=3/12W, = ¥12-750 - 106 = /9.0 - 1073 = 2.082- 10™>3 = 2.082 - 10~ m = 20.82 cm
h
We assume h=21cm, b= 5= 10.5cm, A=220.5 cm=2.

For this cross-section, the acting stresses are:
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Mgy Mpg,  120-10°

Imax =Ty T = ThRZ T 0.105-0.212
6

The stresses in the beam will be:
155,5 — 160

160
For the I-beam: from Table D.59 the closest values for W, = 750 cm3

are for I-beam no. 36 with a bending strength indicator W, = 743 cm3.

The stresses acting in I-beam 136 are:
M., 120-103

W,  743-10°6
The overload on the beam is:

162-160
160

Ultimately, we choose [-beam 136: the moment of inertia J, = 13380 cm?,
and the cross-sectional area 4 =61.9 cm?2.

N
6 =15.5-10° — = 155.5 MPa
m

-100% = —2.8% < [5%]

= 0.161-10° = 162 MPa

g =

-100% = +1.25% > [5%]

Conclusion: The most rational choice among the three cross-sections
is I-beam I 36.

6. Check the strength ofthe I-beam concerning the maximum shear

stresses T:
p o Omax Semar
Jx b
where: S, the static moment of the beam's cross-section about

the neutral axis (from the tables in the appendix),
b - the width of the I-beam flange (Table D.59).

For materials if k= (0.5 + 0.6)k, then k= 0.56 - 160 =90 MPa.
80-103-423-107°
fmax = 751073 - 13380 - 109
7. Plot the diagrams ofnormal stresses ¢ and shear stresses t
for the I-beam.

= 0.337-108 Pa = 33.7 MPa<k,; = 90 MPa

Normal stresses: ¢ = Ymax — Mmaxy
Wy Jx

where y - the distance from the neutral axis to the considered point.
(1) =

.103.18-10~2
1209919407 — 0.161-10°2% = 161 MPa

13380-1078
.103. — 102
o(2) = 2o USL2DA0 _ ) 150. 109 = 150 MPa
13380:10 mm
120-103-0
0'(3) = m = 0 MPa
Shear stresses:
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(1) = Omax 3) _ 80-10°- 0 =0
=T, T 145-10-3-13380-10-8

where S(E) = 0 - the static moment of inertia about the neutral axis for
2

the portion of the area that is cut off from the cross-section by a line

(flange edge).;
Qmax * Sr1 _
(1) = —— Ty 80-103-310-107° 0108 N 128 MPa
b-J, 145-10-3-13380-10-8 = m?

where Sfiange/1p — the static moment of the flange area about the neutral axis:
hot 360 12.3 , ,
Sﬂange/1p = b -t (E — E) = 145 -12.3 (T - T) = 310062 mm“ = 310 cm
where b - the flange width of the I-beam,

t - the flange thickness of the I-beam (Table D.59).
Qmax * Sfianges1p 80103310107

N
= — — . 8 —
7(2) A = 10513380 . [o=8 = 0247 10° — =247 MPa
Qmax * Sflange/2p 80-10%-423-10"¢% N
)= b, =75 107 13380 10+ mz _ oo MPa

where  Sqange/2p the static moment of inertia of the half-section of the I-

beam concerning the neutral axis (from the table in the
appendix).
The scheme of normal stresses o and shear stresses T of the I-beam cross-
section are shown in Fig. 2.23.

g, MPa 1, MPa
141
NLLLr g 150 247
—_ N ——337
y ™ == 4.7

Fig. 2.23. Diagram of normal and tangential stresses in an [-beam

8. The equivalent stresses of the I-beam cross-section are determined
according to the Huber-Mises yield criterion:

ol =2 +3-12<k

oV, = /022 +3-72 =,/1502 + 3 - 24,.= 156.13 MPa < 160 MPa

9. Check the selected the I-beam no. 36 using the stiffness criterion.
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The stiffness criterion: f = [f] = 0.001l = [0.006 m]
To determine the deflection ofthe I-beam, we place the origin
of the coordinate system at the left support and write the universal equation
of the elastic line for the last segment of the beam'

x3 (x —2)?
E]xf(x):E]xf0+E]x90' RAZ_qﬁ-l_M 2
(x—2)* (x —4)3 (x — 4)*
gt R~

From the beam's support condition, it follows:
fx=0)=f=0f(x=4)=0
The angle & is calculated from the condition that for x = 4, the deflection
of the beam f= 0.

43 (x — 2)? (x —2)*
El.f(x =4) = E]xfo + E]x00- 4 — RAg—q—+M > T4, =0
El,-0+EJ.0,-4— 204—3—20— g0 _2)2 208 2" _
6 24 2 24
Thus, the rotation angle of the cross-section at the left supportis 8, = 231'3.
X

Determine the deflection of the I-beam at critical locations:

EJ.f(x=2)=EJ,- 0+E]x633 2—20——20—_ 86.7 kKNm3

(x=2)= 867 -10° = 0.00324m = 0.324
fr=2) =570 13380 100 = m = Hostom

2
EJ.f(x =6) = EJ, - 0+ijg 6— 20——20—+80(6 2)

+20(62? +140(66‘” 20(6 ‘” —393 kN - m3

flx=6)= % = —0.0148m = —1.48cm
The maximum deflection occurs at the end ofthe beam for x = 6 m
and is f= —0.0148 m, which exceeds the permissible deflection
[f1=0.001/=0.006 m = 0.6 cm.
Since the maximum deflection exceeds the permissible deflection, it is
necessary to select a different I-beam. To do this, we determine the required

moment of inertia for the new [-beam:
—393-103 e 4 .
]x22'1011_0.6'10_2=327.5-10 m* = 32750 cm

According to Table D.59, the I-beam 150 with J, = 39727 cm* meets
the stiffness requirements.
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Individual tasks
(calculation)

Task 2.7. Check the serviceability of the beam (Table 2.5, calculation
schemes).

Table 2.5. Initial data for Task 2.5

Continuous Service Computational
Var. | Force | Torque Reliability condition
no | P,kN | M,kNm load g, factor yf factor strength
’ ’ kN/m N R, MPa
1 25 30 18 1.2 1.1 20
2 40 40 12 1.3 1.2 15
3 15 35 10 1.1 1.1 18
4 20 46 15 1.2 1.2 22
5 35 30 14 1.0 1.1 16
6 25 25 18 1.2 1.2 20
7 22 28 10 1.3 1.1 16
8 34 18 8 1.1 1.2 18
9 28 34 15 1.3 1.1 20
10 18 20 16 1.2 1.2 15
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10.

Schemes to Task 2.7
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Task 2.8. Based on the strength and stiffness criteria, select the cross-
section of the beam (calculation schemes).

For the loaded beam:

- determine the values of shear forces Q, bending moments M, and plot
their diagrams;

- from the strength criteria, determine the required dimensions
of the beam cross-section in three variants:

a) circular cross-section;

b) rectangular cross-section (h/b = 2);

c) I-beam cross-section.

Choose the most rational cross-section shape from the three variants
and justify your choice.

- For the selected cross-section, draw the diagrams of normal and shear
stresses. Using the appropriate failure hypothesis, determine the reduced
stresses for the given beam.

- Using the strength criterion, verify the stiffness of the beam with
the selected cross-section, given [f] = 0,001[; E = 2-10> MPa.

Table 2.6. Initial data for Task 2.8

Force Moment Continuous | Permissible
Var. P, of a couple load stresses a, b, c,
no kN of forces q, KN/m k, MPa m | m | m
M, KNm
1 15 30 8 200 2 3 1
2 14 20 6 150 3 2 2
3 15 15 5 180 1 4 1
4 20 16 10 220 2 4 1
5 15 20 7 160 3 2 2
6 25 25 8 200 3 1 2
7 20 15 10 160 4 1 1
8 14 18 8 180 3 1 2
9 20 30 5 200 2 4 1
10 18 20 6 150 3 2 1
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Schemes to Task 2.8
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2.6. Bending with torsion of round rods

General information

Shafts of various machines typically operate under the influence
of both bending and torsional stresses. When torque is transmitted
to the shaft via a pulley and belt drive, a pair of forces is generated: torsional
force and bending force. a similar scenario is observed in gear transmissions.
In most cases, shafts are bent in two planes rather than one.

If the belt drive is set at an angle (Fig. 2.24), the shaft is bent
in the horizontal plane by the projection of the belt tension forces onto
the horizontal axis, and in the vertical plane by the weight of the pulley
and the projection of the belt tension forces onto the vertical axis.

Bearings supporting the shaft are considered in calculations as spatial
hinge supports, i.e., connections that prevent linear movements but do not
interfere with the rotation of fixed sections of the shaft.

In the case of simultaneous bending and twisting, the bending moment
M, and the torque M; are taken into account for the cross-section of the shaft.

Shafts are wusually made of medium-carbon structural steel.
Construction calculations are based on failure hypotheses.
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Examples of calculation

Example 2.15. Three pulleys are mounted on a shaft. The pulley with
a diameter D1= 0.6 m and an inclination angle a; =45 °rotatesatn =500 rpm
and transmits a power of N = 75 KW. The other two pulleys have the same
diameter D; = 0.4 m and the same inclination angle a; = 45 °, each
transmitting a power of N/2 (Fig. 2.24).

Fig. 2.24. Shaft diagram to Example 2.15

Procedure:

- determine the moments applied to the pulleys based on the given
values of N (kW) and n (rpm);

- plot the torque diagrams Ms;

- given the moments and the specified pulley diameters D; and D:
determine the tension forces t1 and ¢z, acting on the pulleys;

- calculate the shaft loads, assuming the forces are equal to the three
peripheral forces;

- determine the bending forces acting in the horizontal and vertical
planes (without considering the weights of the pulleys and shaft);

- plot diagrams of the horizontal bending moments Mgh and vertical
bending moments My ;

- plot the diagrams of the total bending moments Mg;

-using the Ms and M; diagrams, identify the critical cross-section
and calculate the maximum computional moment Mcmp (according
to the appropriate failure hypothesis);

- select the shaft diameter d for k = 70 MPa.
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Initial data: a=1m; b=15m;, c=15m.

Solution
Wheel 1 - driving wheel, wheels 2 and 3 (of the same diameter) - driven
wheels. T3, T2 - tension of the belt on the driving wheel, t;= t; = T/2 - tension
of the belt in the driven part (Fig. 2.25).

Ly D, Elﬂ
B . n
i) LS | i 0

Fig. 2.25. Schematic of the drive shaft

1. Calculate the torques acting on the wheels using the given values of N

and n according to the formulas:
N N 75-10°

"30 50055
N/2 N/2 75-103/2
My =-12-"12_ = 716.56 Nm
2 L 3.14
30 50035

Plot the diagram of the computed torques on the shaft (Fig. 2.26, a).

2. Determine the values of the torques along the segments of the shaft
asthe sum ofthe moments on one side ofthe examined segment
in the computed shaft diagram (Fig. 2.26, a):

MAC = M, = 716,56 Nm,MSP = M, + M, = M; = 1433.12 Nm

Based on the obtained data, plot the torque diagram (Fig. 2.26, b).

3. Calculate the belt tensions t1 and ¢ acting on the wheels:

For wheel 1:

The torque of the belt drive is equal to the product of the difference
in tension forces and half of the pulley diameter:

M, = (Ty _tl)%: (2t —t1)%=%
then,
2M; 2-1433.12
b=D =" = 47N
For wheel 2:
M, = (T, — t2)72 = tzé)z
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then,
2M, 2-716.56
D, 04
4. Determine the belt contact forces on the shaft:
P, =T,+t, =3t, =10.75kN
P.=T,+t, =3t, =10.75kN
Pp =T, +t; =3t; = 14.37kN
5. Calculate the bending forces on the shaft in the horizontal plane

(neglecting the mass of the wheels and the shaft):
P =P, -cosa, =10.75 - cos 45° = 7.6 kN
PH =P;-cosa, =10.75 - cos 45° = 7.6 kN
PH = —Pp - cosa; = 14.33 - cos 45° = —10.13 kN
Plot the diagram of forces in the horizontal plane (Fig. 2.26 c).

Determine the support reactions:
SMg=0—-P-a+Pl -b—Pf-(b+c)+RE-(b+c+a)=0
Pf-a—Pg-b+Pg(B+c):7.6-1—7.6-1.5+10.13(1.5+1.5):665kN
b+c+a 1.5+15+1 ’
SMg=0-Pl(a+b+c+a)+RE(b+c+a)—Pil(ct+a)+Pf-a=0
Pia+b+c+a)+Pl(c+a)—P)-a

b+c+a
_ 76-(1+15+15+1)—-76(1.5+1)—10.13-1

15+15+1

RE =

Ry =

=11.72kN

Verification:
Sy=0+P! —RE+ P —PH+RE=0+76-1172 + 7.6-10.13 + 6.65 = 0

6. Calculate the values of the bending moments Mg’ from the horizontal
forces:
Mg =P;-0=0Nm
Mg =Pi-a=76-1=76Nm
ML =P{{(a+b)—Rp-b=76(1+15)-1172-15=142Nm
M =Pil(a+b+c)—REf(b+c)+P c=
=7.6(1+ 1.5+ 1.5) — 11.72(1.5 + 1.5) + 7.6 - 1.5 = 6.65 Nm
Mgl = Pf-d=6.65-1=6.65Nm
Mjt =P{-0=0Nm
Based on the obtained results, plot the bending moment diagram
in the horizontal plane (Fig. 2.26, d).
7.Determine the bending forces on the shaft in the vertical plane
(neglecting the mass of the wheels and the shaft):
PY = —P, - sina, = —10.75 - sin45° = —7.6 kN
PY = —P; - sina, = —10.75 - sin45° = —7.6 kN
Py = —P,-sina; = —14.33 - sin45° = —10.13 kN
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Plot the diagram of forces in the vertical plane (Fig. 2.26, €).

Determine the support reactions:
YMg=0=P/-a—P{-b—P§-(b+c)+Rf-(b+c+a)=0

=Pl a+P{-b+Py(B+c) —7.6-1+7.6-15+10.13(1.5+15)

RY = 8.55 kN
E b+c+a 1.54+15+1
SMp=0;PY(a+b+c+a)—Ri(b+c+a)+Pl(cta)+P)-a=0
RV:PX(a+b+c+a)+Pg(c+a)+Pg-a:
B b+c+a
76-(1+15+15+1) +7.6(15+1)+10.13- 1
= = 16.78 kN
1.5+15+1

Verification:

Sy=0—P/ +R,—P{—PY+R{=0
-7.6 + 16.78 — 7.6 — 10.13 +8.55 = 0

8. Calculate the values of the bending moments Mg from the vertical
forces:
My, =—Py -0 =0kNm
Mg =—P{-a=-76-1=-76kNm
Mgc =-P{(a+b)+RS -b=-76(1+15)+16.78- 1.5 = 6.125 kNm
Mg =+Py-a=+855-1=855kNm
My =—P{-0=0kNm
Based on the obtained results, plot the bending moment diagram
for the vertical section (Fig. 2.26, f).
9. Calculation and preparation of the combined bending moment diagram Mj.
We determine the total bending moments Mg’ and Mg,’ in the shaft sections

based on the diagrams:

My = J()? + (M) i
M# = 0 kNm; ME = /(-7.6)% + (-7.6)% = 10.75 kNm
M¢ = /(-1.42)% + (6.125)% = 6.29 kNm
MP =/(-6.65)% + (8.55)% = 10.83 kNm
Mg = 0kNm
The diagram of the combined bending moments is shown in Fig. 2.26, g.
10. Identify the critical cross-section from the diagrams Ms and M;
and calculate the value of the maximum calculated moment according to the
appropriate strength hypothesis (Fig. 2.26, h).
The critical cross-section for the shaft is section D, where Ms = 1.433 kNm
and Mg = 10.83 KNm.
According to the Coulomb-Tresca failure criterion:
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Myeq = |MZ2 + M2 = V/10.83% + 1.4332 = 10.92 kNm

11. We determine the shaft diameter based on the strength criterion:
Mred

Ored = < k

a3 . : : :
where W = 7;—2 - the bending strength index for a shaft with a continuous

cross-section is, therefore:

d= 3\/32'Mcazc = 3\/32'10'92'103 = 0.1167 m

-k 3.14-70-106

From Table D.43, we adopt a shaft diameter d = 120 mm.
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Fig. 2.26 Shaft load charts
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and torsional strength conditions (Table 2.7, schemes below).

Individual tasks
(calculation)

Task 2.9. Determine the shaft diameter based on bending

Table 2.7. Initial data for Task 2.9

Var. | Scheme N, n, D1, D2, o1, o2,
am | bm | ¢,m

no no kW rpm mm | mm | deg | deg
1 7 10 100 0.5 1 1.5 600 | 400 30 30
2 3 75 600 0.5 2 1 800 | 650 45 45
3 5 80 800 1 2 1 1000 | 600 30 45
4 12 100 | 1000 1 2 0.5 | 1200 | 800 45 30
5 9 80 900 1 2.5 1.5 | 1400 | 700 45 60
6 2 70 700 0.5 2.5 1 1200 | 800 60 30
7 1 85 900 0.5 2 1.5 800 | 500 30 45
8 4 95 1000 1 2.5 2 1000 | 800 30 30
9 6 75 800 0.5 1.5 1 800 | 600 60 45
10 7 40 300 1 2 1.5 800 | 500 45 45
11 10 60 600 0.5 1.5 1 850 | 650 30 45
12 8 70 900 1 2 1.5 | 1200 | 900 60 45
13 7 80 1000 0.5 2 1 850 | 550 30 60
14 3 90 800 0.5 1.5 1 800 | 450 30 30
15 5 70 600 0.5 1.5 1 1200 | 800 60 30
16 2 80 900 1 2 1.5 | 1300 | 900 30 45
17 9 100 | 1000 0.5 1 1.5 | 1000 | 600 30 30
18 12 75 900 1 2 1 1000 | 700 45 30
19 1 40 500 0.5 2 1.5 | 1000 | 800 30 45
20 8 50 400 0.5 1 2 600 | 300 30 60
21 11 80 900 0.5 1 1.5 600 | 400 30 45
22 10 65 700 1 3 2 1200 | 900 30 45
23 7 75 800 1 2 1.5 | 1000 | 700 45 30
24 6 50 500 0.5 2 1.5 | 1200 | 800 30 60
25 11 100 400 0.5 1 1.5 | 1000 | 700 45 60
26 5 50 700 1 3 2 1200 | 400 30 45
27 2 60 800 0.5 2 2.5 | 1300 | 900 45 30
28 9 75 750 0.5 2 1.5 900 | 600 60 60
29 12 85 850 1 3 2 800 | 500 45 30
30 1 90 900 1 2 1.5 900 | 600 30 30
31 8 120 | 1200 3 2 1200 | 800 45 30
32 7 140 | 1400 0.5 2 1 1400 | 900 30 30
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Var. | Scheme N, n, D1, D2, o1, o2,
am | bm | ¢, m
no no kW rpm mm | mm | deg | deg
33 5 150 500 0.5 1 1 1000 | 800 45 60
34 6 65 600 0.5 1.5 1 800 | 500 30 45
35 4 55 450 0.5 1 1.5 800 | 500 45 45
36 2 90 900 0.5 2 1 900 | 500 30 60
37 12 120 | 1200 0.5 2.5 1 1200 | 900 45 45
38 1 100 | 1000 0.5 1.5 1 1000 | 800 60 45
39 11 90 900 1 3 2 900 | 600 60 45
40 8 80 900 0.5 1 1.5 600 | 400 30 45
41 3 100 400 0.5 1 1.5 | 1000 | 700 45 60
42 4 50 400 0.5 1 2 600 | 300 30 60
44 6 65 560 0.5 1.5 1 700 | 500 45 45
45 7 70 700 0.5 1.5 1 700 | 500 60 45
46 9 90 1000 1 2 1 1000 | 800 45 45
47 2 120 | 1200 0.5 1.5 1 1200 | 600 45 45
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Schemes to Task 2.9
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2.7. The strength of compressed rods

General information

Constructions and their elements can be destroyed due to the loss
of the original elastic equilibrium state — loss of stability. The length
of a compressed rod significantly impacts the nature of the damage. So-called
"stubby” rods fail due to loss of strength; the only deformation type
is compression.

As the length of the compressed rod increases, a loss of stability occurs,
manifesting as a transition from a straight form of equilibrium to a curved
one. Due to the curvature ofthe axis in the rod, both compressive
and bending deformations occur. This happens suddenly when the load
on the rod increases slightly, and the stress level is low enough that the
strength has not yet been exceeded.

The stress at which acentrally compressed straight rod loses its
stability can be much less than the tensile strength of the material from
which it is made. When the rod loses its straight shape, additional bending
stresses appear in its cross-sections, leading to its failure. Therefore, after
calculating the strength, the compressed rod must be checked for stability,
and if necessary, assessed for stability.

Bending caused by an axial force is referred to as longitudinal
bending.

The compressive force at which arod may lose stability is known
as the critical force (F.).

Equilibrium can be stable, unstable, or neutral (Fig. 2.27).

The value of the critical force (Fc) for a compressed rod of length [

is calculated using Euler’s formula:
n’E * Jmin
=
where E - longitudinal modulus of elasticity of the rod;
Jmin— minimum axial moment of inertia of the rod's cross-section;

4 — length reduction factor (depends on the method of the rod's end
conditions).
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Fig. 2.27. Types of bar equilibrium

The values of the coefficient u are selected from the relevant tables.
Some cases are shown in Fig. 2.28.

F F F F F

| AP S T

7777 77777 7777 77777

p=10 n=20 u=05 p=0,7 n=10

Fig. 2.28. Values of y for selected cases

To ensure the stability of a compressed rod with acertain safety
margin, the following conditions must be met.
F<[F], if [F]="2,

where n - safety factor.

Critical stresses. Slenderness of the rod
Stability condition in terms of stresses:

o e &
cr A
The critical stresses oc-are calculated using the formula:
m2E . ul
Ocr = 320 if A= )

Imin
A - slenderness of the rod (characterizes the stiffness of the cross-
section);
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i= /’“‘T - the smaller of the radius of inertia of the rod's cross-section

(geometric characteristic of the cross-section);
A - cross-sectional area of the rod.

Euler's formula can be applied provided that the critical stress does not
exceed the material's proportional limit:
o < oy Namely o, = = = ’f—f <R,

Typically, the condition for applying Euler's formula is expressed

by the inequality:
A= i = 52,

where Aim - limiting slenderness of a rod made of a material.

In contrast to the slenderness ofthe rod A, which is a geometric
characteristic, the limiting slenderness Aim depends solely on the physical
and mechanical properties of the rod material and does not depend on its
dimensions.

For a rod made of steel S215 (E=2,1- 105> MPa, oy= 200 MPa):

_[3.142-2-105 _ 100
fim = 200 -

This means that if a rod made of steel S215 has a slenderness of 100,
applying Euler's formula to calculate F. and o will result in an incorrect
outcome.

From practical experience, stable equilibrium phenomena can also
occur at stresses exceeding the proportional limit.

Jasinski F.S. conducted experimental studies on the stability of rods
beyond the proportional limit and derived an empirical formula for critical

stresses dependent on the slenderness of the rod:
O = a—bA+ ch,
where a, b, c - empirical coefficients that have the dimension of stress.
For deformable materials, it is most often assumed that ¢ = 0,
simplifying the formula to:
O, =a—DbA
These formulas apply to rods whose slenderness falls within the limits:
Ao < A< Ayim)
where Ao - slenderness at which o« equals the ultimate stress Giim.
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For adeformable material, cim is equal to the yield strength R,
and for an undeformable material, it is equal to the compressive strength R..
For slenderness A < Ao ocr = Olim, and in this case, the rod's strength should
not be checked.

Values of empirical coefficients and slenderness Ao and Aiim for some
materials are presented in Table 2.8.

Table 2.8. Empirical coefficient values and slenderness for selected materials

Material a, MPa b, MPa ¢, MPa Ao Mim
Steel S215 310 1.14 0 61 100
Steel S275 350 1.15 0 57 90
Duraluminum A7 406 2.83 0 30 53
Castiron 776 12 0.053 10 80
Pin 29.3 0.194 0 - 70

The critical force is determined by the stresses o as for axial
compression of the rod:
For = 00" A
Cross-sectional radius of inertia
In calculations of stability, it is sometimes convenient to use the radius
of inertia p:

— imin — \/]min
VA A

The radius of inertia characterizes the shape of the cross-section and
does not depend on its dimensions. The larger the p, the greater the load-
bearing capacity of a compressed rod with the same cross-sectional area.
Table 2.9 presents the values of p for some cross-sections.

Table 2.9. Values of p for certain sections

Cross-section p
Tubular (c = 5 = 0.95 + 0,8) 1.246 + 0.602
Tubular (¢ =0,7 = 0,5) 0.482 + 0.364
Angle bracket 0.5+0.3
[-beam 0.41 +0.27
C-bar 0.41 +0.29
Square 0.289
Circular 0.283
Rectangle 0.204
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Calculations of Stability Using the Stress Reduction Factor

There is a relationship between the allowable compressive stress k and
the allowable stability stress ki::

kst = (pk)
where ¢ - the reduction factor for the allowable stress in a compressed rod.

The values of the reduction factor ¢ have been calculated for rods
made of different materials, depending on their slenderness. Table 2.10
presents these values.

Table 2.10. Values of ¢ for selected materials in relation to slenderness

o Steels

£ | Steelss215 _ 17Mnd,

< and S235 Steel S275 Castiron Wood 15GA,

Ej 13Mn6,

v S355]2
Mle [ Mo o [ o | ANO | 9 |AVe| o |Ae
0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0
10 0.99 10.05 0.98 | 10.10 0.97 10.15 0.99 10.05 0.98 10.10
20 0.97 20.31 0.96 | 2041 0.91 20.97 0.97 20.31 0.95 20.52
30 0.95 30.78 0.93 | 31.11 0.81 33.33 0.93 31.11 0.92 31.28
40 0.92 41.70 0.89 | 42.40 0.69 48.15 0.87 42.88 0.89 42.40
50 0.89 53.00 0.85 | 54.23 0.57 66.23 0.80 55.90 0.84 54.56
60 0.86 64.70 0.80 | 67.08 0.44 90.45 0.71 71.21 0.78 67.93
70 0.81 77.78 0.74 | 81.37 | 0.34 | 120.15 0.60 90.37 0.71 83.08
80 0.75 92.38 0.67 | 97.74 | 0.26 156.9 0.48 115.5 0.63 100.8
90 0.69 108.4 0.59 | 117.2 0.20 201.3 0.38 146.0 0.54 122.5
100 | 0.60 129.1 0.50 | 1414 0.16 250.0 0.31 179.6 0.46 147.4
110 | 0.52 152.5 0.43 | 167.8 0.25 220.0 0.39 176.1
120 | 0.45 178.9 0.37 | 197.3 0.22 255.8 0.33 208.9
130 | 0.40 205.6 0.32 | 229.8 0.18 306.4 0.29 241.4
140 | 0.36 233.3 0.28 | 264.6 0.16 350.0 0.25 280.0
150 | 0.32 265.2 0.25 | 300.0 0.14 400.9 0.23 312.8
160 | 0.29 297.1 0.23 | 333.6 0.12 461.9 0.21 349.1
170 | 0.26 333.4 0.21 | 371.0 0.11 512.6 0.19 390.0
180 | 0.23 375.3 0.19 | 413.0 0.10 569.2 0.17 | 436.6
190 | 0.21 414.6 0.17 | 460.8 0.09 633.3 0.15 490.6
200 | 0.19 458.8 0.15 | 5164 0.08 707.1 0.13 555.1
210 | 0.17 509.3 0.14 | 561.3
220 | 0.16 550.0 0.13 | 610.2
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Considering the coefficient ¢ the strength condition takes the form:
o= g <@k
The stability condition allows for two types of calculations
for compressed members - verification and design calculations. Additionally,
it enables the calculation of the permissible load on the member.

Verification calculations for compressed rods

The stresses in the rod are calculated using the formula:

F
7=

Based on the known dimensions and shape ofthe cross-section,
the smallest axial moment of inertia is determined, and the minimum radius

of gyration is calculated:
i = ]min
A

Slenderness of the rod: 1=

lmin

Determine the value of the factor of stress reduction ¢ from Table 2.10.

Calculate the permissible stress to ensure stability:
kse =¢ -k
Check the condition:

F
O-:ZSkSt:(Pk

Design calculations for the stability of compressed rods
using the coefficient ¢
In design calculations, the task is to select the shape of the cross-
section, the area, and the rod's material based on the rod's known load
and length. This condition contains two unknown values ¢ and A. Therefore,
rods are calculated using an iterative approximation method.
1. For the first approximation, the value of the coefficient ¢ is assumed

to be:
@, =0.5+0.6
2. Calculate the cross-sectional area of the rod:

A > F
1k

3. Assume the cross-sectional shape and calculate the minimum radius
of inertia for the known area:
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= ]min
min A

4. Calculate the slenderness based on the known end restraints of the rod:
l
i:in
5. Knowing the effective slenderness A from Table 2.10, select the value
of the coefficient ¢].
6. Calculate the permissible stability stresses:
o =1k
7. Compare the calculated stresses in the rod o, ==

1=

and the permissible stability stresses k:
Ocalc — kst

kst
where 1 - the accuracy of the calculations (usually the accuracy n = + 0.05

or £ 5 %).

<n =005

8. If the condition from step 7 is satisfied, the design calculation task
is completed. If the condition is not met, repeat the entire calculation

for a new value ¢, = "’12*"’ until the condition from step 7 is met. Typically,

three to four iterations are required to satisfy the condition n = £0.05.
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Examples of calculations

Example 2.16. Check the stability of a rod with a length of [ = 2.5 m,
an outer diameter D = 76 mm, and an inner diameter d = 64 mm. The rod
is supported on one end and fixed on the other end. The compressive force
F =150 kN, the material is chrome-molybdenum steel (k- = 540 MPa,
E = 2.15-10° MPa), and the stability safety factor ks = 3.5.

Solution
Determine the critical slenderness of the given material:

o n?E  [3.142.215-1011
bm = IR, 540106

To determine the slenderness of the rod (A) calculate the axial moment
of inertia of its cross-section:

n 3,14
Jmin =] =57 (D* = d*) = == (76* — 64") = 81.4- 10*mm* = 81.4- 10~ mm*
Cross-sectional area:
n 3.14
A=7(D*—d*) ==—(76" - 64*) = 1319 mm’

The radius of inertia of the cross-section:

, - 81.4-10%
lnin =1= \] Zm = 1319 = 24.8 mm

Calculate the slenderness of the rod, assuming the coefficient ¢ = 0.7:

_ul_07-25-10°

i 24.8
Since the slenderness of the rod is greater than the critical slenderness
(A > Aiim) the critical force is determined using Euler's formula:
2. i 2., . 11, . -8
- ﬂ(j- l];m _314 2.1(50.71?2.5;1.4 10 10N = 564 kN

Determine the stability safety factor and compare it with the specified

=70.7

value [kst]:

e

k., = t—564—376>35
ST F 150 '

Conclusion: The stability of the rod is ensured.

Example 2.17. Check the stability of a steel column loaded as shown
in Fig. 2.29, with a section of an I-beam [20, a height of 1.5 m, and fixed

144



atone end, if: F = 160 kN, kst = 1.5, and the material of the column with S215
Z 0e = 240 MPa, n = 1,045.

Solution
F From Table D.59 for the I-beam I 20,
Yy take the geometric characteristics

AL _{A A-A required for the calculations:
A=268-10"2 m?

Jy = Jmin = 115-1078m*

imin = iy = 2.07-107*m

Calculate the slenderness of the column,

assuming the coefficient = 2 (Fig. 2.28).
o 2-15
imin  2.07-1072

Calculate the values of the coefficient ¢ using the linear interpolation
formula:

Fig. 2.29. Diagram of column to

Example 2.16 A= 145

(]
A=A
A=)

Since A = 145 select the value from Table 2.4 (material of the column -
S215)

Y =1 —

A=140  ¢1=0.36
A2=150 02 = 0.32

0.36 — 0.32
Q145 = 0.36 — m(145 - 140) = 0.34
Calculate the permissible stresses for steel S215:
Ry, 210
k=—==——=230MPa

n  1.045
If the safety factor n is not available, use the values from Table D.2.

Calculate the permissible stresses:
kg = @ -k = 0.34-230 = 78.2 MPa
Calculate the applied stresses in the steel:
F 160-10°
0= =5—e—53="597 106Pa = 59.7 MPa
Since the stresses in the column are less than the permissible stresses
59.7 MPa < k = 78.2 MPa

the stability of the column is ensured.

Calculate the critical force for the given column. Since the slenderness
of column A =145 > Aiim = 100 use Euler's formula to determine G:
n2E 4 3.14%2.2.1-10%
A? 1452
The safety factor of the column:

26.8-107% = 2.64 - 10°> = 264 kN

E:r:O-cr'A:
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k —F‘*—264—165
SSTF T 160

Since kst= 1.65 > 1.5, the stability of the column is ensured.
Conclusion: The stability of the column is ensured.
Example 2.18. Determine the permissible load [F] on arod (Fig. 2.30)

consisting of two angles (110 x 70 x 8) with /=3.4 m; k=190 MPa; 6 =12 mm;
material - S275 steel.

[F] Solution
o S A-A
EE va Using the stability condition
Y24 b for the permissible load [F],
A A ~ZZF v.rrrrrd
- r —f g we have:
of Hol f [0 x [Fl=¢ k-A
‘A To calculate ¢ , it is necessary
i A Ysf to determine the slenderness 2,
A -—

which in turn requires calculating
Fig. 2.30. Beam bar to Example 2.17 the minimum radius of inertia
for the given cross-section of the rod.

Using data from Table D.61 for a single angle 110 x 70 x 8 (mm):
Jx, =172 cm*; J, = 54.6 cm*
Ay =139 cm?, x, = 1.64 cm
Concerning the principal central axes xoy of the cross-section, we have:
Jx = 2], = 2-172 = 344 cm*
Jy=2" []y1 + (%o +§)A1] = 2-[54.6 + (1.64 + 0.6)-2-13.9] = 249 cm*

Since J, < Jx, the minimum radius of inertia is:

] ] Iy 249 5
imin = 1y = 2A1= 2.13.9=2.99cm=2.99~10 m

Slenderness of the rod:

w134

i 299102
Given that A = 114 assigns the value from Table 2.10 (material

of the column - steel S275).

A= 114

A, = 110; @, = 0.43
A, = 120; @, = 0.37
0.43 —0.37
120 — 110
Permissible value of the force:

¥114 = 0,43 — (114 — 110) = 0.406
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[F]=0.406-190-10%-2-13.9-10"* = 2144.5- 102 N = 214.45 kN

Example 2.19. For acolumn created oftwo channel sections
(Fig. 2.31) select their dimensions and the distance ¢ using the stability
condition of the column concerning the principal axes of the cross-section
with:
F=400KkN, [ = 6.6 m, for material S235 R. = 260 MPa, n =1,18.

F Solution

y A-A A liarity of th ign lumn

o — .pecuatyo.t edesge.dcou.
Vi is that concerning the principal axis x,
yl:ﬂ < 422 the moment of inertia of the section
~ Ar _fA depends only on the dimensions
oy o o, — of the channel sections, whereas
i concerning the axis y, the moment
Y | — O | of inertia  depends on  both

the dimensions of the channel
Fig. 2.31. Column scheme to Example 2.18 sections and the distance & between
them, i.e.
Jx =2, Jy =2()y, +a%4),
where A - cross-sectional area of a single C-bar;
a = 9/2 - centroid coordinates for the given axis.
Then, from the stability condition of the column in the two principal
planes, we formulate the equation: jx = jyor2j,, =2(J,, + a®4), from which

a= I]xl ;]yl

Determine the permissible stress for S235 steel

k—Re—Zlo—ZZOMP
“Th T 118 a

If the safety factor n is not available, use the values from Table D.2.

Select the dimensions ofthe channel sections using an iterative
approximation method. Assume an initial approximation ofp; = 0.5
and calculate the cross-sectional area of the column based on the stability
condition in the yoz plane, where the moment of inertia depends only on

the type of C-bar:

F 400 - 10° - ,
Az > >36.36-10"*m? = 36.36 cm
@1k = 0.5-220- 106
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Since the column consists of two C-bars, the calculated cross-sectional

area of a single channel section should satisfy the condition:
Ay = % > 18.18 ~ 18.2 cm?
From Table D.58, select the C-bar C 16 and list its characteristics:
A =18.1cm? i, = 6.42 cm

Additionally, Comment that for acolumn consisting of two channel
sections, the radius of inertia concerning the x-axis will be equal to the radius
of inertia of a single channel section because:

. 2] J
i = /2—;1 = ’% = 6.42 cm

Calculate the slenderness of the column in the plane yoz:
Lkl 0766
iy 642-1072
From Table 2.10, find the corrected value of the coefficient ¢; (material
steel S235):

=7196 = 72

1=70,¢ =0.81,
1 =180,¢ =0.75
Then, for A = 72 we have:
0.81—0.75
10
Since ¢, and ¢; differ significantly, perform calculations in the second

approximation by assuming:

@) =0.81— (72 — 70) = 0.798

0.5+ 0.798
Pr=—7—= 0.65
Calculate the cross-sectional area of the column and the cross-sectional
area of a single channel section:

103
A> 201 > 3797-107*m? = 28 cm?, A; =2 = 14 cm?
0.65-220-10 2

From Table D.58, select C-bar C 14 and take its characteristics:
A =15.6 cm?, iy, = 5.6 cm
Calculate the slenderness of the column:
p-l  07-66
i, 56-102
Calculate the corrected values of the coefficient ¢, (material - S235 steel):
1=80,¢ = 0.75,
1=90,¢ = 0.69
Then, for A = 82.5 we have:

@5 =0.75 —

A= 82.5

0.75 — 0.69
10
Since @3 >> @2, proceed to the third approximation:

(82.5 — 80) = 0.78
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0.6 +0.78

93 = ————=0715
A> 400 107 > 25.43 - 10~*m? = 25.43 cm?
=0.715-220-106 = -~ me = coascm

25.43
Ay = —— = 12.7cm?
From Table D.58, select C-bar C12, for which:
A =133 cm?, iy, =478 cm
Calculate the slenderness of the column:
p-l  07-6.6
i, 478 102
Calculate the corrected values of the coefficient ¢35 (material - steelS235):
1=90,¢ = 0.69
A =100,¢ = 0.60
Then, for A = 96.55 we have:
0.69 — 0.60
10
Check the fulfilment of the strength condition in the third approximation.

To do this, calculate the stresses in the rod and the permissible stresses:
ke'" = % -k =0.68-220 = 149 MPa

_F  400-10°

S 2-A 2-133-107*

By comparing ¢ and ks””” we determine that the excess in the column is:
150.4 — 149.6

T=""1496
It follows that the strength condition of the column in the yoz plane will be

satisfied if it consists of two C-bars C12.
After determining the dimensions of the channel sections in one plane,

A= = 96.55

@5 =0.69 — (96.55 — 90) = 0.68

= 150.4 - 10® = 150.4 MPa

g

-100% = 4+0.53%< [5%)]

calculate the size of the spacing 0 in the xoz plane. From the Table D.58, select
the necessary additional data:
Jx, = 304 cm*; Jy, = 312 cm*

We calculate the distance 6 between channel sections of the column:

5= 20 <2 ]x1—1y1_2 304—31.2_906
A= 4 133 0o

Answer: According to the condition for equal column strength in two
planes, the column should be constructed from two C-bars C12 spaced

at a distance of 6 = 9.06 cm.
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Individual tasks
(calculations)

Task 2.10. Determine the dimensions of the compressed steel rod
section and the distance ¢ based on strength requirements, by calculating
the factor ¢ (Fig. 2.32, Table 2.11).

F F F F F

Bl e

B
7&7 77777 77777 777 77777
u=10 wu=20 p=05 p=07 p=10
a b c d e
Fig. 2.32. Beam schemes to Task 2.10
Table 2.11. Initial data for Task 2.10

Var. Fixing Compressive Length

o Scheme sc.heme 1) force F, kN of the rod Steel
(Fig. 2.32) I, m

1 2 a 280 3.0 S215
2 8 b 300 4.8 S275
3 1 c 450 5.0 S215
4 3 b 350 5.5 S235
5 5 c 350 3.6 S235
6 9 a 400 5.0 S215
7 10 d 200 2.8 S275
8 4 b 350 3.0 S235
9 6 c 260 3.6 S215
10 11 e 400 6.5 S275
11 15 b 500 4.8 S215
12 7 a 360 2.8 S215
13 4 c 420 4.8 S275
14 15 e 280 3.0 S215
15 6 d 340 2.8 S235
16 13 a 380 4.8 S235
17 12 b 280 2.5 S215
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Var. Fixing Compressive Length

Scheme scheme p of the rod Steel
no i force F, kN
(Fig. 2.32) I, m

18 9 c 450 2.8 S275
19 7 d 380 5.8 S215
20 1 e 360 4.0 S275
21 5 d 300 3.0 S235
22 15 c 550 3.8 S215
23 2 s 380 3.5 S235
24 5 e 380 2.8 S275
25 10 b 280 2.6 S215
26 3 d 350 3.5 S235
27 8 a 400 4.0 S215
28 14 e 340 4.8 S275
29 9 c 420 3.0 S235
30 1 b 400 3.6 S215
31 13 d 370 5.0 S235
32 8 b 430 2.8 S275
33 7 e 340 2.8 S275
34 12 c 360 3.5 S235
35 14 a 300 3.6 S215
36 3 b 440 3.0 S275
37 4 e 650 6.0 S215
38 15 d 380 2.5 S215
39 9 a 420 5.0 S235
40 5 c 360 3.8 S275
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Schemes to Task 2.10
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CHAPTERIIII
MACHINE PARTS

3.1. Calculation of welded joints

General information

Welded joints are permanent connections.

Welding - the process of obtaining apermanent joint through
intermolecular interaction forces, as aresult of either general or local
heating or pressure.

Of the many different types of welding, electric arc welding, resistance
welding, and gas welding are the most commonly used in mechanical
engineering.

Types of welded joint

Welded joints - joints formed by welding.

Welded joints are strong and tight.

Depending on the construction (relative position ofthe parts
to be joined), a distinction is made between butt, corner, lap and overlap
joints.

The basic types of welded joints made by arc welding are standardised.
Welded joints made by manual arc welding are governed by EN I1SO 15614,
butt and fillet welds can be used in welded joints.

Basic calculation formulae

The main criterion for weld performance is strength. The calculation
of strength is based on the assumption that the stresses in the weld
are distributed uniformly along the length as well as the cross-section.
In general form, the strength condition for butt and fillet welds can be
written as:

0 <k
T < k¢

where k,, - allowable tensile stress in the butt joint, MPa;

k;— allowable shear stress of fillet weld, MPa.

The butt welds (Fig. 3.1, a) are calculated in the cross-section of the parts
to be joined without taking into account the weld thickness.
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Fig. 3.1 For the calculation of welds:
a - there are tensile forces in the butt welds;
b - in fillet welds with machined
tensile forces occur at the edges;
c - there are tensile forces and a bending moment in fillet welds

Bond tensile strength condition (compression) (Fig. 3.1, a, b)
o= g < Kr(oy
where F - load, N;
s — thickness of welded elements, mm;
[ - bond length, mm;
k) — permissible stresses for the butt weld in tension (compression),

MPa.

Strength condition of a weld loaded simultaneously with a tensile
force and a bending moment (Fig. 3.1, ¢)
F M, F 6M, ,
G=§+WSZE+FSI{T
Fillet welds are calculated in shear. The failure of fillet welds takes
place at or near the smallest cross-section passing through the bisector

of the right angle (Fig. 3.2).
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Fig. 3.2. Diagram of a fillet weld and the forces involved

Calculation of flange welds
a) loaded by axial force (Fig. 3.3, a)

I1<50K __I —>{—>

a b

Fig. 3.3. Forces occurring in a flange weld:
a - loaded with axial force; b - loaded with axial force and bending moment

Strength condition

=< k!
2l[)’k_kt

or the permissible stress on the weld
F < 21Bkk,

T

where fis a coefficient that characterises the depth of remelting;

k - weld root, mm. The weld fossa (k) is taken as the smaller fossa
of the triangle inscribed in the weld cross-section. If the thickness of the
parts to be welded is the same, the weld bead is equal to the thickness
of the parts to be joined, k =5. When the thickness of the parts to be
welded is different, the weld bead is equal to the smallest thickness
of the part. For technological reasons, the minimum value
of the weld bead is 3 mm, the maximum is 20 mm;

[ - weld length, mm (Ix <50 + 60k);

k; - allowable tangential stresses of fillet weld, MPa;

Pkl - design weld cross-section, mm?,
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For multi-run automatic and semi-automatic welding and manual
welding B = 0.7, for two- and three-leg semi-automatic welding £ = 0.8,
for automatic welding with the same parameters £ = 0.9 and for single-leg
automatic welding = 1.1;

b) loaded with a bending moment (Fig. 3.3, b)
For relatively short welds (I < b), the strength condition,

M
=M <k
Bkip — &

where b - the width of the plate, mm.

T

Calculation of overlap welds
a) axially loaded (Fig. 3.4, a)
Strength condition

_ F
Bkl

where [ is the length of the weld, mm, if the weld is made from one side and 2!/
if the weld is made from two sides.

T < ki,

r A VJ—I—F>
= | 4
- (&
| |
a b

Fig. 3.4 Diagram of forces and moments in an overlap weld:
a - loaded with axial force; b - loaded with bending moment

b) loaded by a bending moment (Fig. 3.4, b - without F)

Strength condition
_M_eM .,
/sznz - section strength index of the seam.

T

where w,,. =

c) loaded with axial force and bending moment (Fig. 3.4, b)

Strength condition
6M F

-t — <
Tk g S

ke
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Calculation of combination welds
Combination welds are used when a simple angle weld (butt, fillet,
flange) does not provide the required weld strength.
Combination welds are calculated based on the principle ofload
distribution in proportion to the load capacity of the individual joints.
a) Calculation of the combined weld under axial force (Fig. 3.5, a)
Strength condition

T ki

" Bkt o)
b) calculation of the combined moment weld (Fig. 3.5, b - without F)

Strength condition
M

"= Bk, + BRE/6) =

ke

Fig. 3.5. Distribution of forces in combined welds:
a - loaded by an axial force;
b - loaded by bending moment

c) calculation of combined welds loaded by axial force and bending
moment (Fig. 3.5, b)

Strength condition

T=1Ty+71 <k
M

Ty =
M Bkl le, + BKIZ,/6)
F

" B2+ 1)
where I, Iz — joint and butt joint lengths, mm.

TF

When loading non-symmetrical profiles, for example, an angle iron
(Fig. 3.6), the load passes through the centre of mass of the profile. When
the welds are uniformly loaded, their length is inversely proportional
to the distance of the weld from the line of incidence of the load.
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So
L _a
L=
Since the total length of the welds L=1[; +I;, then
b
el T
From the equation of statics, the load on the hinges follows:
a b

Sl

a+tb’ F=F a+b
For an equilateral angular profile, it can be roughly assumed that F1 =0,7F

and F2 =0.3F, then from the strength condition the length of the welds is:
Fy F,

F1=F

l:—' =
V7 Bkl * T Bkk!

Fig. 3.6. Flange welds in asymmetric member joints loaded with axial force

When the fillet weld is loaded with atorque (welded gears, pulleys,
sprockets, couplings, drums, shafts, etc.), the strength condition will take

the form of the following. (Fig. 3.7, a), the strength condition will take the form:
2T
Bhd? ks
When the fillet weld is loaded with a torque (Fig. 3.7, b), and bending,
the strength condition will take the form:

T= /T§+T§Sk£,

2T My 4M,

where 7, = 2725 75 = e ™ B

NNANNNNN

M

ANANANNN

M,

a b

Fig. 3.7. Calculation scheme of a fillet weld:
a - load of the flange weld in torque;
b - load of the flange weld in torsion and bending moment
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The strength condition for spot welded joints made by arc welding

(Fig. 3.8) will take the form:

_AF
e
where z is the number of welding points; and i is the number of shear planes.

For the structure in Fig. 3.8,a-z=4,i=1;inFig.3.8,b-z=2,i=2.

Welded point diameter:

d=12s+4 mm ats< 3 mm;

d=1.5s+5mmats>3 mm.

The distance between the edges of t1 and t. is normalized taking into
account technological and energy factors. They usually take

t=3d; t; =2d; t, = 1.5d

A point connection is characterised by a high-stress concentration.
Therefore, it does not perform very well under varying loads. Stress
concentrations arise not only at the weld points but also in the parts
themselves in the weld zone.

Spot-welded joints are often used not as working joints that carry
the main load, but as bonding joints.

e )
F A 4N F
~ ' - /d e
\.\I ,;#
a LA 2
F o . F
ity
b h
F F

AR RN
IIIIITIIIIr v I N FB» " PIIIIFIIE_
S S TR NN NN RRNY

Fig. 3.8. Diagram of spot welding calculations:
a - overlapping;
b - with translation

For continuous contact welding (Fig. 3.9), the strength condition will take
the form:

!

T:HSkt

where b - width of welded joint, mm.
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(5+10)0

Fig. 3.9. Calculation scheme of continuous contact welding

The permissible stresses depend on the type ofwelding, type
of electrode, type of weld, the material of the workpieces and the nature
of the load. The permissible stresses under static loading are selected from
Table D.3.
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Examples of calculations

Example 3.1. Check the strength of a butt weld (Fig. 3.1, a) made with
an electrode type E34, E42, E42A, with a constant tensile force acting on it
F =65 kN, width of strands b =100 mm, thickness s =5, of strands S215 steel
with k=160 MPa.

Data: Searched for:
Electrode type o-?
E34, E42, E42A
F=65kN
b =100 mm
s=5mm
material - S215 steel
constant loading
Solution

1. Determine the permissible stresses for the weld, taking into account

that the load acting on the joint induces tensile stresses in the weld, from

Table D.3 for S215 steel and the given electrode types:
E34: k] = 0,75k, = 0.75- 160 = 120 MPa;
E42:k; = 0.9k, = 0.9- 160 = 144 MPa;
E42A: k. =k, = 160 MPa.
2. Check the strength condition
We assume b =1=100 mm.

N
=130 = 130 MP
sl 5-100 mm? a

The calculated values are compared with the permissible:

E34: 130 MPa > k,. = 120 MPa - condition is not met;

E42: 130 MPa < k;= 144 MPa - condition is met;

E42A: 130 MPa < k,= 160 MPa - condition is met.

Conclusion: The strength condition is fulfilled for connections formed via
electrode types E42 and E42A.

Example 3.2. Check the strength of alap butt weld (Fig. 3.10), made
by manual arc welding with an E50 electrode. The axial force F = 40 kN,
the weld was made on one side, plate thickness s1= 5 mm; s, =10 mm; material
of plates - steel S215 with k- = 160 MPa; plate width b1 =100 mm; b2 =400 mm.
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Data: S S Searched for:

F=40KkN ‘ /
b; =100 mm F
bz =400 mm
S1=5mm l
s2 =10 mm

material-S215 Fig. 3.10. Diagram for the calculation of
steel the butt weld to Example 3.2
k-=160 MPa

constant loading

Electrode type E50 /' 7 -7

|
be

Solution
1. Determine the permissible stresses for the weld.

Taking into account that the load acting in the weld induces tensile

stresses, from Table D.2 for S215 steel we derive the following.
ki = 0,6k, =0.6-160 = 96 MPa
2. Check the weld strength condition

Take the weld bead equal to the smallest thickness ofthe plate
k = s;=5 mm; we take the weld length | = b; =100 mm; for manual hatch

welding, the remelting factor f = 0.7.

F 40-103
Bkl 07-5-100
the condition is not met.

N ;
T= 114 —— =114 MPa > k, = 96 MPa
mm

Conclusion: the weld will not ensure the strength of the welded joint.

Example 3.3. Check the strength of the butt weld (Fig. 3.7, b), made
without edge treatment, performed by manual arc welding with E42
electrodes. The joint is loaded with torque T = 1500 Nm, the load is constant,
pipe diameter d = 273 mm, wall thickness s = 7 mm and pipe material C10

steel.

Data: Searched for:

Electrode type E42 -7
T=1500 Nm

d=273 mm

s=7 mm

material - C10 steel
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R. =220 MPa
constant loading
Solution

1. Determine the permissible stress for the weld.

In the case of a butt weld made without edge treatment, shear stresses
occur under torque.

For C10 steel, according to Table D.2, we take or = 210 MPa
and determine the allowable stress. Taking n = 1.5 (Comment to Table D.3),

we calculate the

k —Re—210—140MP
T n 15 a

From Table D.3 k, = 0.6k, = 0.6 - 140 = 84 MPa.

2. Check the strength of the weld.

Take the angular length of the weld equal to the thickness of the pipe
wall.

k=s=7mm

Take the angular length of the weld equal to the thickness of the pipe
wall £=0.7;

Moment in Nm is converted to Nmm

T = 1500 Nm = 1500 - 103> Nmm

2T 2-1500- 103 N
T Bkmd?  0.7-7-3.14-273%2 mm
the condition is met.

T > = 2.6 MPa< k, =84MPa

Conclusion: the weld will ensure the strength of the welded joint.

Example 3.4. Determine the permissible load that the lap joint can
withstand (Fig. 3.4, a), made by manual arc welding with E42 electrode, S215
steel strip material with k-= 160 MPa, weld made on both sides, plate width
b = 100 mm, weld made on both sides, plate width s; = 6 mm, s; = 8 mm.
Continuous load.

Data: Searched for:
Electrode type E42 [F] -7

b =100 mm

plate thickness

S1 =6 mm

Sz =8 mm
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k-=160 MPa
material - S215 steel
Solution

1. Determine the allowable stress for the weld.

Taking into account that the acting load in the weld causes shear
stresses using Table D.3 for S215 steel we determine:

k, = 0,6k, = 0.6 - 160 = 96 MPa

2. Determine the permissible stresses.

Determine the permissible stresses: k = s; = 6 mm; the length of the weld
is given by I=2b = 200 mm; for manual electrode arc welding, the remelting
factoris f=0.7.

From the strength condition = =<

[F] < k,Bkl=0.7-96- 6200 = 80640 N
Answer: [F] < 80640 N .

Example 3.5. Calculate the length of the combined weld (Fig. 3.5, a)
overlapped by manual arc welding with E42 electrodes, with constant load
F =78 kN, plate thickness s; = 5 mm, sz = 10 mm, steel strip material S15
with k- =160 MPa, plate width b; = 100 mm, bz = 150 mm.

Data: Searched for:
Electrode type E42 lgen - ?
F=78 kN
b: =100 mm
bz =150 mm
S1=5mm
sz =10 mm
material - steel S215
kr=160 MPa
constant loading
p=0.7
Solution
1. Determine the permissible stresses for the weld.
Taking into account that the load acting in the weld causes shear

stresses, from Table D.3 for S215 steel
k, = 0.6k, = 0.6 - 160 = 96 MPa
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2. From the strength condition we determine the length of the weld.

We predetermine the angular length of the weld equal to the smaller
of the two sheet thicknesses, i.e. k = s; = 5 and for manual arc welding,
we assume a remelting factor of.

From the strength condition t = % < k;, we have

F 78 - 103
Ygen 2 Gk =075 96
Answer: lgen > 232 mm.

= 232 mm

Example 3.6. Determine the length of the weld joint at the angle bar
75 x 75 x 8 (Fig. 3.11). Alternating axial tensile load F = 138 kN, cycle
characteristic R = -1. Manual arc welding with E50A. Angle and bevel
material S215 steel with k= 160 MPa.

Data: Searched for:
Angle 74 x 75 x 8 i k-2l -?
Electrode type E50A B —
F=65kN Sl e
R=-1 .
material - S215 steel
k=160 MPa
variable loading Fig. 3.11. Calculation scheme to
Example 3.6
Solution

1. To reduce the length of the overlap between the angle and the haunch,
we use a combined corner weld with a normal section.

From Table D.60, we extract the distance of the centre of gravity to the edge
from zp=21.5 mm.

2. Determine the permissible stresses for the weld.

From Table D.3 for angle welds under alternating load (Table D.3)

k. = y0.65k,
The coefficient taking into account the effect ofvariable load

is determined by the formula:
1

" (0.6K,; +0.2) — (0.6Ko; — 0.2)R
From table D.4 Ker =3.5 (less favourable option), then
1
T (06-35+02) —(06-35-02)-(-1)

|4

Y 0.23
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So
k, = y0.65k,. = 0.23 - 0.65 - 160 = 24 MPa

3. From the strength condition we determine the design length of all
welds.

The weld bead thickness is taken to be equal to the thickness of the angle
side

k=s5s=8mm
For manual electric arc welding, the remelting coefficient

B =07
From the strength condition
, F 65 - 103
T= W < k, we have [, = = 484 mm

Bkk, 0.7-8-24
4. Determine the dimensions of the welds:
a) assume a butt weld length equal to the width of the angle bracket
l,=b=75mm
b) the length of the side weld (using the lever principle)
ly =lgen — lc; = 484 — 75 = 409 mm
c) the length of the side weld (using the lever principle)

Z 21.6
lk2 = lkl? = 409- F =117.25 mm

then
lpr =l — lpp = 409 — 117.25 = 291.75 mm
Given the poor quality ofthe weld at the end and beginning,
we attribute:
lp, =130 mm; ly; = 310 mm < I, = 50 = 60k = 400 + 480 mm
The corner profile is often welded completely along the fitting contour.
Answer: l.; =75 mm; lxz = 130 mm; lkz = 310 mm.

Example 3.7. Calculate bracket and weld (Fig. 3.5, b) F = 10 kN,
M =8 kNm, static load, plate thickness s = 12 mm. Sheet material S215 steel.
Welding - manual with electrode E42.

Data: Searched for:
Electrode load E42 b-71y-?l-7?
F=10kN

M =8 kNm

material - S215 steel
static load
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Solution
1. From table D.3 we assume for S215 steel k-= 160 MPa.
2. Considering only the basic load (bending moment), we determine
the width of the cantilever from the strength condition. Convert

the moment values Nm into Nmm, hence M =8 kNm = 8-10* Nmm.

From the strength condition ¢ = ﬂ = <k, we have

2_
OC b

6M _ [6-8-10°
sk, | 12160 mm

Taking into account the F'load, we assume b =165 mm.
3. Check strength under total load
6M F 6-8-10° 10*
~5p2 T sh T 121652 T 12165
The strength condition is met.
4. Determine the permissible stresses for the weld.

From Table D.3

N
~152 — ol = 152 MPa< k, = 160 MPa

k, = 0.6k, = 0.6 - 160 = 96 MPa
5. Determine the dimensions of the weld
Acceptl, =b=165mm, k =s =12 mm.
Based on the strength conditions, we determine the length of the butt
weld in advance, only according to the main load.

6M — BkiZ,k, 6-8-10°—0,7-12-165%-96
cz = = = 33 mm
6Bkl ,k, 6-0.7-12-165- 96
Given the poor quality ofthe weld at the end and the beginning,
we ultimately assume a side weld length of I,= 50 mm.

6. Check the strength of welds after total load.

F 10*
= = =45N 2 = 45MP
U k@ L) 07 12(2 50+ 165) _ > N/mm > MPa
M 8- 106

Ty = ~ 75 N/mm? = 75 MPa

(Bllyl., + BkIZ,/6)  (0.7-12-50- 165 + 0.7 - 12 - 1652/6)
T=1Tr+Ty =45+75=80MPa< k, =96 MPa

Strength condition is met.

Answer: b= 165 mm; I, = 50 mm; I, = 165 mm.

Example 3.8. Calculate a spot welded joint (Fig. 3.8, a). Calculate a spot

welded joint (R = -0.5), F = 3 kN, plate thickness s = 3 mm, material - C10
steel (R.1 = 160 MPa).
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Data: Searched for:
Resistance spot welding Welded joint - ?
F=3kN
R=-0.5
material - C10 steel
R.1=160 MPa
variable loading
Solution
1. Determine the permissible stresses for the plate.

Assuming n = 1.5 (Table D.3) we calculate
R 160 o mp
T m T 15 4
2. Determine the coefficient, taking into account the variable load.
From Table D.4 Kes=7.5

1 1

= = =0.146
(0.6K.; +0.2) — (0.6K,; —0.2)R (0.6-7.5+0.2) — (0,6 - 7.5 - 0.2)(—0.5)

14

3. Determine the permissible stresses for the plate
k = vk, = 0.146 - 107 = 15.6 MPa
4. From the tensile strength condition we determine the width of the plate
F 3-103

=Sk 3.15p  otmm

We assume b = 65 mm.
5. Determine the dimensions of the joint:

a) the diameter of a pointd =1.2s +4=1.2-3 + 4 = 7.6 mm.
We assume d = 8 mm;

b) stept = 3d = 3 - 8 mm; distance between edges
ty, =2d=2-8=16mm; t, = 1.5d = 1.5-8 = 12 mm;
c) the number of points from the strength condition.
Determine in advance the permissible stresses for the welding points
taking into account the effect of the alternating load from Table D.3 we have
k, =y-0.6k, = 0.146 - 0.6 - 107 = 9.4 MPa
Take the number of points in two rows i =1
4F 4-3-103
T nd?k i 314-8294-1
Take the number of points in two rows z = 8.
6. Finally, we determine the width of the plate
b=3t+2t; =3-24+2-16 = 104 mm
We assume b = 105 mm.
Answer: b= 65 mm; t=24 mm; ti =16 mm; t2 =12 mm; z = 8.

6.35
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Individual tasks
(calculation)

Task 3.1. Check the strength of the weld (Fig. 3.5, a), which is subjected
to a tensile force, the weld was made on one side. The data to calculations
is shown in Table 3.1.

Table 3.1. Initial data for Task 3.1

Joint Sheet Top plate
Var. Force, kN |length, | thickness, width, mm | Electrode Steel
no mm mm
F [ S1 s2 b

1 70 100 5 6 80 E50A C10
2 60 120 6 8 100 E42 S215
3 50 115 6 6 120 E42A 09G2S
4 80 125 5 6 80 E50A C10
5 90 135 8 6 85 E42 S215
6 113 155 8 8 125 E42A 09G2S
7 143 145 8 10 142 E50A C10
8 135 165 6 150 E42 S215
9 132 185 8 6 130 E42A 09G2S
10 128 135 8 8 135 E50A C10
11 151 140 8 10 160 E42 S215
12 154 125 6 8 155 E42A 09G2S
13 130 135 8 6 165 E50A C10
14 140 100 8 8 180 E42 S215
15 150 120 8 10 170 E42A 09G2S
16 160 115 6 8 200 E50A C10
17 135 125 8 6 185 E42 S215
18 125 135 8 8 125 E42A 09G2S
19 140 155 8 10 120 E50A C10
20 165 145 10 8 185 E42 S215
21 155 165 8 8 210 E42A 09G2S
22 156 185 8 6 190 E50A C10
23 174 135 8 8 145 E42 S215
24 185 140 8 10 135 E42A 09G2S
25 166 125 10 8 165 E50A C10
26 138 135 8 8 155 E42 S215
27 144 100 8 6 145 E42A 09G2S
28 153 120 6 8 200 E50A C10
29 164 115 8 6 160 E42 S215
30 136 125 6 8 180 E42A 09G2S
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Task 3.2. Determine the length of the welds that connect the T-bar to the
base (Fig. 3.11). The data to calculations is shown in Table 3.2.

Table 3.2. Initial data for Task 3.2

Var. | Load kN |T-bar size, mm Electrode | Material Load character
no F bxbxs
1 70 45 x 45 x 3 E50A C10 Variables (R =-0.5)
2 60 50 x 50 x 4 E42 S215 Constant
3 50 56 x 56 x 5 E42A 09G2S Variables (R =-0.6)
4 80 63 x63x%x6 E50A C10 Constant
5 90 56 x 36 x 3.5 E42 S215 Variables (R =-0.7)
6 113 63x63x%x6 E42A 09G2S Constant
7 143 70 x 70 x 5 E50A C10 Variables (R =-0.55)
8 135 80x80x6 E42 S215 Constant
9 132 75x75%x 7 E42A 09G2S Variables (R =-0.58)
10 128 63 x 63 x4 E50A C10 Constant
11 151 80 x 80 x 5.5 E42 S215 Variables (R =-0.85)
12 154 90 x90 x 6 E42A 09G2S Constant
13 130 63 x40 x 4 E50A C10 Variables (R =-0.8)
14 140 70 x 45 x 4.5 E42 S215 Constant
15 150 75 x50 % 5 E42A 09G2S Variables (R =-0.9)
16 160 90 x 56 x 6 E50A C10 Constant
17 135 50 x 50 x 4 E42 S215 Variables (R =-1)
18 125 56 x 56 x 5 E42A 09G2S Constant
19 140 63 x63x6 E50A C10 Variables (R =-0.95)
20 165 56 x 36 x 3.5 E42 S215 Constant
21 155 63 x63 %6 E42A 09G2S Variables (R =-0.78)
22 156 70x 70 x 5 E50A Stal C10 Constant
23 174 50 x 50 x 4 E42 S215 Variables (R =-0.85)
24 185 56 x 56 x 5 E42A 09G2S Constant
25 166 63 x63 %6 E50A C10 Variables (R =-0.75)
26 138 56 x 36 x 3.5 E42 S215 Constant
27 144 63 x63 %6 E42A 09G2S Variables (R =-0.6)
28 153 70x 70 x 5 E50A c10 Constant
29 164 80 x 80 x 5.5 E42 S215 Variables (R =-0.7)
30 136 90 x90 x 6 E42A 09G2S Constant
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Task 3.3. Calculate the point welded joint (Fig. 3.8a). The data
to the calculations is shown in Table 3.3.

Table 3.3. Initial data for Task 3.3

Var. Load. kN Sheet thickness,
o ’ mm Sheet material Load character
F S

1 7 3 C10 Constant

2 6 4 S215 Variables (R =-0.5)
3 5 5 09G2S Constant

4 8 6 C10 Variables (R =-0.4)
5 9 3 S215 Constant

6 6.3 4 09G2S Variables (R =-0.3)
7 4.3 5 C10 Constant

8 3.5 6 S215 Variables (R =-0.2)
9 3.2 3 09G2S Constant

10 2.8 4 C10 Variables (R =-0.6)
11 5.1 5 S215 Constant

12 5.4 6 09G2S Variables (R =-0.7)
13 3 3 C10 Constant

14 4 4 S215 Variables (R =-0.8)
15 5 5 09G2S Constant

16 6 6 C10 Variables (R =-0.9)
17 3.5 3 S215 Constant

18 2.5 4 09G2S Variables (R =-1)
19 4 5 C10 Constant

20 6 6 S215 Variables (R =-0.75)
21 5 3 09G2S Constant

22 6 4 C10 Variables (R =-0.85)
23 7 5 S215 Constant

24 5 6 09G2S Variables (R =-0.65)
25 6 3 C10 Constant

26 3.8 4 S215 Variables (R =-0.55)
27 4 5 09G2S Constant

28 3 6 C10 Variables (R =-0.5)
29 4 3 S215 Constant

30 6 4 09G2S Variables (R =-0.95)
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3.2. Calculation of threaded connections

General information
Threaded joints are detachable connections made using threads
directly applied to the parts to be joined or threaded fasteners such as bolts,
screws, pins and nuts.

Basic thread parameters
The basic parameters of the thread (Fig. 3.12) are:

YNV
2\‘\2\;'\ Nut i
A ) Jox
\ \ 7 72
= hreadsyz727;
= /
|| - -
)
AL

Y \%

Fig. 3.12. Basic thread parameters

Thread diameter (screw and nut): external - nominal thread diameter d,
D; central dz, D;, i.e. the diameter of the imaginary cylinder, the base of which
intersects the thread at the point where the width of the projection is equal

to the only groove (if the value is not given in the table, it can be determined

according to the formula: d, = (dzdl)); internal d; , D; . The diameter

of the screw, as the closing part, was indicated by lower case letters,
the diameter of the screw, as the closing part, by upper case letters.

The most important feature of a thread is the thread pitch p (t, S) -
the distance between two adjacent thread turns measured parallel to the axis
of the screw.

The profile of a thread is the profile of the projection and furrow
in the plane of its central section.

Profile angle o - the angle between adjacent sides of a thread in axial
section.

The thread profile is also characterised by:
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a) the height of the initial triangle of thread H, i.e. the triangle whose
vertices are formed by the points of intersection of the extended thread
profiles;

b) the working height of the thread profile Him) - along which the thread
sides of the bolt and nut meet;

Thread pitch Ph(S1) - the distance between two adjacent thread turns
measured parallel to the axis ofthe bolt, or otherwise is the axial
displacement after one revolution of the bolt ¢ (Fig. 3.12):

for a single thread S; = S,

for multi-pass S; = zS, where z is the number of thread turns.

The angle of elevation of the thread line ¢ - the angle of elevation
of the thread line after the average diameter.

t = L or = arct L
ge T[dz @ g T[dz’

where ¢ - is the helix angle in degrees.

These parameters can be considered in a general way, as all profiles
have common elements and can be achieved by changing the profile angle,
profile height and radius of curvature. For example, by decreasing the profile
angle, one can go from a triangular thread to a trapezoidal thread and then
to arectangular thread. Threads, due to having gaps, cannot be used
as centring elements.

All geomteric thread parameters and their tolerances are standardised.

Strength classes of threaded fasteners

Steel bolts and screws according to EN ISO 898-2:2023-03
are manufactured in 12 strength classes 3.6, 4.6,4.8,5.6, 5.8, 6.6, 6.8, 6.9, 8.8,
10.9, 129, 149 (in order ofincreasing strength). The strength class
is indicated as two numbers separated by a dot. The first number multiplied
by 100 indicates the minimum strength limit (MPa) and the first number
multiplied by the second and still multiplied by 10 indicates the yield
strength limit (MPa). The strength class of bolt 5.6 is read as follows: the bolt
material has a strength limit of 5 - 100 = 500 MPa and a yield strength limit
of 5+ 6 - 10 = 300 MPa. Each strength class corresponds to a specific steel
grade, for example, for strength class 3.6 the corresponding steels are S215,
C10, etc.
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Nuts according to EN ISO 898-2:2023-03 are produced in 7 strength
classes 4,5, 6,8,10,12,and 14 (in order of increasing strength). The number
multiplied by 100 indicates the maximum load value.

Basic calculation formulae
The value of the peripheral driving force (Fig. 3.13)

F, =Ftg(e + p),
where F - axial force on the bolt, N;

0= arctgnid2 - thread angle of elevation, degrees;
f

cosa/2

P - thread pitch, mm;

p = arctg - thread friction angle, degrees;

o - thread pitch, mm;
f - friction coefficient;
d; - thread centre diameter, mm.

F,
[
N
f N
e
v F,
n
Aot ¢ n
F;
/
/
o | £ p
F, F

a

Fig. 3.13. Interaction forces between bolt and nut

Tightening torque for bolt or nut (Fig. 3.13, a, b)
Mgor = MTg + Mry,

where Mty - thread friction torque, Nm:
dp dp
Mpg = Ft? = Ftg(p +P)7
M, — friction torque at the supporting end of the nut or bolt, Nm:

D
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Dcen = (D1+dr)/2 or = Dcen =1.4d - the central diameter of the screw's
retaining surface (thread); dn - the diameter of the screw hole.

the diameter of the screw hole My and Mt we obtain
DCE

dp
Torque to loosen bolt or nut (Fig. 3.13, ¢)

_d n
Mdok—F7 fttgle +p)

d;
Mog =F—|——f ttgle —p)

DCGTl ]
2 1 d,

Thread calculations
The main types of thread failure: are fastening threads - thread shear,
and movable threads - thread wear. Because of this, the main performance
and calculation criteria for fastening threads are the strength associated with
shear stresses, and for movable threads, the wear resistance associated with
compressive stresses (Fig. 3.14).
Strength conditions for threads with shear stress

F
=— <
for screws ., i < ke

F
- <
(TdHKKp) — ke,

where F - force;
H - the height of the screw or the depth of the screw into the
component;

for nuts 7, =

K = ab/p or K = ce/p - coefficient ofthread completeness;
for a triangular thread K=0.87, for arectangular thread K = 0.5,
for a rectangular thread K = 0.65; Kin =0.55 + 0.75 - coefficient of non-
uniformity ofload along the thread turns (higher value for large
metric threads and provided the bolt material is stronger than the nut
material); a, b, ¢, e, p - correction factors;
k: — allowable shear stresses k; = 0.4R, - constant load;
k:= (0.2 + 0.3)Rn - variable load.
If the materials of the bolt and the nut are the same then the shear
stresses are calculated for the bolt thread only.
Condition for wear resistance ofthe running thread under
compressive stresses:

<
e = Cndyhz) = e

where d2 - centre diameter of the thread, mm;
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h - centre diameter of thread, mm;

H .
zZ = 5 number of working turns of the screw or nut;

k: - permissible compressive stress for the lower strength part of the
threaded pair. Assumes k. = (0.3 + 0.4)R,,.

The formula is the same for abolt and the nut. The coefficient K-
is assumed equal to unity, taking into account thread lapping.

d

h d;

Nut

/7))

Thread

FY
Fig. 3.14. Force diagram for calculating thread strength and wear resistance

Performance of a threaded connection without taking into account
frictional forces at the end of the nut or bolt

_Ap__t99
9 =4, " tgle + p)
Bolt performance including friction at the nut end or thread end
_Ap _ tge
np.g A3 fav

tg(e +p) +d—2

Strength calculation of threaded connections
under different types of loading
The main performance criterion for threaded connections is strength.
All standard bolts, screws and studs are made to have equal tensile strength
of the bar after threading, thread shear and head detachment (Fig. 3.15),
so calculations of the strength of a threaded connection are usually carried

out against only one performance criterion - the strength of the threaded part
of the bar, taking into account the internal thread diameter d;.
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LA

Fig. 3.15. Areas of possible damage to fixing connections

The length of the bolt, dowel or the height of the nut is taken according
to the thickness ofthe parts to be joined. The other dimensions
of the components ofthe threaded connection (nut, washer, etc.)
are assumed to depend on the thread diameter according to the standard.

Head shear strength (Fig. 3.15)

_ F

= <
ndh ke,

Tc

where h - bolt head height, mm.

Calculation of a bolt loaded by an axial tensile force F. The nut
is screwed but not tightened. The bolt is not tightened.

This case is rare. An example is the bolted connection of the bracket,
block and hook end section of crane mechanisms (Fig. 3.16). The calculation
boils down to determining the internal thread diameter d; from the tensile
strength condition

Oy = n'_df < kr
where
4. = 4F
1 Tk,

where F - current force, N;
d1 - internal thread diameter, mm;
k-- allowable tensile stresses, MPa; k-= 0.6R» without tightening screws.

The resulting value ofthe inner diameter d; o is rounded up

to the largest standardised value, to which the value of the outer diameter
is matched.
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A

Fig. 3.16. Diagram of forces in a thread loaded with an axial force

Calculation of a thread loaded axially and by torque. An example
is a threaded band during tightening (Fig. 3.17)

1 )—"
E { O\ F
e AN
M TS

Fig. 3.17. Forces in a threaded connection

in this case, the strength condition becomes
1,3 -4F

2 — 'r
wdf

4. = 5.2F
1 Tk,

where 1.3 - is afactor that takes into account the torsional stresses

in the thread due to friction in the thread;
k, = I[;—"]L— allowable tensile stresses, MPa;

[n] - safety factor.

Ored =

then

Calculation of a welded joint loaded with critical shear stresses
A prerequisite for the reliability of the connection is that there is no
displacement of the components at the connection point. Two cases can be
considered:
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The bolt is tightened without a gap (Fig. 3.18). In this case, the bolt
is driven into a calibrated hole with areamer, and the bolt core is made
to a tolerance that allows a gap-free fit.

The reliability (immobilisation of the parts to be joined) of the joint
is ensured by the bolt core. The calculations refer to the shear and crushing
of the core. Frictional forces are not included in the calculation, as tightening
is not mandatory. In the general case, the bolt can be replaced by a pin
of the two types of stresses, shear stresses are the most dangerous, so only
shear stress calculations are usually carried out.

Fig. 3.18. Diagram of the calculation of bolts placed in a hole without a slot

Shear strength condition
4F

mwd?zi ~

then

4F
kezi’

where i - number of shear planes; i = n - 1, where n - number of joined
elements;
z - number of connected bolts;
k: — allowable shear stresses, MPa.

The resulting value is rounded up to the larger normalized value.
Compressive strength condition
general formula

_ F
% T A 7 8,k
then d =
kg5min
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for the central element (Fig. 3.18)

F <k
ST sz e

_ F
thend = o

for the outermost element

<
% = Gasig) = ke
then
_ F
- Z-kcé‘lz

d

where k. - permissible compressive stress of lower strength material, MPa;
Omin — minimum thickness of joined parts, mm,;
01, 02 — thickness of joined parts, mm.

The disadvantage ofsuch connections is their high cost due
to the complexity of the production technology (precise marking, positioning
and accuracy of bolt production).

The bolt is tightened with a gap (Fig. 3.19). In this assembly, reliability
is provided by the frictional forces resulting from the tightening of the bolt,
but it should not be subjected to external load. If the bolt is subjected
to an external load in this assembly, reliability is compromised and such

an assembly is not valid.
Fa'o

F F[/: N I ;\\K\\}%ﬁ
A

Ly
Fdo

Fig. 3.19. Diagram for calculating bolts in clearance holes
In joints with a gap external loads do not act on the bolt. Therefore,
the bolt is only calculated for static strength against a tightening force, even
if the external load is variable. The effect of a variable load is calculated
by selecting increased values for the safety factor.

The no displacement condition can be written as:
FSi'Ft=i'Fdo'f
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where i - number of shear planes (at Fig. 3.19 i = 2, when two elements
are joined i=1);
F: - frictional force between connected parts due to tightening, N;
f - coefficient of friction at the joint (f = 0.15 + 0.20 for steel and cast
iron dry surfaces);

Fao — screw tightening force, N;
do = %;
where K - coefficient of adhesion reserve (K = 1.3 + 1.5 under static load,
K = 1.8 + 2 under variable load);

z — number of bolts in the assembly.

The strength condition will take the form

1,3 - 4F,,
Ored = Td? = Ky
1

’S,ZF
d1 — do
Tk,

When comparing the cases of placing bolts with and without a gap, it is
worth noting that the first case is cheaper, as it does not require the accuracy
of the bolt and hole dimensions. However, the working conditions of the bolt,
placed with a gap, are worse than without. The design load on the bolt with
agap is 5 + 7.5 higher than the external stress. In addition, as aresult
of the instability ofthe friction coefficient and the complex control
of tightening, the operation of such connections at offsets is insufficiently stable.

then

Calculation of pre-tightened joints when assembled
and loaded with external tensile force
This case is often found in mechanical engineering for the attachment
of gearbox covers, tanks, cylinders, bearings (Fig. 3.20) etc. Here, two cases
are also considered.
There is no additional tightening of the bolt, so the design load is
Feaic = [1L3K(1 — x) + x]F,
where y - external load factor characterising the susceptibility of the joint
components (y = 0.2 + 0.3 without seals; y = 0.4 + 0.5 with seals).
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Fig. 3.20. Strength distribution of the tightened connection

It is possible to tighten the bolt additionally under full external load,
in which case the design load is
Feaie = L3F[K(1 =) + 1],
Strength condition

_ 4Fop
Ored = wdlz < Ky,

d — 4Fop
1 kyz'

where i is the number of bolts in the assembly.

then

Calculation of a torque-loaded joint (couplings, complex gears, etc.).
This case is similar to the transverse force loading case, the connected
components are displaced by a circumferential force (Fig. 3.21). Here, two
cases are also considered (bolts placed without a gap and with a gap).

D;

N i
;1/; .\\\wT‘ {

Fig. 3.21. Diagram of a torque loaded threaded connection

D
AR

The peripheral force will be

where T - torque, Nm;
Do - diameter of bolt axis, m.
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The peripheral force F; is replaced by F in the formulas for connections
loaded transverse force.

Calculation of assemblies loaded by centrifugal force
Eccentric loading on the bolt occurs due to the non-parallelism
of the bearing surfaces of the parts to be joined and the nut or the head
of the screw, for example, due to the inclination ofthe channel flange
(Fig. 3.22, a), errors in the manufacture of bolts, nuts, the use of slotted-head
screws (Fig. 3.22, b) etc. In all cases, there are bending stresses in the bolt
core in addition to tensile stresses.

F. do

X

Fdo

a b

Fig. 3.22. Loading of the joint with centrifugal force

The strength condition will take the form
4F,,  32Fqcx _ 4F ( 8x
nd, nd?  md?

where x - eccentricity value, mm.

Ored = Oy + 75 =

The value ofthe calculated load Fcac is determined according
to the formulae for pre-tightened connections when assembled before
the external load is applied.

If x=0.5 d, the thread diameter can be determined

,4F
d, = 2,24 |—4c
mk,z

where z - is the number of bolts in connection.

Eccentricloading requires an increase in bolt diameter and a reduction
in connection strength. In the design and manufacture of the connection
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construction, it is necessary to avoid eccentric loading or to take measures
to reduce eccentric loading (planning the bearing surfaces of nuts and screw

heads, bolts and the use of standard bevel washers).
Recommended values for permissible stresses, safety factors

and dimensions for metric threads are given in D.7 + D.9 in the appendix.
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Examples of calculations

Example 3.9. Determine the diameter ofthe cut end of the hook
(Fig. 2.5) if: acting pulsating alternating load F = 10 T; hook material - C35
steel; nut is screwed on but not tightened.

Data: Searched for:
F=10T d-?
material - C35 steel
pulsating variable load
Solution

1. Determine the permissible stresses.

Tables D.2 and D.7 for C35 steel taking into account the effect
of a pulsating load k-= 125 MPa.

2. From the strength condition we calculate the internal diameter

of the thread:
P 4-100-103_319
17 ok, ~ | 314-125 o0 mm

Choose a metric thread that can withstand high loads and has high
friction. According to Table D.8, we take the nearest larger value
of the internal diameter d = 37.129 mm with astep of p = 4.5 mm,
the external diameter of the thread d = M42.

Answer: d= M42.

Example 3.10. From the strength condition, determine the diameter
of bolts in athreaded connection loaded with a variable transverse force
F =20 kN. Number of bolts z = 2, number of elements in assembly n = 3, bolt
strength class 4.8, bolt tightening is uncontrolled. In the first case, the bolts
are placed without a gap (Fig. 3.18), and in the second case with a gap
(Fig. 3.19).

Data: Searched for:
F=20KkN d-?
strength class 4.8

z=2
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n=3
uncontrolled tightening
case 1 - without gap
case 2 — with gap
Solution
Cas 1 - bolts without gap (Fig. 3.18).
In a shear-loaded assembly, strength is provided by the bolt core.
1. Determine the allowable stresses.
For bolts of strength class 4.8, the yield strength is
R, = 4-8-10 = 320 MPa, so from Table D.7 we will determine the allowable

shear stress from the formula:
ke = (0.2 + 0.3)R, = (0.2 + 0.3) - 320 = 64 + 96 MPa
Accept k. = 64 MPa.
2. From the strength condition we determine the diameter of the bolt.
Several shear planesi=n-1=3-1=2.

PO T TS (R
= |wkozi (314-64-2-2 MW

From Table D.53, we adopt a bolt with increased accuracy for mounting
from under the reamer d; = 11 mm, at the end of which the thread d = M10
is arranged.

Case 2 - bolts with gap (Fig. 3.19).

When abolt is positioned with a slot, the immobility of the assembly
is determined by the frictional forces generated when the bolts
are tightened. The bolts are subjected to combined loads (tension
and torsion), so calculations are based on the determination of equivalent

stresses.

3. Determine the allowable stresses.

Taking into account alternating stress and uncontrolled tightening,
and assuming that the bolt diameter will be in the range M16 + M30 we

assume [n] = 6.5 (Table D.58).
k, = Re 320 _ 49 MPa
" In] 65
4. Determine the tightening force of the screw.
Steel-steel friction coefficient fx 0.17; adhesion reserve coefficient under

alternating load K = 1.8.
_KF 18-20-10°

=— = =52941N
o Zif T 2.2-017
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5. From the strength condition we determine the internal diameter of the

thread
o [52Fa _ [52-52941
17 | Thk, T | 314.49 _ 4c7mm

From Table D.8, we take the nearest larger value d; = 42.587 mm,
for which d = M48.
Answer: case 1: d; = 11mm,; case 2: d = M48.

Example 3.11. Determine the diameter ofthe bolts ofthe flange
coupling (Fig. 3.21). Variable load, torque moment T = 1 kNm, bolts
of strength class 5.6, uncontrolled tightening, number of bolts z = 4, bolt axis
core diameter Do =200 mm. In the first case, the bolts are set without a gap
and in the second case with a gap.

Data: Searched for:
T=1kNm d-7?
strength class 5.6

z=4

Do=200 mm

uncontrolled tightening
case 1 - without gap
case 2 — with gap
Solution
Casel - bolts without gap
1. Determine the allowable stresses

For bolts of strength class 5.6, the yield strength is
R, =5:6-10 = 3000 MPa,
so from Table D.7 we determine the allowable shear stress from the ratio
k. = (0.2 = 0.3)R, = (0.2 + 0.3) - 300 = 60 +~ 90 MPa
We assume k:=60 MPa.
2. Determine the peripherical force acting on the assembly:
1000 Nm = 10 Nmm,
o 2T _2-10°
Y7 Dy 200
3. From the strength condition we determine the diameter of the bolt
Bumble of shear planesi=n-1=2-1=1.

= 10000 N
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T 4.10% s
= |mrgzi (314-60-4.1 /MW

From Table D.53, we adopt a bolt with increased accuracy for mounting
from under the reamer d; = 9 mm at the end of which the thread d = M8
is arranged.

Case 2 - bolts with a gap (Fig. 3.21)

1. Determine the allowable stresses

Taking into account variable stress and uncontrolled tightening,
and assuming that the bolt diameter will be in the range M16 + M30, we

assume [n] = 6.5 (Table D.58).
R,

0
=—=——=46 MP
"] 65 a

2. Determine the bolt tightening force.
Steel-steel friction coefficient f~ 0.17; adhesion reserve coefficient under

alternating load K = 1.8.
g KFe_ 1.8-10*
7 Zif T 4-1-017
3. From the strength condition we determine the internal diameter
of the thread

= 26471N

o [32Fe _ [52-26471
17 Tk, T [ 314-46  O0mm

From Table D.8, we take the nearest higher value of d; = 31.670 mm,
for which d = M36.

This case demonstrates the desirability of installing bolts in target
couplings without a gap.

Answer: case 1: d; =9 mm; case 2: d; = M36.

Example 3.12. Determine the number of bolts in an assembly, loaded
with a constant transverse tension F = 50 kN. The bolts are assembled with
agap (Fig. 3.19), number of fasteners n = 3, bolt diameter d = M24,
uncontrolled tightening, bolt material C10 steel.

Data: Searched for:
F=50KkN z-7?

d=M24

n=3
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constant load
uncontrolled tightening
Solution
1. Determine the allowable stresses.
From Table D.1 for C10 steel R.= 210 MPa.
From Table D.6 considering constant load and uncontrolled tightening for
carbon steels in the size range M16 + M30 we assume [n] = 3, then the

allowable stresses
k= 2e _ 210 _ 20 mpa
"ol 3
2. From the strength condition we specify the number of bolts
Steel-steel friction coefficient f = 0.17; coefficient of adhesion under
constant load K = 1.3; number of shear planes i =n—-1=3-1=2. From the

Table D.9 for bolt M24 d; = 20.752 mm.
5,2KF 52-1.3-50-10°
2= fnd?k,  2-0.17-3.14-20.7522 - 70
We assume the number of bolts at the assembly z = 12.
Answer: z = 12.

=10.5

Example 3.13. What is the maximum load that a screw connection
loaded with aconstant transverse force can withstand, where bolts
are installed without gap (Fig. 3.18). Number of bolts z = 4, bolt diameter
d = 17 mm, material of bolt - C35 steel (Re = 320 MPa), number of elements
in connection n = 2.

Data: Searched for:
d=17 mm F-?
z=4
material - C35 steel
Re=320 MPa
n=2
constant load
Solution
1. Calculate the permissible stresses.

With static load from the Table D.7
k; = 0.4R, = 0.4-320 = 128 MPa
2. From the strength condition we determine the permissible load
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k,mdizi 128-3.14-17%-4-1
F< =
4 4
Answer: F=116155 N.

=116155N

Example 3.14. Determine the diameter of the bearing connection
shield bolts (Fig. 3.20), subjected to a constant axial load of F = 12.5 kN.
A number of bolts z = 6, material - C35 steel (R. = 320 MPa), bolts were
installed with a gap and tightened before the load was applied. Consider two
cases: case 1 - without tightening of bolts under load; case 2 — with tightening
of bolts under load.

Data:

F=12.5kN

z=6

material - C35 steel
Re =320 MPa
constant load

Searched for:
d-?

Solution
1. Determine the allowable stresses
From Table D.6 with consideration of constant load and uncontrolled
tightening for carbon steels in the size range M6 + M16 we assume [n] = 4,

then the allowable stresses

k —Re—320—80MP
e T

2. Determine the design force for case 1 - without tightening the bolts
under load.
We take into account the soft gasket and assume y = 0.4, the adhesion

reserve factor under constant load is assumed to be K= 1.3.
Frae =[13K(1 — x) + x]JF = [1.3-1.3(1 — 0.4) + 0.4] - 12.5- 103 = 17675 N.
3. From the strength condition determine the inner diameter of the screw

thread
~ ’4Fcalc_ 4-17675
4= | Tkz = [314-80.6 08> mm

From Table D.8, we take the nearest larger value of d; = 8.376 mm, which
corresponds to the outside diameter of the M10 thread.

4. Determine the design force for case 2 - with bolts tightened under load
Foqie = 1L3F[K(1 — ) + x] = 1.3-12.5- 103[1.3(1 — 0.4) + 0.4] = 19175 N
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5.From the strength condition we determine the internal diameter

of the screw thread
4F 5, 4-19175
d, = = =7.13
1 ’ wk,z  \3.14-80 6 mm

From Table D.8, we take the nearest larger value d; = 8.376 mm, which
corresponds to the outside diameter of the M10 thread. The bolt diameter
is within the range M6 + M16 for which a safety factor has been determined.

Answer: for cases 1 and 2 d = M10.

Example 3.15. Determine the force that must be applied to the spanner
when turning the nut (Fig. 3.13) for the bolt to reach its yield point R. =210 MPa
(C10 steel). Perform the calculation for an M24 bolt. Assume [ = 15d,
for the handle length of the spanner, friction coefficient in the thread at the end
of the nut f=0.15.

Data: Searched for:
d=M24 Fi -7
material - C10 steel
Re =210 MPa
f=0.15
[=15d
Solution

1. From Table D.8 take the necessary dimensions for the calculation:
d =24 mm; d; = 20.752 mm; dz = 22.051 mm; p = 3 mm, we determine the
angle of elevation of the thread according to the formula

Q= arctgi = 2°30'

rd, Y9375 22051
2. From the strength condition, determine the tightening force for the bolt
at which there is a stress in the core equal to the yield strength
po— mdfR, 3.14-20.752% 210
o= 52 5.2
3. Determine the tightening torque applied to the nut

= 54625N

Before that, we determine the friction angle

)

cos 60°/2

f
= tg—— = t =9°50’
p =arctg_—— = arctg
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dz [Day
Mgy = Fdof[d_zf-}_tg((p +p)] =

= 54625 22,0511 336 0.15 + tg(2°30" + 9°50")| = 258975 N 259 N

- 2 l2z051 0T B mm = m
4. Determine the force to be applied

_ Mzak _ _
Fie = —— = 258975/1524 = 7194N
. . Fqo 54625 )
Yield in strength - = —— ~ 76 times
Fp 719.4

Answer: Fr=719.4 N.
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Individual task
(calculation)

Task 3.4. Determine the force to be applied to the spanner when
turning the nut (Fig. 3.13) so that the stress in the bolt rod reaches its yield
point. Take the length of the handle of the spanner to be [ = 15d, coefficient
of friction at the end in the thread of the nut f = 0,15. The data to calculation

is shown in Table 3.4.

Table 3.4. Initial data for Task 3.4

Var. | Diameter Thread type | Re,MPa

no mm

1 M8 metric 210
2 M10 metric 230
3 M12 metric 240
4 M16 metric 260
5 M20 metric 280
6 M22 metric 320
7 M30 metric 340
8 M32 metric 360
9 M36 metric 380
10 M42 metric 220
11 M16 metric 180
12 M20 metric 210
13 M22 metric 360
14 M30 metric 400
15 M10 metric 420
16 M10 metric 460
17 M12 metric 480
18 M16 metric 500
19 M20 metric 315
20 M22 metric 215
21 M30 metric 415
22 M32 metric 435
23 M36 metric 265
24 M42 metric 245
25 M16 metric 325
26 M8 metric 235
27 M10 metric 225
28 M12 metric 185
29 M16 metric 210
30 M20 metric 200




Task 3.5. Determine the diameter ofthe flange coupling bolts
(Fig. 3.21). Uncontrolled tightening. In the first case, the bolts are set without
a gap, and in the second case with a gap. The initial data is shown in Table 3.5.

Table 3.5. Initial data for Task 3.5

Var. Load Number Do, Bolt The character
kNm of screws strength
no mm of the load
T Z class
1 0.5 4 220 3.6 Constant
2 0.6 6 230 4.6 Variable
3 0.7 8 240 4.8 Constant
4 0.8 4 250 5.6 Variable
5 0.9 6 260 5.8 Constant
6 1 8 280 6.6 Variable
7 1.2 4 290 6.8 Constant
8 1.3 6 300 6.9 Variable
9 1.4 8 310 8.8 Constant
10 1.5 4 315 10.9 Variable
11 1.6 6 320 3.6 Constant
12 0.3 8 325 4.6 Variable
13 0.6 4 330 4.8 Constant
14 0.8 6 340 5.6 Variable
15 0.5 8 350 5.8 Constant
16 0.6 4 345 6.6 Variable
17 0.7 6 360 6.8 Constant
18 0.8 8 200 6.9 Variable
19 0.9 4 210 8.8 Constant
20 1 6 220 10.9 Variable
21 1.2 8 230 3.6 Constant
22 1.3 4 240 4.6 Variable
23 1.4 6 250 4.8 Constant
24 1.5 8 260 5.6 Variable
25 1.6 4 280 5.8 Constant
26 0.3 6 290 6.6 Variable
27 0.6 8 300 6.8 Constant
28 0.8 4 310 6.9 Variable
29 0.5 6 315 8.8 Constant
30 0.6 8 320 10.9 Variable
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Task 3.6. Determine the diameter of the bearing unit cover screws
(Fig. 3.20) and check the strength of the thread and screw head. The screws
were set with a gap and tightened before the load was applied. The depth
of the screw was taken to be H = 1.2d. Consider two cases: case 1 -
no tightening under load; case 2 - no tightening of screws under load.

The data to calculations is shown in Table 3.6.

Table 3.6. Initial data for Task 3.6

Load Number Bolt strength The

Var. no kN of screws character

Fa z class of the load

1 10 4 5.6 Constant
2 11 6 5.8 Variable
3 12 8 6.6 Constant
4 12.5 10 6.8 Variable
5 14 4 6.9 Constant
6 14.5 6 8.8 Variable
7 15 8 10.9 Constant
8 16 10 3.6 Variable
9 10.5 4 4.6 Constant
10 11 6 4.8 Variable
11 8 8 5.6 Constant
12 10 10 5.8 Variable
13 9 4 6.6 Constant
14 10 6 6.8 Variable
15 11 8 3.6 Constant
16 12 10 4.6 Variable
17 12.5 4 4.8 Constant
18 14 6 5.6 Variable
19 14.5 8 5.8 Constant
20 15 10 6.6 Variable
21 16 4 6.8 Constant
22 10.5 6 6.9 Variable
23 11 8 8.8 Constant
24 8 10 10.9 Variable
25 10 4 3.6 Constant
26 9 6 4.6 Variable
27 10 8 4.8 Constant
28 11 10 5.6 Variable
29 12 4 5.8 Constant
30 12.5 6 6.6 Variable
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3.3. Calculation of keyed and splined connections

General information

Keyed and splined connections are used to connect shafts and rotating
axles (gears, pulleys, sprockets and other components), to transmit torque
from the shaft to the hub ofthe mounted component and vice versa,
and to move workpieces along shafts along an axis.

Keyed connections (Fig. 3.23, a) comprise a shaft (2), a key (1)
and a hub (3) (wheel, pulley or other component). The key is a steel wedge
that is inserted into the grooves of the shaft and hub.

Hub Kevway

a b
Fig. 3.23. Keyed (a) and splined (b) connections

Spline connections (fig. 3.23, b) are formed by the specific shape
of the projections (keys) on the shaft and the corresponding pits (splines)
in the hub. The working surfaces are the sides of the keys. These connections
can be considered splines if the grooves are made as a whole with the shaft.

Basic calculation formulae
Keyway connections

The primary performance criterion for keyed connections is strength.
From the strength condition, verification calculations can be carried out
by determining the design stresses and comparing them with the allowable
or determining allowable moment, and design calculations by determining
the geometrical dimensions ofthe connections (usually the length
of the keyway is determined).

The prismatic keyway connection (Fig. 3.24) is calculated from
the wedge compressive strength condition.
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Fig. 3.24. Prismatic key connection

Strength condition
12T - 103
o, = W <k
where T - torque, Nm;
d - shaft diameter, mm;
b - wedge width, mm;
I - length of the working part of the wedge, mm;
f - coefficient of friction; for steel and cast iron 0.15 + 0.2;

k. - allowable compressive stresses, MPa (Table D.9).

The complexity of making wedges and grooves, the occurrence
of assembly stresses, radial displacement and skewing of products limits
their use.

The tenon groove connection (Fig. 3.25) is calculated from the wedge
compressive strength condition.

NN
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Fig. 3.25. Tenon groove connection
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Strength condition:

_4T-103<k
% T T ad L, e

where d - shaft diameter, mm;
dx - wedge diameter, mm;
Ix - key length, mm.

The geometric dimensions of the key are either determined from
the strength condition or taken from the relationship:

Key diameter
d, = (0,13 = 0,16)d,,,
where dy - shaft diameter, mm.

The length of the wedge is taken as [ = (3 + 4) dk or determined
by the length of the hub.

Tenon wedges are manufactured by PN-EN [SO 2338:2003 and PN-EN
ISO 8735:2003. For heavy loads, two 180 ° or three 120 ° keys are used.
It is worth bearing in mind that this considerably weakens the cross-section
of the shaft, especially under impact and fluctuating loads.

The tangential keyway connection (Fig. 3.26) is also calculated
from the compressive strength condition.

Inclination
1:100

Fig. 3.26. Tangential groove connection

Strength condition for tangential keyway connection:
T-10°

(0.45 + %f) dL.(t — ¢) =k

where t - is the width ofthe working edge ofthe wedge, it is equal
to the depth of the keyway on the shaft, mm;
¢ - chamfer of wedge, mm.

O, =
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In such connections, the keyway is subjected to compressive stresses, i.e.
it operates under more favourable conditions than other wedges.
The dimensions ofthe wedges and keys are selected according
to [SO 3117:1977. The stress is applied by the relative axial displacement
of the wedges. Ordinary wedges are positioned at an angle of 120 + 135 °,

Prismatic keyway connections (Fig. 3.27)

For the transmission oftorque, there are compressive stresses
on the lateral surfaces of the wedges and keyways . and shear stresses
in the cross-section of the wedge . Since the dimensions of the keyways
and keys in the standard are selected according to the compressive strength
condition, the primary calculation is acompression calculation. Shear
calculations are in most cases not carried out.

5 ‘ NV S\

Oc
Tzer = .

h-t

=

XU ///,//,

Fig. 3.27. Calculation diagram for a prismatic keyway connection

With precise calculations, the strength condition is as follows:
2T - 103
G, = m < k.
where T - torque, Nm;
d - shaft diameter, mm;
h - key height, mm;
t - shaft keyawy depth, mm (h and ¢t from the Table D.11);
Ir - working length of wedge, mm:
- for wedges with rounded edges [, = | — b (Fig. 3.28, c);
- for wedges with rounded edges [, = [ (Fig. 3.28, a);
- for wedges with one flat end and one rounded end i, = | —g
(Fig. 3.28, b),
where [ - total length of the wedge (Table D.12), mm;
b - ker width, mm;
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0.95 -reduction factor for the chamfer height of the working wedge,
f=~0,05h.

With an average precision of calculation, the strength condition is as follows:

2T - 103
" dG-or, -
a b / ¢ /
D\ -
e — I e P & omern,
Lk .:-—]r-—»/ ANk
Design 1 Desing 2 Design 3

Fig. 3.28. Basic types of prismatic inlets

Shuttle keyway connection (Fig. 3.29)
Such ajoint is verified for compressive and shear strength because
such a wedge is narrow (the height is significantly greater than the width

of the wedge) and there is a danger of shearing.
b L

—
—

= L 7

] o d;

h

/
NN
N

L

Fig. 3.29. Calculation diagram for shuttle keyway connection

Compressive strength condition:
2T103
<k
dh—tl = "¢
where h - key high, mm; t - shaft keyway depth, mm; / - wedge lenght, mm.

G, =

Shear strength condition (can be also applied to prismatic wedges):

_ 27103 <k
te="gp ="

where b - wedge width, mm;
k:— allowable shear stresses, MPa (Table D.9);
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for prismatic wedges, l is used instead of I-- wedge working length, mm.

The key sizes (including length) and grooves are selected according
to shaft diameter PN 85008 (Table D.13). The working edges are the edges
of the wedge.

Spline connections (Fig. 3.30)

The primary performance criterion for spline connections is strength.
Spline connections fail due to damage to the working surfaces of the teeth:
wear, crushing, galling and fracture of the spline shafts and teeth. The basic
dimensions ofthe connection are selected from standardised tables
depending on the shaft diameter and then checked by calculation.

Fig. 3.30. Calculation scheme for spline connections

The tooth dimensions in the standards are taken from the compressive
strength condition, so the primary calculation to check spline joints
is in compression. Spline joints are not checked in shear. When calculating
for strength, it is assumed that the loads are distributed uniformly
in the lateral surfaces of the splines, but due to manufacturing inaccuracies,
0.75 of the total number of splines are involved in the work.

Condition for the compressive strength of a splined connection:
2T - 103
o, = 0,752—davhl <k,
where T - torque, Nm;
0.75 - uneven load factor between splines;
z - number of inlets;

dav — average diameter of the connection, mm:

: d
- for rectangular profile d,, = D%;
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- for an involute profile d,, = m - z;
D - external diameter of wedges, mm;

h - splines contact surface height, mm:

- for rectangular profile h = DT_d -2-f;

- for an involute profile f = m;

f - chamfering the wedge;

[ -length of the tooth contact surface, which is equal to the length of the hub,
mm;

k. - allowable compressive stress ofthe wedge material, MPa
(Table D.10).

The dimensions D, d, z, m, and f are selected from Tables D.14 and D.15.
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Examples of calculations

Example 3.16. Check the strength condition in formed joints:

1. tenon wedge (Fig. 3.25);

2. prismatic wedge, with rounded edges (Fig. 3.27 and Fig. 3.28, ¢);

3. shuttle wedge (Fig. 3.29);

4. splines with rectilinear profile (Table D.14);

5. splines with a revolute profile (Table D.15).
If: torque T = 1.2 KNm; shaft diameter d = 40 mm; hub width B = 60 mm; hub
material - steel. Stationary connections, variable load; transition keyways;
surfaces without heat treatment.

Data: Searched for:
T=1.2KkNm Oc-?

d =40 mm Tc-7?

B =60 mm

material - steel
transition keyways
variable load
stationary connection
Solution
1. Write down the strength conditions depending on the type
of connection:

(a) pivot key
4T - 103
% = ddpl, =k
(b) prismatic key
2T - 103
%S at-on =
(c) shuttle key
2T - 103
S = qth—pi= "
2T - 103
=T Sl
(d) splined connection
2T - 103
O-C

= <k
0,75zdg,hl —

203



2. Determine the unknown values necessary to calculate the strength
condition.

2.1. Determine the allowable stresses for the wedges:

Taking into account the nature of the connections, the load and the hub
material from Table D.10: k. =100 MPa; k. = 70 MPa.

2.2. Determine the allowable stresses for spline connections:

- taking into account the nature of the connection, the load, the hub
material and the surface condition from Table D.10: k. = 60 MPa;

2.3. Define the geometrical parameters of the keys:

(a) pivot

- the diameter of the gully is determined by the relationship:

D, = (0.13 +0.16)d,, = (0.13 + 0.16) - 40 = 5.0 =~ 6.4 mm

Taking into account the high load for such a shaft diameter, we adopt

a keyway diameter to reduce the weakening of the shaft cross-section:
dr =10 mm
- the keyway length is assumed to be the width of the component hub:
I, =B = 60 mm

(b) prismatic with rounded edges

- for shaft diameter d = 40 mm from the Table D.11 we take b = 12 mm;
h=8mm; t=5mm.

- the length of the keyway is taken into account about the hub width
of the component for the standard length series in Table D.12: [ = 56 mm.

Given that the wedge has rounded edges, the working length will be
l,=1l—b=56—12 =44 mm.

(c) shuttle

- for shaft diameter d = 40 mm from the Table D.13 we take: b =12 mm;
h=19mm,/=59,1 mm; t=16 mm.

2.4. Determine the geometric parameters of the spline connection:

(a) with a rectangular profile

Given the heavy load for such a shaft diameter, we adopt a heavy series.
For a shaft diameter of D = 40 mm (the external diameter of the spline
connection is denoted by D), we take

z-d-D=10-32-42mm; f = 0.4 mm.

- the length of the keyways is assumed to be equal to the hub width
[=B=60mm.

- average diameter of connection:

_D+d _40+32

w =" > = 36 mm
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- height of wedge contact surface:

D—d 40 - 32
h=—s—=2f=

(b) with an evolvente profile

For a shaft diameter of d = 40 mm from Table D.15 we take z = 18;
m=2mm (taking into account the heavy load). We take the length
of the wedges equal to the hub width I = B = 60 mm.

- average diameter of connection:

dyy=m-z=2-18 =36 mm
- contact key surface height:
h~=m=2mm

3. We determine the design stresses and compare them with the allowable

stresses:

(a) pivot key
_ 4T -10®  4-12-10°

—2:04=32mm

N
200—— = 200 MPa > k. = 100 MPa
mm?

%¢ = Tdd.l,  40-10-60

condition is not met

(b) prismatic key

2T - 103 2-1.2-10° N
GC:d(h—t)lr:40-(8—5)-44=455W=455Mpa>k” = 100 MPa

condition is not met

(c) shuttle key

o = ;(’;:‘gl = — (21;_2116‘)’6591 =339 — =455 MPa > k. = 100 MPa

condition is not met

_2T-107_ 2-12-10° _ 85 N __g5MPa>k =70MP
T dbl 40-12-591 O mm? =k = a

condition is not met

Tc

(d) spline connection

- with a rectangular profile
2-1.2-10°
~0.75-10-36-3.2 60
condition is met

N
O =46 > =46 MPa < k. = 60 MPa
mm

- with an involute profile

_ e | 212100 N Mpack, = 60 MP
Oc = 0,75zdhl  075-18-36-2-60  mm? a<k = a

condition is met

Conclusion: Only spline connections can be used for the assumed load
and operating mode.
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Example 3.17. Determine the torque which can transmit the shuttle
keyway connection (Fig. 3.29) with shaft diameter d = 25 mm. Hub material
- steel, constant load.

Data: Searched for:
d=25mm [T] -7
material - steel
constant load

Solution

1. Define the geometrical parameters of the connection.

From Table D.13 for a shaft diameter of d = 25 mm we takey b = §;
h=11mm;/=27.3 mm; t =8 mm.

2. Determine the permissible torque:

(a) from the compressive strength condition:

From Table D.9 we take k. = 150 MPa; i= 100 MPa;

dth—t)lk, 25-(11-8)-27.3-150
< 40 Otk 2501 -9

(b) from the shear strength condition:

7] < dblk, 25-8-27.3-100
= 2 2

Answer: Largest torque that can be carried by a shuttle key connection
[T] <£153.5 Nm (we assume lower).

=153.5-10% = 153 Nm

=273-103 Nmm = 273 Nm

Example 3.18. From the strength condition, determine the length
of a prismatic key with rounded edges (Fig. 3.28, a). Torque T = 290 Nm,
diameter d = 40 mm, hub material cast iron, variable load.

Data: Searched for:
T=290 Nm [-7?
d =40 mm

material - cast iron
variable load
Solution
1. Define the geometrical parameters of the connection.
From Table D.12 for a shaft diameter d = 40 mm, we assume
b=12; h=11 mm; t=7 mm.
2. Determine the allowable stresses.
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From Table D.9 we take k. = 60 MPa.
3. From the compressive strength condition we determine the width
of the keyway
s 2T-10° _ 2-290-10°
"Zd(h—-t)k, 40-(11-7)-60
The final value is taken with astandard length series, according
to the form of the wedge edge, then
l=1,+b=604+12 = 72.4mm
Taking into account the standard values for wedge lengths, we assume
[=80m

= 60.4 mm

Answer: [ = 80 mm.

Example 3.19. Check the strength of a keyed joint with a flat-edged
wedge (Fig. 3.24). Shaft diameter d = 80 mm, torque T =2000 Nm, hub length
[ = 50 mm, hub material cast iron, constant load.

Data: Searched for:
T=2000 Nm Oc-"?
d =80 mm
[=50 mm
material - cast iron
constant load
Solution

1. We define the geometrical parameters of the connection.

According to ISO/R 774:1996-80 for shaft diameter d = 80 mm, we
assume b = 22 mm; h = 14 mm; the working length is assumed to be 5 mm
less than the hub length I = 45 mm.

2. Determine the allowable stresses.

From Table D.9 we assume k. = 90 MPa.

3. We determine the design stresses and compare them with the

permissible ones (friction coefficient of steel against cast iron f=0,18):
12T - 103 12-2-10°

“(+6fd)b-1, (22+6-0.18-80)22 - 45

The strength condition is not met.

N
= 224

G¢
mm?

= 224 MPa > k, = 90 MPa

Conclusion: the considered connection will not work under these
conditions.
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Individual tasks

(calculation)

Task 3.7. Check the strength of the keyway connection. The data
for the calculations is shown in Table 3.7.

Table 3.7. Initial data for Task 3.7

Var. .Shaft Torque T, Hub Hub The
diameter Key type ) length character
no Nm material
d, mm [, mm of the load
1 45 100 60
2 55 128 Prismatic with 70
3 75 205 rounded edges Steel 70 Constant
4 60 145 50
5 85 230 75
6 30 95 -
7 50 125 -
8 70 260 Round Castiron i Variable
9 60 300 -
10 80 450 -
11 15 75 40
12 20 80 Dugout 50
13 25 60 Steel 60 Constant
14 32 110 40
15 42 220 60
16 115 400 80
17 52 163 Prismatic with flat 60
18 62 95 edges Castiron 75 Variable
19 20 80 40
20 28 90 100
21 18 65 40
22 44 85 50
23 30 50 Dugout Steel 42 Constant
24 35 145 38
25 12 65 60
26 165 620 - 75
57 100 30 Prismatic with 'flat 110
28 125 480 edgesononeside | o ion [ 115 Variable
29 90 280 and a rounded end 130
on the other
30 145 800 95
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Taske 3.8. From the strength condition, determine the greatest
moment that the given connection can transmit. The data for calculations

is shown in Table 3.8.

Table 3.8. Initial data for Task 3.8

Shaft
. Hub
Var. | diameter Key type Hub length Load Type
no d, material character | of connection
[, mm
mm

1 30 Prismatic with 80

2 50 flat edges on one 60

3 70 side and Cart iron 75 Variable Stationary
4 60 rounded end on 40

5 80 the other 100

6 18 40

7 35 50

8 44 Dugout Steel 60 Constant Stationary
9 30 40

10 12 60

11 75 75

12 60 110

13 85 Round Cartiron 115 Constant Stationary
14 30 130

15 50 95

16 65 75

17 70 ) o 40

18 85 Prismatic with Cartiron 100 Constant Stationary

flat edges

19 125 40
20 115 50
21 22 -

22 32 -

23 42 Dugout Steel - Constant Stationary
24 16 -

25 20 -

26 45 40

27 35 . L 55

28 95 Prismatic with Steel 65 Variable Movable

rounded edges
29 100 90
30 125 85
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Task 3.9. Check the strength of the splined connection. Operating
conditions are good. The data for calculationa is shown in Table 3.9.

Table 3.9. Initial data for Task 3.9

Shaft Torque Hub
Var. | diameter q Key Tooth Load Type
T, g length .
no d, profile surface character | of connection
Nm [, mm
mm
1 11 70 _ 60
2 | 82 | 110 | staight | “theut [T7p 2 2
) heat 8 S
3 62 120 line 70 7 o
treatment = i)
4 32 130 50 S g
5 112 180 75
6 120 190 75
el
7 200 800 | With heat | 110 = = 8
8 15 65 volvent | eatment 115 = g E
@]
9 70 230 130 S =
10 30 195 95
11 21 300 . 40
12 16 135 | Straight W;lthOUt 50 |, &8 e
13 | 56 420 line eat 60 |3 % 5
treatment = o5 B
14 92 220 40 é = g
15 46 175 60
16 170 330 40
17 | 22 15 | With heat | 50 E 2
18 | 65 135 | VOV | eatment | 60 Z g
19 12 85 40 S g
20 140 210 60
21 | 13 100 _ 60
22 | 16 110 | Straight W;lthOUt 70 E e
23 23 120 line cat 70 g g
treatment = i)
24 72 145 50 S %‘
25 102 185 75
26 45 165 40
e
27 50 140 With 50 % _;g s
28 | 95 400 | Evolvent ithheat 7 S T
treatment 5 o 3
29 130 620 60 = = g
30 13 160 38
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3.4. Calculation of kinematic and force parameters of gearboxes

General information

Gears are mechanisms that are used to transfer energy over a distance,
usually with a transformation of the parameters and type of movement.

Depending on the method of power transmission, a distinction is made
between mechanical, electricc pneumatic, hydraulic and combination
transmissions.

Only mechanical transmissions are discussed in this script.

A mechanical transmission is a mechanism that transforms the motion
parameters of the motor and transfers the movement to the working parts
of the machine.

In simple terms, the mechanical transmission is the intermediate
link between the motor and the machine's execution part (Fig. 3.31).

MOTOR H/VVM oy

Transmission

Fig. 3.31. Gearbox location in the machine

Basic calculation formulae

Each mechanical transmission is characterised by geometric, force and
kinematic parameters.

Geometric parameters ofagearbox include the dimensions
of its components (m, mm): diameters (d); lengths (I); widths - (b); inter-
axial distances (a) and others.

Gear force parameters include forces (F, N); moments(T(M), Nm);
powers (N(P), W).

Gearbox kinematic parameters include linear velocity [m/s],
circumferential velocity [m/s]; angular velocity (w, rad/s or s'1); rotational
speed (n, rpm or min-1).

The derivatives of the basic parameters are:

Conversion efficiency- n:

Conversion efficiency shows the amount of loss in the gearbox and
characterises its performance.

Ay
=t="2<1
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where A, - useful work - work, transferred from the machine
to the environment;
A; - work consumed - work used to do a specific job (including useful
work and work to overcome resistance e.g. friction, air resistance etc.);
N1 - power at the input to the gearbox, W;
N2 - gearbox output power, W.

The efficiency of multi-stage gearboxes or drives consisting of several
widely connected gearbox elements or transmissions is determined
by the formula:

Ngen = M1 "M =Ny
where 71, 12, nn - efficiency of a separate kinematic pair (pair of gears,
sprockets, pulleys, etc.) or transmission (belt, gears, etc.) and other
kinematic elements (bearings, couplings).

The transmission ratio (i) is the ratio ofthe angular velocity
of the driving element to the angular velocity of the driven element. The ratio
can be greater than, less than or equal to unity.

The ratio (u) of a gearbox is the ratio of the higher angular velocity
to the lower angular velocity. The gear ratio must not be less than one.
Gearboxes with i >1 and n1 > n2 are called reduction gearboxes.

Gearboxes with i <1 and ni1 <n; are called multipliers (accelerators).

Reduction gears are the most common, as the speed of the moving
parts of the machines is in most cases lower than the speed of the motor
shaft. In this script, reduction gears are discussed.

In reduction gears, the speed and power in the transfer of motion from
the motor to the machine's execution part decreases and the torque increases.
Power is reduced by the amount ofloss, characterising efficiency. Speed
decreases and torque increases by the value of the gear ratio.

In reduction gears, the dimensions of the driving elements are smaller
than the driven elements.

The ratio and ratio for different reduction gears can be calculated

individually or according to the relationship:

. d; y w; z* T,
(W) ==";—;—;— ;=
di ny wy z; NTy

where di, d2 - diameters ofthe driving and driven elements

of the transmission, mm (shafts, pulleys, gears, etc.);
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* - the ratio of the number of teeth of the driving and driven chain
of a sprocket transmission. For pinion gears for a pair of wheels, this
number is called the ratio and is denoted by the symbol u;

T1, T2 - torque of the driving and driven gear element respectively, Nm;
1 - kinematic pair efficiency.

The transmission ratio of gearboxes or drives consisting of several
series-connected gear elements is determined by the formula:

lgen =l ly Orugen =Uy Uy ..." Uy

Basic calculation formulas and relationships
for mechanical transmissions
Dependence of angular velocity on rotational speed

mn 30w

w =—, thenn =— = 9,55w,
30 T

where 9.55 is the approximate value when dividing 30 by m.

Dependence of rotational speed on angular velocity

2-1000-n
=a)—2_1000,thena)=—d X
where d - the diameter of the gear element, mm (shaft, pulley, gear wheel,

etc.); 1000 - is the millimetre-to-metre conversion factor.

v

Dependence of peripheral speed on rotation frequency

nd 60-1000v . _
= ,m/s thenn = ———, min~?!
60-1000 nd

Expression of power by rotational or linear force and rotational

and linear speed
N
N = Fv,then F = >

where F - force, N;
v - rotational or linear speed, m/s.

Expression of power by torque and angular velocity
N
N =Tw,WthenT = Z,Nm,

where T - torque, Nm.

Expression of power by torque and speed
N = Tn N T_9.55N
Toss T T Ty

Engine power in forward and rotary motion
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Fu Tw

m — - )
ngen ngen

where 77gen — the overall efficiency of the gearbox.

Relationship of the power on the driving element to the power
on the driven element when transferring motion from the motor
to the machine actuator:

N, = N; -7,
where 77 - the kinematic efficiency of the gear pair.

Relationship of the torque on the driving element to the torque
on the driven element in the direction of power flow from the motor
to the machine actuator:

Ty
T, =T;-u-n,then Ty —ﬂ
Relationship between peripheral force and torque

2T F.d
F, =—thenT = —

d 2
here d in [m], T - [Nm].
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Examples of calculations

Example 3.20. Determine the angular and rotational velocity of a shaft
with a diameter of d = 80 mm which rotates at a speed of n = 600 mm-..

Data: Searched for:
d = 80 mm V-2, w-?
n =600 min-1
Solution
Plot a calculation diagram (Fig. 3.32)

w(n)
d

Fig. 3.32. Calculation scheme for the shaft of example 3.20

Determine the rotational and angular speed:
mnd _ 3.14-600 - 80

V= 60.1000  60.1000 > m/s
_mm_ 314600 _
“®=30" " 30 = °°

Answer:v =2.5m/s; ® =63 s'1.

Example 3.21. Calculate the angular and rotational speed of the
transmission pulleys if: pulley diameters D; = 100 mm and Dz =400 mm,
drive pulley speed n1 =100 min-1.

Data: Searched for:
D; =100 mm v1-2,02-7?
D2 =400 mm (1)1-?,(1)2-?

n; =100 min-!
Solution
Plot a calculation diagram (Fig. 3.33)
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w2(12)

( )

wji(ng)

D

Fig. 3.33. Calculation scheme for the belt transmission to Example 3.21

1. Determine the rotational and angular velocity on the drive wheel:

__mmDi _314-100-100 _ _m
U17%0-1000 60-1000 0T
_mmy_314-100
=307 30  °°

2. Determine the gear ratio:
D, 400
u= D_l =00 "
3. Determine the rotational and angular velocity on the driven wheel:
Uy =V = 0.52?,
_w; 105

=1=""-2635"1
()] » 7 S

Answer: v1 = v2=0.52 m/s; o =10.5 s'1; ap = 2.63 s°1.

Example 3.22. Determine the torque and power on the working shaft
of the machine if: motor power Nm = 7.5 kW; torque Tm = 200 Nm;
transmission ratio: belt transmission up, = 2; pinion transmission up. = 15;
effiency: belt transmition 7, = 0.96; pinion transmition - 7, = 0.95; coupling
ns = 0.98.

Data: Searched for:
Nm=7.5kN Np-?Tp-?
Trm=200 Nm
Upp =2
Upz =15
mvp = 0.96
Mpz=0.95
ns=0.98
Solution

1. Determine the power at the output shaft:
- determine the power at the output shaft
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- determine overall efficiency:
Ngen =Tpp “Npz~Ns = 0.96-0.95-0.98 = 0.89,
- power at the machine's working shaft:
Ny = Ny *Ngen = 7.5-0.89 = 6.7 kW,
which indicates that the power from the motor to the working shaft
is reduced by the amount of loss that characterises efficiency.
2. Determine the torque on the working shaft of the machine:
- we determine the overall values:
Ugen = Upp " Up, = 215 = 30,
- power at the machine's working shaft
Ty = Tlgen *Ngen = 200-30-0.89 = 5340 Nm,
which indicates that the power from the motor to the working shaft
is reduced by the amount of loss that characterises efficiency.

Answer: Np = 6.7 kW; T, = 5340 Nm.

Example 3.23. Determine the motor power if: rotational force
F:=10 kN; d =300 mm; rotation speed n = 750 min'!; overall efficiency
77gen = 09

Data: Searched for:
F:=10kN Nm-?
d =300 mm
n =750 min-!
Ngen = 0.9
Solution
1. Formula for determining the power of an engine in rotary motion:
N, = Tw
Ngen

2. Determine the unknowns in the formula:
(a) we determine the torque:
T =0.5F-d =0.5-10000-300 = 15- 10° Nmm = 1.5 kNm,

(b) we determine the angular velocity:
nn  3.14-750

e ia—1
w = 30 30 78,5 min
3. We determine the computing power in the engine:
N, = L5785 _ 431 1W

09

Round the specified values to the nearest largest normalized value.
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We assume Np, = 150 kW.
Answer: N;m = 150 kW.

Example 3.24. Determine the rotational force and revolutions per
minute if power N = 15 kW; diameter d = 80 mm; rotational speed v=8 m/s.

Data: Searched for:
N=15kW Fe-7n-7?
d =80 mm
v=8m/s
Solution

1. Determine the angular velocity:
_2-1000v _ 2-1000-8

_ -1
w = ) = 30 = 200 min

2. Determine the rotation per minute:

30w
n=-——= 9.55w = 9.55 - 200 = 1910 min~?!

3. From the power formula we determine the torque:

;N _15000
“w 200 °°mM
4. Determine the circular force:
F,=2=22_1g875NorF, =2 =2%%_ 1875 N
d 0,08 v 8

Answer: Fr=1875N; n =1910 min-.

Example 3.25. Select an electric motor. Carry out kinematic and force
calculations for the transmission drive of a chain conveyor (Fig. 3.34), which
consists of an electric motor; a belt transmission; a cylindrical single-stage gear;
aclutch; a drive sprocket whose shaft is supported by plain bearings.
Thepulling force ofthe chain Fi=20KkN, the linear speed ofthe chain
v=1.2 m/s, the diameter of the drive sprocket D;= 500 mm, and the diameters
of the pulleys D1 = 100 mm and D: = 400 mm respectively.

Data: Searched for:
Fi=20kN Nm-2u-2Ti-?N;-?
D1 =100 mm

D2 =400 mm

218



D;=500 mm
v=12m/s
Solution
Plot a kinematic diagram of a chain conveyor drive.

7 ;TN @3; T3; Ny
;r -
X| a
- 1 - motor;
2/ ] 2 - drive pulley;
1 3 - driven pulley;
I Upp T X 4 - transmission;
§ - 5 - clutch;
= X {: X 6 - drive sprocket;
— l 7 - plain bearing

Fig. 3.34. Kinematic diagram of a chain conveyor drive

1. Determine the power of the chain conveyor drive motor

- based on the drive diagram we determine the overall efficiency
(Fig. 3.34)

Mgen =Mpp " Mp * s " Nsp
From the Table D.17 we assume 7,p = 0.96; 1= 0.97; ns = 0.98;
nsp=0.98, then
Ngen =Tpp “Np *Ts *NZp = 0.96-0.97 - 0.98 - 0.98% = 0.87
v = v _20-10%-1.2
™ MNgen 0.87

2. Selecting the motor.

When selecting an electric motor, it is important to remember that
the lower the speed of the motor shaft, the greater the size, weight and cost.
High-speed motors, on the other hand, have smaller dimensions, weight and
cost compared to low-speed motors ofthe same power. However,
as the engine speed increases, the overall gear ratio and therefore the cost
increases. Therefore, it is wusually recommended to use motors
withns = 1500 rpm for drives without shaft reversible rotation and
ns= 1000 rpm with reversible rotation, where ns - synchronous motor speed,
rpm. When selecting a low-speed electric motor, its power rating may differ
from the required one. In such a case, two considerations must be taken into
account: alarge motor power reserve leads to reduced power losses
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(recommended underloading of no more than 10 %) and overloading leads
to motor overheating (permissible overloading of no more than 5 %).

Motor selection condition
Nop.m < Nnoms
where Nob.m. - calculated motor power, kW;
Nnom — Normalized power of the selected motor, kW.

In order to reduce the dimensions of the drive gears from the Table D.18,
we adopt a motor of type 4A225M8U3 for wich Nm = 30 kW, synchronous
speed ns= 750 min’, slip s = 1.8 %. Permissible overload N, =31.5 kW,
permissible underload N, = 27 kW. In further calculations we assume
the calculated power.

The nominal speed is determined from the formula:

1.8
= 750 (1 —) = 736 min~!

n:nc(l ~ 100

- 1_00)
3. Define the kinematic parameters:

(a) the angular velocity at the shaft of the electric motor (drive wheel):
T 314736
30 30
(b) the angular velocity on the high-speed gear shaft (driven pulley):

- determine the belt transmission ratio
D, 400 _
Ypr =D T 100
_ @2 77 _ -1
2= =T 193 s
(c) angular velocity of the drive wheel shaft (gearbox output shaft)
_2-1000-v_2-1000-12

7s~1

wq =

@3 =", 500 857!
(d) transmission ratio
w, 193
W= =g T 4

(e) overall gear ratio
Ugen = Upp " Up =44 =16
4. Determine the force parameters

(a) motor shaft torque
I ijfen _ 2800(7)7- 087 _ o Nm
(b) the torque on the high-speed shaft of the transmission
T, =T, upp, =316-4=1264 Nm
(c) drive wheel shaft torque
Ty =T, u, = 12644 = 5056 Nm
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or T3 =Ty - Ugen = 31616 = 5056 Nm
Answer: electric motor 4A225M8U3: Nn = 30 kW; ns= 750 min-1,

n =736 min1; N, = 28 KW; @1 = 77min1; a» = 19,3 min1; w3 = 4,8 c'1;
uP,p = 4‘,' llp = 4‘; Ugen = 16; Tl == 316 Nm; TZ = 1264‘ Nm; T3 = 5056 Nm.
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Individual tasks
(calculation)

Task 3.10. Determine the motor power. The data for the calculations

are shown in Table 3.10.

Table 3.10. Initial data for Task 3.10

Var. Shaft working Working shaft Working shaft Overal
load, kN diameter, mm speed, min-! efficiency
1o Ft d n Tlgen
1 7 40 300 0.9
2 6 45 315 0.93
3 5 50 425 0.88
4 8 55 520 0.95
5 9 60 635 0.96
6 10 65 552 0.97
7 11 70 722 0.91
8 12 75 433 0.75
9 14 80 638 0.78
10 16 85 551 0.82
11 17 90 665 0.93
12 13 95 530 0.94
13 3 35 815 0.76
14 4 55 918 0.80
15 5 60 1116 0.81
16 6 65 1114 0.85
17 3.5 50 1213 0.92
18 2.5 70 1344 0.93
19 14 75 1432 0.96
20 13 80 744 0.76
21 15 85 548 0.75
22 16 40 354 0.77
23 17 45 462 0.88
24 17.5 50 270 0.98
25 10.5 55 335 0.76
26 11.5 60 338 0.79
27 8.5 65 241 0.89
28 9.5 70 143 0.88
29 7.3 75 560 0.92
30 6.2 100 624 0.93
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Task 3.11. Select the electric motor. Carry out kinematic (specify u;,
) and force calculations of the belt conveyor drive (specify T;, F: of pulleys),
which consists of: electric motor, belt transmission, two-stage cylindrical
reducer, coupling, drive drum, shaft supported by plain bearings. The data
for the calculations are shown in Table 3.11.

Table 3.11. Initial data for Task 3.11

Load _Drum Belt speed, Pulley diameter, Pulley
Var. diameter, e
of drums, kN m/s mm transmition
no mm

Ft Dy Ul D> Upp

1 7 400 0.315 250 1.4
2 6 450 0.4 273 1.2
3 5 500 0.5 285 1.3
4 8 550 0.63 300 1.6
5 9 600 0.8 410 1.8
6 10 650 1 315 1.9

7 11 700 1.25 320 2
8 12 750 1.6 340 2.3
9 14 800 2 360 2.4
10 16 850 2.5 400 2.6
11 17 900 3.15 450 2.8
12 13 950 4 550 2.1

13 3 650 5 480 3
14 4 550 6.3 430 2.8
15 5 600 0.63 365 2.6
16 6 650 0.8 390 2.2
17 3.5 500 1 410 3.1
18 2.5 700 1.25 420 2.5
19 14 750 1.6 430 2.9
20 13 800 0.4 440 2.4
21 15 850 0.5 460 1.8

22 16 600 0.63 315 2
23 17 750 0.8 340 2.5
24 17.5 500 2.1 350 2.7
25 10.5 550 2.8 360 2.9
26 11.5 600 0.85 380 3.1
27 8.5 650 0.65 400 3.3
28 9.5 700 0.75 410 3.4
29 7.3 750 2.8 420 3.6
30 6.2 1000 3 480 3.8
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3.5. Calculation of gears

General information

A gearbox is amechanism that transmits or converts motion
with a change in angular velocity and torque.

All concepts and definitions related to the geometry and kinematics
of gear spans are standardised. The standards specify definitions, terms
and designations and methods for calculating geometrical parameters.

A pinion gear consists oftwo wheels (Fig. 3.35) with teeth
on the surface. The smaller of the gears is called a pinion, the larger a wheel.
The definition of “pinion wheel” is generic. The parameters of the pinion are
assigned index 1, those of the wheel are assigned index 2.

pinion

Fig. 3.35. Gear

There are the following types of gears: helical, bevel, worm, planetary,
wave, wave with Wildhaber-Novikov gearing. Helical gears are the simplest,
most reliable and most commonly used. Other gears are used when there is
a need to transmit motion at an angle or when compactness of the drive is
required.

Selection of material and allowable stresses
The choice of wheel material depends on the size, type, nature
of the load, its operating conditions, dimensional and weight requirements,
availability, price, means of obtaining semi-finished products and method
of tooth processing.
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The basic materials for gears are heat-treated steels. Cast iron
and plastics are used less frequently, bronze and brass are used for worm
gears.

Depending on the hardness of the working surfaces, steel gears can
be divided into two basic groups:

(a) with hardness HB < 350 - normalized and tempered;
(b) with  hardness HB>350 - hardened, carburised, nitrided,
nitrocarburised.

The mechanical properties ofselected materials are shown
in Tables D.19 and D.20.

Helical and bevel gears
The permissible contact stresses depending on the hardness
of the tooth surfaces can be determined on the basis of gearbox application
experience and research.

For steel wheels with hardness < 350HB
kj, = 2.75 - HBpin Ku,
The smallest value kx
For steel wheels with hardness > 350HB
k;, = 24.1 - HRC i Kn1.
where HBmin, HRCmin — minimum hardness of the material (Tables D.19
and D.20).
KuL - durability factor, taking into account the service life and load
mode of the gearbox.
For standardised and improved gears 1 < Ku. < 2.6.
For 350 HB hardness and cast iron wheel is 0.585 < Ku1 < 1.8.
For slanted wheels with HB1- HB2> 50
ki = 0.45(kyq + ky2)
Whereby:
k, < 1.25k,,- for helical wheels with angled teeth;
k, < 1.15k,,- for tapered wheels with uneven teeth.
If k;, < 1.25ky, then k;, = 1.25k,,,
and if kj, < 1.15ky, then k;, = 1.15ky,.
In other cases kirtake lower permissible stresses kj; and k..
Determination of the durability factor for tooth calculations based
on contact stresses
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61107
K= N

where 107 - the basic number of cycles in determining the contact strength
of steel;
N - number of stress-change cycles over the service life (working time), h.

Determination of the service life of the gearbox using formulas:
for sprocket N; = 573w, Ly;
for wheel N, = 573w, Ly,
where w1,z — angular velocity of the driving and propelling shafts, s-1;
Ly - specified gearbox life.

If the service life is not specified, the gearbox service life is assumed to be
not less than 36 000 h (according to PN-M-88561:1987, the service life
of a general-purpose gearbox should be not less than 36 000 h and the service
life factor Ku.= 1 is assume).

If the calculated KuL value is greater or less than the specified range,
the minimum or maximum value within the specified range is taken.

Determination of maximum permissible contact stresses
In the calculations, the maximum permissible contact stresses are
determined to prevent either plastic deformation or brittle fracture of the
tooth surfaces.

For steel
at HB < 350 Kiemax = 2.5 Ky
at HB > 350 Kiemax = 2 Ky
For castiron
at HB < 350 Kimax = 1.8 0p
at HB > 350 ki max = 14 HRC

Determination of allowable bending stresses
- if the teeth operate unilaterally (from azero stress cycle, no backward
movement)

I = (14+1.6)-R_,
g Kp - [n] FL
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- if the teeth work bilaterally (symmetrical stress cycle, backward

movement)
ki = R K
9 Kp-[n] Ft
where ko permissible bending stress at the zero cycle, MPa;
k.14 - allowable bending stresses at symmetrical cycle, MPa;

R.; - material strength limit at symmetric cycle, MPa;

for carbon steel R_; = 0.43R,,
N
for alloyed steel R_y ~ 045R,, + (70 + 120)—
mm
for cast iron R_; = 0.45R,,

Kr - effective stress concentration factor at the base of the tooth.

For design calculations for Normalized and tempered steel wheels
Kr =1.8; for steel wheels after surface hardening and cast iron wheels
Kr=1.2;

[n] - permissible safety factor.

For forged normalized and tempered wheels [n] = 1.5; for forged
hardened wheels [n] = 2.2; for cast Normalized and tempered wheels [n] = 1.8;

KrL - durability factor when calculating the bending of teeth;

at HB <350 1<Kp<2

at HB> 350 1<Krn<1.65

Determination of durability coefficient for bending tooth calculations

9,5-106
Kpp, = v

where 5 - 106 - number of stress cycles for all steel grades;
N - number of stress cycles over the service life (working time), h.

With continuously working gearbox (with an operating time
of 236000 h) KrL= 1.

If the project value of Kr.. is less than or greater than the specified interval,
the minimum or maximum value in the interval is taken..

The lower value ki is used for further calculations.

Determination of maximum bending stresses
Maximum bending stresses are determined to prevent brittle fracture
or plastic deformation of the teeth.
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For steel wheels

at HB <350 kgmax:0-8'Re02
at HB > 350 kg max = 0.36* Ry /Kp/

Basic calculation formulae
Geometry of helical gears (Fig. 3.36).

pinion

,/'\

,\\\/ addendum circle

| L—'l‘."'
// ’{-‘::‘.
bottom

dedendum

gear
d1

de I

|

Dﬁiai

|

Fig. 3.36. The geometry of a helical gearbox

Gear ratios and transmission ratios
The parameter u = z2/z; according to ISO/DIS 21771-2 is called
the gear ratio and defines the ratio ofthe larger number of teeth

to the smaller number.
The gear ratio is only considered about a pair of wheels, in other cases

the ratio is considered, but due to its more frequent use, the ratio is called
the gear ratio and the designation u is used:

d, n{ w
i(w) = —%—;—,
di ny wy
where di, ni, wx - pinion diameter, speed, pinion angular velocity,

respectively;
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dz2, n2, a» — wheel diameter, wheel speed, and wheel angular velocity
respectively.

Reduction gearboxes are more commonly used, in which:

attachment module:

straight tooth, oblique gear tooth (Fig. 3.37)
=5=5 me =

where d - pinion diameter, mm;
z - number of teeth of the sprocket;
p - step of attachment, mm;
mt - module, mm;
mn — normal module, mm.

The straight-tooth gear is characterised by the fact that the end
modulus is equal to the normal modulus;

f =8+ 16 ° - tooth angle of gearboxes = 25 + 40 ° - tooth angle
of chevron gearboxes.

In apair ofrelated diagonal teeth with an external abutment,

the angles fare equal in value but opposite in direction. One wheel is right-
handed, the other left-handed.

2\
) S
l 900>
=z
S
1 n\
HH =
5 —~:
i
b

Fig. 3.37. Schematic diagram of a gearbox with oblique teeth

In practice, the module is often determined from the ratio:
m, = (0.01 = 0.02)a,,,
where aw - the distance between axes from contact strength condition, mm.
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Based on experience with gears, it is recommended to adopt a modulus

Mmin > 1.5 mm.
The modules are standardised by PN-ISO 54:2001 in the range

of 0.05 + 00 mm (Table D.24).

Hitching step:
straight tooth oblique tooth (Fig. 3.37)
nd _ Pn
Pn =T m="—r pt_cosﬁ
pn — normal step, mm; p:- lateral step, mm

In a gearbox with a straight tooth, the normal steps are equal.
For a pair of hitched wheels, the module should be the same.

For non-corrected gears:

gearbox with gearbox with

straight tooth oblique tooth
Height of tooth head, mm h, =m h, =m,
Height of tooth base, mm hs = 1.25m hs; = 1.25m,
Tooth height, mm h=h,+hs=225m h =2.25m,
Radial gap, mm c =0.25m c =0.25m,
When cutting with a chisel c =0,35m c =0,35m,

Non-corrected wheel diameter, mm:

gearbox with gearbox with oblique
straight tooth tooth
(a) distribution d = mz d=myz= MpZ
wheel cos
(b) vertices d, =d+2m=d+ 2h, d, =d+2m, =d+ 2h,
a,, = 05(d2 + dl) = O.Sm(ZZ + Zl)
Inter-axial distance, a, = 0.5(d, +d;) = 0.5my(z, + 2z;)
mm o = my(z, + 2;)
W 2cosf
Width of wheels, mm:
wheel sprocket
by =Yg - ay by = b; + (5 +10) mm

230



where 1), - is the ratio of the width of the pinion rim to the inter-axial
distance, determined from Table D.23.
Tooth length, mm:

gearbox with gearbox with
straight tooth oblique tooth
b
L=b L= cos 8

Forces acting at the abutment

Straight tooth gearbox (Fig. 3.38):

peripheral force of sprocket and wheel F, = %}

radial force of pinion and wheel F,. = F; - tgay,
normal force E, = F,/(cos ay, - cos )
where T - torque acting on the shaft, Nmm;
d - diameter of the distribution wheel, mm;
aw = 20 ° - angle of engagement of non-corrected gear;
On the driven wheel, the direction of the peripheral force coincides
with the direction of rotation; on the driven wheel, it is opposite.

d Fr.

Fig. 3.38. Forces acting in a straight helical gear mesh

Gearbox with oblique tooth (Fig. 3.39):
peripheral force F, =2,
radial force F, = F,22%%

cos B’
radial force F, = F, - tgB,
normal force F, = —=

" (cos ay-cos B)’
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Fu|l 27 p

Fig. 3.39. Forces acting in a gear mesh with bevel teeth

Determination of the peripheral speed of the abutment

V= wd
~2-1000
where w- wheel rotastional speed, s,

d - wheel diameter, mm.

m/s

Formulae for calculating spur gears

The basic performance criteria for helical gears are contact tooth
strength and tooth bending strength.

For helical gears, calculations are carried out for contact strength,
bending strength, calculation of maximum load to prevent plastic
deformation or brittle fracture as a result of short-term peakloads (e.g. when
starting an electric motor), and thermal calculations for heavily loaded high-
speed gears.

When designing gears, adistinction is made between design
and verification calculations.

In design calculations, the required gearbox dimensions are determined
by the specified load and known allowable stresses.

In the verification calculations, the actual stresses in the teeth
are determined using the specified load and dimensions and compared with
the permissible ones. In addition, calculations at maximum load and, where
necessary, thermal calculations are performed.

Verification calculations are generally carried out for the teeth
of the less hard wheel. When using materials of the 1st hardness group
< 350 HB, these are often the teeth of the wheel. For materials of the 2nd
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hardness group > 350 HB, calculations are made for the teeth of the pinion
and the wheel.

For open gears, it is fundamental to calculate the teeth for bending
due to the high wear in this type of gear.

Straight tooth gearbox
3 2T1KFYF
m=
kgl/)bmzl

For design calculations:
_ FiKpYp

bm

For verification:

OF s Ky,
where F; - peripheral force, N;

Kr - load factor;

Kr = Krp - Kpo - Kry

Krp - coefficient of unequal loading across the width ofthe rim

(Table D.27);

Kro - coefficient of uneven load between the teeth (Table D.27);

Kr, - dynamic coefficient (Table D.28);

Yr - tooth form factor (Table D.29);

b - wheel width, mm;

m - module, mm;

T: - torque on the sprocket, N-m;

z1 - number of teeth on the sprocket;

wsm =b/m — wheel rim width ratio;

[Fs]- allowable bending stresses, MPa.

Bevel tooth and chevron gearing
For design calculations:

3j 2TKpYpYsKpq cos B
m =

kgll)bmz

For verification:
F,KpYp YK
_ PeleXrtpRra _

o = Rg,

bm,
where £ - tine angle;
mn — normal module, mm;
z - number of teeth of the pinion or wheel;
T - torque on the pinion or wheel, Nm;
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[

YB =1- 1B4_0 - tooth line inclination factor.

For closed gear bars, calculations for the contact strength of the teeth
are basic, and calculations for bending are carried out on verification.
For design calculations:

3 [T, 105 Kpp
You? ks’

where K, - support factor. For gears with oblique teeth
K. = 43, with straight teeth K, = 49.5;
u - transmition ratio;
the “~” sign when calculating the internal abutment;
T2 - torque on the free gear shaft, Nm;
103 - conversion factor m in mm;
Ky - coefficient ofuneven load distribution along the length
of the tooth;
¥, - ratio of gear rim width to inter-axial distance;
k, - permissible or average contact stresses, MPa.
The calculated value of the inter-axial distance is rounded to the nearest
standardised one.
For verification calculations against contact stresses:
gearbox with straight teeth

310 T,.K-(u+1)3
oy = —- /— <k
H Ay bz'uz =g’

gearbox with oblique tooth

270 Ty . Ky-(u+1)3
oy ==—- /— <k
H Ay bz'uz g’

where aw - inter-axial distance, mm;
T> - torque on low-speed gear shaft, Nmm;
Ku - load factor:

ay 2K, (utl)-

Ky = KngKnaKny
Kup - coefficient of non-uniformity of load distribution over the width
of the rim (Table D.25);
Kuo — coefficient of unevenness of stress distribution between teeth
(Table D.27);
Kuyo- dynamic factor (Table D.28);
U - transmission ratio;
b2 — wheel width, mm;
ks — permissible contact stresses, MPa.
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For verification calculations against bending stresses:
F,KrYpY3K,
I e i e 2 K

O'F = Ky

bm,,
For verification calculations against limit stresses for open, closed gears,
straight tooth and helical oblique gears:
Relative to contact stresses:

_ Timax
kgmax =0y ’ T, = kg limy

where ou - calculated contact stresses, MPa;
kg 1im— limit permissible contact stresses, MPa;
T1 - pinion torque, Nmm;
T1max — sprocket torque at maximum load, Nmm.

Tlmax
k.gmax = 0f T1 = kg lim

where or - calculated bending stress, MPa;
k g1im— limit permissible wheel bending stress, MPa.

Thermal calculations for gearboxes
Thermal calculations for helical and bevel gears are performed
as an additional calculation when operating at high loads and speeds.
For worm gears, these are basic calculations, as they operate under
conditions of strong heat generation that can lead to damage. Thermal
calculations are performed for a fixed operating mode based on the heat
balance, i.e. the equality of heat release and heat transfer:

Qrel = Qtran

In thermal calculations, the temperature of the lubricant is often

specified, whereby the condition should be met:

1—n)N

where 77 - the overall efficiency of the gearboxs;
N1 - power at the pinion, W;
to — heat transfer coefficient from the surface of the enclosure (higher
value with good air circulation at the ambient temperature) to = 20 °C;
K: = 8 + 17 W/(m? -°C) - heat transfer coefficient from the surface
of the enclosure (higher value with good air circulation at the ambient
temperature);
A - cooling area of the gearbox housing (not including the bottom), m?;
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w - heat transfer coefficient through the bottom of the enclosure (0.3

if the bottom is against the enclosure, 0 if the bottom is against

concrete or brick);

[ts] - permissible temperature of the lubricant in the housing.

For common grease [ts] = 70 + 90°C, for aviation grease
[ts] =20 + 100 °C.

If the heat balance condition is not met Qs > Qo, , then additional heat
dissipation must be taken into account. This is achieved by the following
means; increasing the cooling surface area A using cooling fins; blowing air
into the housing using a fan mounted on the worm shaft; placing water
cavities or a coil with running water in the housing; using grease circulation
systems with special coolers.
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Examples of calculations

Example 3.26. For ahelical gear with oblique teeth (Fig. 3.40),
determine the pitch and inner diameter of the wheel, normal and final
(circumferential) meshing modulus, tooth height, distance between axes
and forces acting in the meshing. Take the necessary data from the drawing.

Data: 2=20" Searched for:
Ni =10 kW TS ; di-7dz2-?
n;=1000 min-! 111000 mire! da1 - ? daz - ?
z1=20 mp=3mm;B=10° p.-7h-?
Zz2=80 - aw-7?F¢-7?
my =3 mm Fr-7F;-7?
p=10°

Fig. 3.40. Diagram of helical bevel gearbox

Solution
1. Define the unknowns.
1.1. We determine the diameters of the wheel bores:

sprocket wheel
_muzy  3-20 _myuz;  3-80
1_cosﬁ_00510° 2_cosﬁ_c0510°

= 61.2245 mm = 244.8979 mm

1.2. Determining the outside diameter of the wheels.

sprocket
dgy =dy +2m, = 612245+ 2 -3 = 67.225 mm
wheel
dyy = dy + 2m,, = 244.8979 + 2 - 3 = 250.898 mm

1.3. Determining the pitch of the end gear.

dy 61.2245

pe=m = 314 —

1.4. Determining the height of the tooth.
h =2.25m, =2.25-3 =6.75 mm

1.5. Determine the distance between the axes
a,, = 0.5(d; + d,) = 0.5(61.2245 + 244.8979) = 153 mm

From the the Table D.26 we assume a,,=160 mm.
1.6. Determine the forces acting in the mesh.
First determine the pinion torque

103
T, = 9.55% = 9,55 . 1212
ny 1000

=9.612 mm

~ 96 Nm, then
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Peripheral force

g2 2T 2:96-10°
17 d, " 61.2245=3136 N
Radial force
Futga tg20°
=——=3136- = 1159N
™7 cosB cos 10°

where o - attachment angle, a = 20 °.

axial force
Fyq = FiqtgB = 3136 - tg10° = 552 N

Answer: di = 61.2245 mm; d; = 244.8979 mm; d.; = 67.225 mm;
daz = 250.898 mm; p; = 9.612 mm; h =6.75 mm; a»=160 mm; F;;= 3136 N;
Fr1=1159 N; F,; =552 N.

Example 3.27. Check the contact tooth strength of a helical bevel
gearbox if: transmitted power N1 = 15 kW; rotational frequency of the high-
speed shaft n1 = 750 min-1; transmission ratio u = 3.5; number of pinion teeth
z1 = 23; tooth inclination angle f = 12 °; mesh modulus m, = 3 mm; wheel
material - 40H steel Normalized, wheel width factor s, = 0.315; durability
factor KuL = 1; load factor Ku=1.2.

Data: Searched for:
N1 =15kW on-7?
ni =750 min!
u=3,5
Z1=23
p=12°
mn =3 mm
Wha = 0.315
KHL = 1
Kn=1.2
40H normalized steel
Solution
1. Write the contact strength condition for a helical gear with bevel teeth:

270 |T,.Ky(u +1)3
L) (TCEST
a,, b,u?

2. Define the unknowns.
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2.1. Determine pinion and wheel parameters
mpz; 323

1 cosf cos12°

d, = dyu = 70.542 - 3.5 = 246.895 mm

2.2. Determine the distance between the axes
d; +d, 70542+ 246.895

-T2~ 2

From the Table D.26 we assume a,,= 160 mm.

2.3. Determine the permissible contact stresses for the wheel.

Taking into account wheel diameter d> = 245 mm, material steel 40H and
type of heat treatment from the Table D.19, material hardness is HBmin = 220,
for steel wheels with hardness <350 HB

kg = 2.75HByy;n Ky, = 2.75-220 -1 = 605 MPa
2.4. Define torques.
pinion

= 70.54 mm

aw

= 158.72 mm

T, =955 — 955 15-10°
e, T 750

wheel (because gear is helical 77=0,98)
T, = Tyun = 191-3.5-0.98 = 655 Nm
2.5. Determine wheel width.
b, =, - ay = 0.315- 160 = 50,4 mm
From the Table D.21 we assume bz = 50 mm.
3. We determine the contact stresses and assess the contact strength
of the teeth

270 |TpKy(u+1)3 270 [655-10%-1.2-(3.5+1)% _ c77 N _c77 Mp
M, b,u? 160 50 - 3.52 ~ 7 mm? )

577 MPa < k, = 605 MPa
Strength condition is met.

=191 Nm

Example 3.28. Check the temperature of the worm gearbox (Fig. 3.41),
if: transmitted power N1 = 2.2 kW; worm speed z; = 1; ambient temperature
to= 20 °C; the gearbox is installed on a metal frame; heat transfer coefficient
Kr= 15 W/(m2-°C); permissible lubricant temperature range
[ts] = 70 + 90 °C; case dimensions are shown in Fig. 3.41.
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Data:

N1 =2.2KkW

z1=1

to=20°C
Kr=15W/( m2-°C)
[ts] =70 +90°C

Solution
1. Write down the heat balance condition for the worm gearbox.

ts =t, +

2. Define the unknowns.

1-mnN;

Krd+y) =

2.1. Determine the efficiency of the worm gearbox.
With rough calculations, the efficiency ofa worm gearbox can be

determined from the number of worm revolutions.

Z1 n

1| 072+0.78
2| 0.78+0.82
3| 082+0.87
4 | 087+092

For z1 = 1 we take 7= 0.75.

Searched for:

ts-?

2.1. Determine the area ofthe gearbox housing through which heat

penetrates.

A=2(B-H) +2(L-H)+B-L=200.12-0.46) + 2(0.42 - 46) + 0.12 - 0.42 = 0.55 m?

2.1. Determine the coefficient, taking into account the heat dissipation

through the lower part of the gearbox housing.

If the gearbox body is installed on a concrete, reinforced concrete

or stone foundation y =0, if on an iron frame - = 0.2 +0.3.
Assuming that the gears are installed on an iron frame, = 0.2.
3. Determine the temperature ofthe

the temperature mode of the gearbox

A-mN, _,  (1-07522 103

te=t, +

% KA +Y) % 0.15-0.55(1 + 0.2)

the temperature of the gearbox is normal.

= 65°C < [t] = 70 +90°C

lubricant and determine

240



Individual tasks
(calculation)

Task 3.12. For a helical bevel gearbox, determine the pitch and inside
diameter of the wheel, the normal and end (circumferential) modulus
of the mesh, the tooth height, the distance between axes and the forces acting
in the mesh (Table 3.12).

Table 3.12. Initial data for Task 3.12

Var. N n; Normal step pn, 5
no kW | mint | Z . mm °
1 4.5 250 18 2 6.28 9
2 5.0 300 19 3 7.85 10
3 5.5 250 20 4 9.42 11
4 6.0 320 21 5 10.99 12
5 6.5 300 22 6 12.56 13
6 7.0 340 25 4 14.13 14
7 7.5 180 26 2 15.7 15
8 8.0 160 28 2 6.28 16
9 8.5 150 30 3 7.85 9
10 9.5 240 22 4 9.42 10
11 10.0 260 20 5 6.28 11
12 10.5 220 18 6 7.85 12
13 11.0 200 18 4 9.42 13
14 11.5 280 19 2 10.99 14
15 12.0 300 20 2 12.56 15
16 16.5 260 21 3 14.13 16
17 12.5 240 22 4 15.7 9
18 13.0 230 25 5 6.28 10
19 13.5 260 26 6 7.85 11
20 14.0 220 28 4 9.42 12
21 14.5 250 30 2 6.28 13
22 15.0 180 22 2 7.85 14
23 16.0 240 20 3 9.42 15
24 17.0 240 18 4 10.99 16
25 17.5 150 18 5 12.56 9
26 18.0 170 19 6 14.13 10
27 19.0 180 20 4 15.7 11
28 20.0 140 21 2 6.28 12
29 21.0 300 22 2 7.85 13
30 22.0 320 25 3 9.42 14
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Task 3.13. Check the contact strength of the teeth of a helical gearbox
with bevelled teeth. The data for the calculationas is shown in Table 3.13.

Table 3.13. Initial data for Task 3.13

Heat
I I e R R B R R R
1 4.5 750 2 18 2 9 0.25 1.1 1.1 C35
2 5.0 800 2.5 19 3 10 0.315 1.0 1.05 C40 _é"
3 5.5 900 3 20 4 11 0.4 1.12 1.0 C45 -T%
4 6.0 950 3.5 21 5 12 0.25 1.14 | 1.12 C50 é
5 6.5 1000 4 22 6 13 0.315 1.2 1.15 C55 2
6 7.0 1050 4.5 25 4 14 0.4 1.4 1.11 | 30HGS
7 7.5 1100 5 26 2 15 0.25 1.3 1.3 35H
8 8.0 1200 1.5 28 2 16 0.315 1.5 1.4 40H - o0
9 8.5 1250 2 30 3 9 0.4 1.6 1.2 40HN é 56
10 9.5 1300 2.5 22 4 10 0.25 1.7 1.25 C35 L
11 10.0 | 1400 3 20 5 11 0.315 1.8 1.35 C40 )
12 10.5 | 1450 3.5 18 6 12 0.4 2.0 1.1 C45
13 11.0 | 1500 4 18 4 13 0.25 2.1 1.05 C50
14 11.5 750 4.5 19 2 14 0.315 | 1.25 1.0 C55 20
15 12.0 800 5 20 2 15 0.4 1.35 | 1.12 | 30HGS %
16 16.5 900 1.5 21 3 16 0.25 1.1 1.15 35H é
17 12.5 950 2 22 4 9 0.315 1.0 1.11 40H §
18 13.0 | 1000 2.5 25 5 10 0.4 1.12 1.3 40HN
19 13.5 | 1050 3 26 6 11 0.25 1.14 1.4 C35
20 14.0 | 1100 3.5 28 4 12 0.315 1.2 1.2 C40 T
21 14.5 | 1200 4 30 2 13 0.4 1.4 1.25 C45 E -5
22 15.0 | 1250 4.5 22 2 14 0.25 1.3 1.35 C50 E g;
23 16.0 | 1300 5 20 3 15 0.315 1.5 1.1 C55 = 5
24 17.0 | 1400 1.5 18 4 16 0.4 1.6 1.05 | 30HGS
25 17.5 | 1450 2 18 5 9 0.25 1.7 1.0 35H
26 18.0 | 1500 2.5 19 6 10 0.315 1.8 1.12 40H o0
27 19.0 750 3 20 4 11 0.4 2.0 1.15 40HN %
28 20.0 800 3.5 21 2 12 0.25 2.1 1.11 C35 é
29 21.0 900 4 22 2 13 0.315 | 1.25 1.3 C40 §
30 22.0 950 4.5 25 3 14 0.4 1.35 1.4 C45
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3.6. Selection of reducers

General information
Reducers - are devices that are manufactured as separate units
and are designed to reduce angular velocities and increase torques.
Reducers are widely used in the drives of machines and mechanisms.
A general criterion for the technical level of reducers is the specific
weight - the ratio of the weight of the reducer to the torque on its low-speed
shaft:

where m - weight, kg,
T2 - torque, Nm.

Its value is highly dependent on the hardness of the gears. For high-
tech reducers y =0.03 + 0.05.

Gearboxes are very diverse in terms of kinematic schemes and design.

Classification of reducers. By type of gearbox: spur gearboxes, bevel
gearboxes, worm gearboxes, planetary gearboxes, wave gearboxes,
combination gearboxes (bevel and helical gearboxes, worm gearboxes);

- according to the arrangement of the teeth on the wheel rim: spur gears,
helical gears, chevron gears, bow gears;

- by several stages: single-stage and multi-stage. The number of gear
stages can be defined as the number of shafts minus one. Typically, the
number of stages exceeding three is rarely used due to the large size and cost
of such reducers;

- by location of shafts and wheels in space: horizontal, vertical, inclined;

- according to the mounting method: on feet or plate (with base) -
for mounting on foundations, floors, and frames; with flanges for mounting
on housings, frames of machines and mechanisms; slip-on - low-speed
mounted directly on the working shaft ofthe machine; combined -
for various mounting; according to mounting diagram;

- according to climatic requirements: the gearboxes are designed
for operation in macroclimatic regions with temperate, tropical, moderately
cold, cold climates, etc.

- by location categories, which are regulated by the relevant standards.
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Selection and calculation of reducers
The selection of series reducers is made according to the transmitted
torques from the manufacturers' catalogues. Preliminary data for gearbox
selection are: the highest load value corresponding to normal gearbox
operation; the operating mode; the speed of the high-speed shaft; the gear
ratio; the location of the motor and the working body of the machine; and the
operating conditions.

Condition for selection of reducer
Teaic = K Ty < Tt:uf = U, Nyzpoo. < Nmaxs

where K - mode factor;
Tr, Ty, Tt - calculation torque, nominal on the input shaft and tabular
torque, Nm;
us Uur — factual and tabular translation;
Nrzp.o— actual speed of the high-speed reducer shaft, min-1;
Nmax — Maximum tabulated reducer shaft speed, min-1.
The permissible overload is 10 %, and the permissible underload is 20 %.

The calculation of gear reducers includes the calculation of components
such as gears, shafts, bearings, and bolts close to the bearings, checking
of keyway connections and thermal calculations (for high-speed worm
gears).

The design, calculation and selection of materials for gearbox
components are described in design and technical manuals.

When solving gearbox selection tasks, it is advisable to pay attention
to the position of the shafts in the task diagrams. If the shafts are aligned
parallel in the gearbox diagram, the gearbox will be cylindrical; if they are
angled, it may be a worm or bevel.
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Examples of calculations

Example 3.29. Select from the catalogue areducer for the electric
drive of the winch (Fig. 3.42) indicating its type, number of stages, overall
dimensions, weight and size of bolts for its attachment, if: motor shaft speed
n1= 945 min-1; winch lifting capacity Q = 1,5 t; load lifting speed v;= 1.2 m/s;
drive shaft diameter D, = 500 mm; mode factor K, = 1.3; permissible ratio
deviation Au +4%.

Data: Searched for:

n:; = 945 min-! i Reducer - ?
0=15t ? B =
Vi=1.2m/s @-”. F‘

Dy =500 mm
Kr=1.3
Aut4% Fig. 3.42. Electric winch drive

Solution
1. Reducer selection condition.
Teaie = KTy S Ty Up = U, Nygpo. < Ninax
2. Define the unknowns.
2.1. Reduce the load capacity to a single designation and units.
Q = F, = 15000 N
2.2. Determining the rated torque of the slow-speed shaft.

__FD, 15-10%-0.5

Tww = ) > = 3750 Nm

2.3. Determine torque.
Teare = KearcTzww = 1.3 - 3750 = 4875 Nm

2.4. Determine the rotational speed ofthe drum, which is equal

to the speed of the slow-running shaft of the reducer.

60v,  60-1.2

= Tww =T T 31405

2.5. Determining the gear ratio of the reducer.
My 945

=—=—>=205
ny 46

= 46 rpm

Up
3. Selecting a reducer.

Taking into account the condition for the selection of the gear reducer
and the obtained values for the design torque and ratio, as well
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as the parallel alignment of the gear shafts in the drive diagram from
the catalogue in Table D.33, a cylindrical two-stage gear reducer of size
1C2U-250 is selected, for which:

- rated torque T,= 5000 Nm;

- ratio u; = 20;

Permissible ratio deviations

Ur — U
Au = ! z

-100% =25%<4%

u‘Z
Condition is met
From Table D.33 we also extract the dimensions L = 825 mm; B = L4+Ls
=265+335= 600 mm; H = 515 m; weight of reducer m = 320 kg; diameter

of the mounting screw holes d = 28 mm, we assume M24 screws.

Answer: Reducer 1C2U-250.
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Individual task
(calculation)

Task 3.14. Select areducer for an electric winch drive from
a catalogue, indicating its type, number of steps, overall dimensions, weight
and the size of the bolts to attach it. The initial data are shown in Table 3.14.

Table 3.14. Initial data for Task 3.14

Var. Ft ni, Ds, W, )

o KN | mint | mm | m/s Kr Au Drive scheme

1 |45 750 | 500 0.2 1.0 4

2 |5.0 800 | 600 025 | 1.1 5

3 |55 900 | 700 0.3 1.2 6 1

4 16.0 950 | 750 0.35 | 1.15 7 /

5 |65 | 1000 | 800 0.5 1.2 9 @

6 |7.0 | 1050 | 850 0.4 1.3 8

7 |75 1100 | 900 0.45 1.4 10 = Fi

8 (80 | 1200 |950 0.6 1.5 4 I v

9 |85 |1250 1000 | 0.7 1.6 5 ? D

10 |9.5 | 1300|1100 | 0.8 | 1.05 6 3
11 |10.0 | 1400 | 1200 | 1.0 | 1.12 7

12 [ 10.5 | 1450 | 500 1.1 1.0 9

13 | 11.0 | 1500 | 600 1.2 1.1 8

14 [11.5 | 750 | 700 1.3 1.2 10

15 |12.0 | 800 | 750 1.25 | 1.15 4

16 [16.5 | 900 | 800 1.5 1.2 5

17 |12.5 | 950 | 850 1.4 1.3 6

18 [13.0 | 1000 | 900 145 | 1.4 7

19 |13.5 | 1050 | 950 0.2 1.5 9 |

20 | 14.0 | 1100 | 1000 | 0.25 | 1.6 8 L

21 |14.5 | 1200 | 1100 | 0.3 | 1.05 10 | F;
22 |15.0 | 1250 | 1200 | 0.35 | 1.12 4 i *”VT
23 | 16.0 | 1300 | 500 0.5 1.0 5 ? D:
24 |17.0 | 1400 | 600 0.4 1.1 6 » 5
25 | 17.5 | 1450 | 700 045 | 1.2 7

26 |18.0 | 1500 | 750 0.6 | 1.15 9

27 |19.0 | 750 | 800 0.7 1.2 8

28 |20.0 | 800 |850 0.8 1.3 10

29 |21.0 | 900 | 900 1.0 1.4 4

30 |22.0 | 950 |950 1.1 1.5 5
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3.7. Graphical schemes of gearbox elements. Creation of kinematic
diagrams of drives

General information

Conventional graphical representations of the elements of machines
and mechanisms are special simplified images used for drawing up kinematic
diagrams and showing the basic structure of the mechanism or machine and
the interaction ofthe elements ofmachines and mechanisms.
The conventional graphic symbols in kinematic diagrams and the rules
for drawing up kinematic diagrams are governed by the relevant standards.
Tables 3.2 and 3.3 below provide basic graphical representations
of the kinematic elements of machines and machinery mechanisms.

Rules for plotting kinematic diagrams

As arule, the kinematic diagram of the product is drawn up in the form
of a summary drawing (Fig. 3.43).

The kinematic diagrams show:

- shafts, axles, connecting rods, cranks and others - basic continuous
lines of thickness s;

- components shown in simplified outline, gears, worms, pulleys,
couplings, bearings, etc. - in continuous lines of thickness s/2;

- the contour ofthe product (e.g. casing) into which the graph
is inscribed - with continuous thin lines of thickness s/3.

According to the standard, the thickness of the baselines on kinematic
diagrams should be in the range of 0.5 + 1.4 mm. When using computer
graphics programs, it is recommended to set the following line thickness
in the sheet: basic s = 0.6 mm, then s/2 = 0.3 mm and s/3 = 0.2 mm.

Each kinematic component shown in the diagram is usually assigned
a serial number, starting with the motor. Shafts are numbered in Roman
numerals, other components are numbered in Arabic numerals only
(Fig. 3.43). The serial number of the component is placed on a line. Below the
line are the main features and parameters of the kinematic element, a list
of which is given in Table 3.15.
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Table 3.15. List of basic parameters and characteristics of kinematic elements

Kinematic element

Parameter, characteristics

1. Motor

Type; power N, W; rotation n, rpm

2. Reducer, belt, chain and
other gears

Transmission ration u

3. Pulleys

Diameter &, mm

4. Sprocket

Number of sprocked teeth z, chain step ¢,
mm

5. Gears, worm wheels

Number of teeth z, module m, mm; tine
angle S (for oblique teeth)

6. Snails

Screw type (if not Archimedean), number
of screw coils z, module m, mm

Table 3.16. Graphical symbols for machine elements and mechanisms in kinematic

diagrams (IS0 5127:2017)

Name

Symbol

Source of movement (motor)

Shaft, axle, rod, connecting rod, etc.

Fixed link (stand)

Multistage pulley

Friction gear:

Helical

oblique
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Name

oblique adjustable

front adjustable

Belt transmission:
= L
without specifying the type of belt _“’I*f_, ._“*’If_ —69'
With the type of belt identified (the belt — o = o
profile is drawn alongside). There are the I
profiles of flat, V-belts, multiple V-belts and j# L<F

round belts.

Chain:

Without specifying the type of chain

1

With the identification of the type of chain.

There are the conventional chain
designations: 1) plate, roller, sleeve; 2)
calibrated, anchor; 3) toothed

Spur gear:

without specifying the type of tooth

with an indication of the type of tooth:

1) straight tooth; 2) oblique tooth;

3) chevron

Internal pinion gears
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Name

with an indication of the type of tooth:

1) straight tooth; 2) oblique tooth;

3) with round teeth

Hypoid gearbox

Worm gear with cylindrical worm:

with top auger system

with bottom auger system

Worm gearbox

Screw-nut gearbox:

with one-piece guide

integral with rolling elements

sliding distributor I — — 2 “_
o ol el ol 1ol
Thread o Q) L&y 9 |19}
1 2 3 4 J
Plain and antifriction bearings without S
specification of type: 1) radial; 2) longitudinal (4
- ings: = O
Rolling bearings: TG
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Name

Plain bearings: 1) radial; 2) radial
longitudinal unilateral; 3) radial longitudinal
bilateral; 4) longitudinal unilateral; 5)
longitudinal bilateral

Coupling without type designation

Fittings with type designation:
1) blind; 2) compensating; 3) flexible

Brake (general designation)

Table 3.17. Examples of kinematic diagrams some reducers

Reducer

Single-stage roller

Single-stage vertical roller

Conical single-stage

Cylindrical two-stage gearbox made
according to an enlarged scheme with oblique
teeth

Cylindrical two-stage gearbox with split
spur teeth
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Reducer Scheme
— ||
| x P %
Cylindrical two-stage coaxial —d b—
e
— [

Three-stage cylindrical gearbox with split
intermediate shafts with bevel teeth

Two-stage bevel and spur gear wheel with
circular bevel stage teeth and spur teeth

Single-stage auger with bottom auger
system

Two-stage worm gearbox

Toothpick
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Examples

Example 3.30. Draw akinematic diagram ofthe drive based on
the structural diagram, indicating its components and main parameters.

Initial data
Motor — belt transmission cylindrical two-stage transmission made
by the expanded diagram — compensating coupling — shaft of the working
machine, supported on one side by adouble-sided thrust bearing and
on the other side by a single-sided thrust bearing.

Implementation

I
N kW

n, rpm

C

u

4

0, mm u z;, my, mm, f =2 mi, mm, B

Fig. 3.43. Kinematic diagram of the drive:

1 - motor; 2 - belt transmission; 3 - driving pulley; 4 - driven pulley; 5 - cylindrical two-
stage transmission made according to the extended scheme; 6 - first stage
transmission; 7 - first stage wheel; 8 - second stage transmission; 9 - second stage
wheel; 10 - compensating joint; 11 - double-sided thrust sleeve bearing; 12 - single-
sided thrust sleeve bearing; I - motor shaft; Il - low-speed reducer shaft; III -
intermediate reducer shaft; IV - low-speed reducer shaft; V - working machine shaft.
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Individual task
(graphical)

Task 3.15. Make akinematic diagram ofthe drive based on
the structural diagram (Table 3.18), indicating its components and main
parameters.

Table 3.18. Initial data for Task 3.15
Var.

no

Structural scheme

Motor — wedge gearbox — two-stage helical gearbox made by the extended
1 | diagram — compensating coupling — working shaft of machines, supported
by single-sided plain bearings.

Motor — coupling — bevel gear — coupling — shaft of the working machine,
supported by tapered roller bearings.

Motor — wedge-belt transmission — worm gearbox with upper worm
3 | position— spring coupling — machine shaft supported by double-sided angular
contact roller bearings.

Motor — coupling — helical bevel gearbox — chain gearbox — machine
working shaft supported by thrust ball bearings.

Motor — coupling — two-stage helical gearbox made according to the extended
5 | scheme with oblique teeth — chain transmission — the working shaft of the
machine is supported by radial ball bearings.

Motor — chain transmission — coaxial two-stage spur gear with oblique spur
teeth — spring coupling — machine working shaft supported by roller bearings.

Motor — coupling — three-stage gearbox is made according to the split scheme
7 | with oblique teeth — compensating coupling — machine shaft supported by
plain bearings.

Motor — chain transmission — two-stage worm gear — coupling — working

8 shaft of the machine, supported by a roller bearing.

9 Motor — coupling— two-stage worm gearbox — coupling — working shaft
of the machine, supported by a roller bearing.

10 Motor — chain transmission — bevel gear with round teeth — coupling —
machine working shaft supported by radial roller bearings.

11 Motor — chain transmission — bevel gear with round teeth — coupling —

machine working shaft supported by radial roller bearings.

Motor — chain transmission — two-stage helical gearbox made according to
12 | the extended scheme on alow-speed shaft, on one side of which a brake is

installed — coupling — machine working shaft based on sliding bearings.
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Var.

Structural scheme

no
Motor — spring coupling — vertical two-stage gearbox with spur gear — belt
13 | transmission with V-belt — machine working shaft supported by tapered roller
bearings.
14 Motor — coupling — bevel gear — coupling — shaft — belt transmission of the
machine's working shaft, supported by roller bearings.
Motor — coupling — two-stage helical gearbox made according to
15 | the extended scheme with bevel teeth — compensating coupling — working
shaft of the machine, supported by plain bearings.
16 Motor — wedge gear — spur gear with chamfered teeth — coupling — machine
working shaft supported by ball roller bearings.
Motor — chain transmission — worm gearbox with top worm arrangement —
17 | coupling — machine working shaft supported by angular contact roller
bearings.
18 Motor — coupling — gearbox — coupling — the machine's working shaft is
supported by roller bearings.
19 Motor — chain transmission — two-stage worm gearbox — coupling —
working machine shaft supported by slipping bearings.
Motor — nipple — three-stage gearbox made by the division scheme
20 | of intermediate shafts with high- and low-speed helical teeth and chevron
teeth — nipple — working shaft of the machine supported by roller bearings.
21 Motor — gearbox with V-belt and two-stage pulley — bevel gearbox —
coupling — machine working shaft supported by roller bearings.
29 Motor — coupling — spur gear with chamfered teeth — open gear — machine
working shaft supported by roller bearings.
23 Motor— coupling — two-stage bevel gearbox — chain transmission —
machine working shaft supported by roller bearings.
Moto r— coupling — vertical single-stage gearbox with bevel teeth — chain
24 | transmission— machine working shaft supported by angular contact roller
bearings.
Motor — coupling — two-stage gearbox made according to an enlarged scheme
25 | with bevel teeth — chain transmission — working shaft of the machine
supported by roller bearings.
26 Motor — chain transmission — spur gear with bevel teeth — open bevel gear —
machine working shaft supported by roller bearings.
27 Motor — chain transmission — three-stage spur gear with bevel teeth — open
bevel gear with machine working shaft supported by roller bearings.
28 Motor — chain gearbox — worm gearbox — open helical gearbox with the

machine's working shaft supported by double-row self-aligning roller bearings.
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Var.

Structural scheme

no

29 Motor — wedge gear — bevel gear with bevel teeth — coupling >
the machine's working shaft is supported on self-aligning roller bearings.

30 Motor — coupling — gearbox — coupling — the working shaft of the machine

is supported by single-sided roller bearings.
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3.8. Calculations of shafts and axles

General information

Shafts are the parts that are used to fix and support rotating parts
(gears, pulleys, couplings, etc.) and transmit torque along their axes.

Some shafts do not support rotating parts (gimbal shafts, torsion bars,
etc.) During operation, bending and torsional and, in some cases, tensile and
compressive forces act on the shaft.

Axles are parts designed solely to hold and support the components
on them. Unlike the shaft, the axle does not transmit torque and is only
affected by bending forces.

The axles can either rotate with the parts fitted for better-bearing
performance or be stationary if bearings are required to be housed in the
rotating part.

Structural components of shafts and axles. The design, and surface
quality of shafts and axles depend on their purpose, the nature and
magnitude ofthe loads applied to them, the method offixing the parts
mounted on them, the assembly conditions ofthe assembly and their
manufacturing technology.

Shaft and axle design includes: bearing surfaces, seating surfaces,
transition areas, shoulders, chamfers, bevels and other elements.

Shaft and axle materials. Shaft and axle materials must be strong, rigid,
easily machinable and have a high modulus of elasticity. Shafts and axles are
mainly made from carbon and alloy steels, less frequently from cast iron.
Steel grades used for shafts and axles without heat treatment S275, S315,
C35, and C40; for shafts with heat treatment C45, 40H, 40HN, 40HN2MA,
30HG. High-speed shafts running in plain bearings are made from C20, 20H,
and 12HN3A steel. The journals of these shafts are carburised or nitrided
to increase wear resistance.

For steel shafts up to 150 mm in diameter, a round wire rod is usually
used as the workpiece, while for larger diameter shafts and shaped shafts,
forgings are used. The shafts are turned and the seating surfaces are further
ground. Heavily loaded shafts are ground over the entire surface.
The mechanical properties of some of the steels used for shafts and axles
are given in Table D.41.
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Basic calculation formulae

Rotating shafts and axles are subject to cyclically varying stresses
during operation. The main performance criteria are fatigue strength
(durability) and stiffness. The failure of shafts and axles is mostly related
to fatigue, so the main calculations concern fatigue strength.

The main loads acting on the shafts and axles are those from the gears,
the couplings and the working bodies of the machines or the mechanisms
on them. As aresult, shafts and axles undergo complex deformations:
torsion, bending, tension, and compression. The effect of tensile
and compressive forces is not significant and is not taken into account
in most calculations. The dead weight ofthe shafts and axles, as well
as the weight of parts on the shafts and axles, is only taken into account
if their values are of the same order as the main loads.

Shafts are calculated in two stages: design (preliminary)
and verification (final). Design calculations of shafts are carried out for static
torsional strength in one direction only to determine approximate diameters.
Unaccounted bending stresses, stress concentrations, load patterns
and other factors are compensated for by reducing the allowable torsional
stresses ks. Design calculations usually specify the diameter of the output end
of the shaft, which in most cases is only subjected to torsion.
The intermediate shaft does not have an output end, so the diameter under
the gear wheel is calculated for it.

Torsional strength condition

=L ko thend > |—
's T02q3 = NG = 100k,

where T - torque transmitted through the shaft, Nmm;
k, — permissible torsional stresses, MPa. For output shaft parts;
ks = 20 + 30 MPa. For intermediate shafts when determining
the diameter under the wheel k,= 10 + 20 MPa.

The resulting value is rounded off to the nearest standard size
(Table D.43). Other shaft diameters are determined during the design
process, taking into account the design and dimensions of the parts
on the shaft, manufacturing and assembly technology.

When designing a gearbox, the diameter of the output end of the shaft
can be assumed to be equal to the diameter of the shaft of the electric motor
to which it will be connected by a coupling.
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Shafts are checked for fatigue, static strength and stiffness, and in some
cases for vibration (not discussed in the script). This is the final and basic
calculation. It is carried out after the shaft and selected bearings have been
designed when the diameters, lengths of shaft sections, roughness, fit,
material, types ofreinforcement, sizes offillet passages and splines
and keyways, etc. are known. Shaft verification calculations are carried out
according to design diagrams.

Shaft design schemes

Based on a sketch of the shaft, a design scheme is developed in which
the shafts are treated as beams fixed pivotally in rigid supports, one of which
is movable. The loads acting on the shaft are reduced to two mutually
perpendicular planes - horizontal and vertical. When selecting the type
of support, itis assumed that if bearings transmit both radial and axial forces,
they are considered as fixed supports, while bearings that transmit only
radial forces are considered as mobile supports. In the calculation diagrams,
acting continuous loads are replaced by concentrated loads for simplicity,
and in approximate calculations, they are applied at the centre of the part on
the shaft (Fig. 3.44). In more precise calculations, the points at which
the loads are applied are determined as recommended, taking into account
the structural features of the parts to be mounted on the shaft.

I R T
\ S
WAV ,,;;;;—i—;;ﬂ

>

-

Fig. 3.44. Diagrams of shafts

Once the design diagram has been drawn up, the reactions
of the supports are determined and transverse forces, bending, torsion
and equivalent moments are plotted.

Fatigue strength calculations for shafts can be simplified and exact.
Precise calculations are carried out for potentially dangerous cross-sections,
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pre-planned according to moment diagrams and the location of stress
concentration zones.
Simplified calculations are carried out assuming that the normal
and tangential stresses vary in a symmetrical (most unfavourable) cycle.
The strength condition takes the form of

Mred 3 Mred
Ored = m < k—lg thend = ’Ollk_lg

where creq - reduced stresses in the calculated section, MPa;

Myeq - reduced torque in section, Nmm;

d - diameter of the shaft in the calculated section, mm;

k.14- allowable bending stress under symmetrical load cycle, MPa.

The design values of the shaft diameter in the calculated cross-section
are compared with the assumed design diameter. If the section
to be calculated is weakened by a keyway, the design diameter is increased
by 7 + 10 %, if the fit is tight, by 5 %. The reduced moment is determined
taking into account the simultaneous action ofbending and torsional
moments according to one ofthe strength hypotheses, for example,
the highest shear stress hypothesis

Mred = ;M; + T2,

where M, T - the respective bending and torsional moments, Nmm.

Precise calculations are carried out assuming that bending stresses
vary according to a symmetrical alternating cycle and torsional stresses
according to a zero (pulsating) cycle, and aim to determine design safety
factors at potentially hazardous cross-sections, taking into account
the nature of stress variation, dimensional influence, stress concentration,
surface roughness and hardening.

The fatigue strength condition is of the form:

Ng N

where ng, n- - safety factor for normal and tangential stresses respectively;
[n] - permissible safety factor. Usually [n]=1.2 + 3 is adopted

(a smaller value for accurate calculation schemes).

A section for which the safety factor is minimum is unsafe. If the
strength reserve is below the permissible one, the shaft configuration is first
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changed to reduce the stress concentration. If these measures do not
increase the strength to the required value, the diameter ofthe shaft
is increased, the material is changed and the calculation is repeated.

Static strength calculations. Static strength checks on shafts are
carried out to prevent the occurrence of plastic (residual) deformation
during the application of maximum stresses (for example during start-up).
Static strength calculations are generally carried out for the section with
the smallest fatigue strength reserve, where the probability of failure under
overload is greatest.

Using, for example, the stress-energy hypothesis, the reduced stress for
a dangerous shaft section is given by the formula

— ’ 2 2
Ored = [Omax + 3Tmax < kmax'

where Omax, Tmax — the highest bending and torsional stresses in the section

respectively, MPa.
Kmax ~ 0.66R,,
where R. - the yield strength of the material, MPa.

Stiffness calculations. Verifying calculations for the stiffness of shafts
are carried out in those cases where their deformations have a significant
effect on the operation of the associated components. Thus, for example,
increased deflection f of the shafts of gears (Fig. 3.45) causes divergence
of the wheel axes, concentrating the load along the length of the teeth and
causing premature wear and even destruction, and the angle of rotation & -
causing clamping in the rolling bearings, increased friction and their
overheating.

4 g
64 : ] B ./: 503
> — Lo

—— B

-
|

Fig.3.45. Deflection and rotation angles of shaft sections

A distinction is made between flexural and torsional stiffness.
The bending stiffness is assessed by the deflection f (y - another
designation for bending used in the technical literature) and the angle
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of rotation 6, which are determined by material strength methods. Then
the bending stiffness condition will take the form:
F<I[f]; 6 <[6],

where [f] and [#] - permissible deflection [mm] and angle of rotation [rad]
respectively, depending on the purpose ofthe shaft, determined
at the design stage. Where gears are installed, [f] < 0.01m, where m -
the abutment modulus. For plain bearings recommended [£] = 0.001
rad, in ball bearings [§] = 0.01 rad.

Methods for determining deflections and angles are discussed
in the chapter “Strength of materials”. For typical shaft loading schemes,
the unit force method or the independent force principle is widely used,
which allows calculations to be made using the ready-made formulas shown
in Table 3.19.

In most cases, gear shafts are not checked for stiffness because
the safety factors are overestimated. The exception is worm shafts, which
are always checked for bending stiffness due to the large distance between
supports.

With symmetrical support positions, the maximum deflection is

po TRy

48E]

where [ - is the distance between the auger support axes, mm;
Fi1 and Fr; - peripheral and radial force of the worm, N;
E -longitudinal modulus of elasticity (Young's modulus), MPa; for steel
E=2,1-105MPa;
J - reduced moment of inertia of the worm shaft section with regard
to the thread profile, mm*.
J = %(0.375 + 0.625 g—;‘i),
where Dq; and Df; - outer and inner diameter of the worm, mm.

If the calculated shaft deflection f> [f], the worm diameter factor q is
increased and the calculation is repeated.
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Table 3.19. Formulae for the determination of deflection f and cross-sectional angles 6
of shafts of constant cross-section

|
i [ F
_a-‘_-ln I-._-B L d
=—"b A !
Oorf 4 _r e, & A
-~ I | C
Fab(l + b) Ficl
O b L
6E]1 6E]
Fab(l + a) Ficl
Os " 6E " 3E]
7l 3E]
Fic(2l+ 3¢)
Oc Op - o)
0 Fb(I?> — b%? — 3d?) Fic(3d? —1?)
b 6E]1 6E]1
Fa(l? — a? — 3e?)
Ok -
6E]1
0 Fab(b —a)
H 3E]1
f Fbd(1%2 — b2 — d?) Ficd(1% — dy)
b 6E]1 6E]1
f Fae(l?> —a? — e?) )
E 6E]1
Fa®b?
fu 3E]1 )
Fic?(l+
fe Opc %]C)

, d* . . .
Comment: E=2,1-10> MPa - Young’s modulus for steel; ] = 716—4 - axial moment of inertia
of the circular section; I - length of the section between the transitions.

To increase the bending stiffness of shafts and axles, itis recommended
that components be placed closer to the supports.
The torsional stiffness of shafts is assessed by the torsion angle @o

per unit length of shaft:

T
A
where T - section torsional moment, Nm;

G - Kirchhoff modulus, MPa; for steel G = 8-10* MPa;

J» — polar moment of inertia in the section, m*. For a fulll round section

md*
]p =357

P < [¢ol,
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[@] - permissible torsion angle of the shaft [rad] per 1 m length.
The value depends on the purpose of the shaft and falls within a wide
range

[0o] = (5.0 = 22)-1073 rad/m.

For many gear shafts, torsional stiffness is not relevant and such
calculations are not carried out.

Axles calculations

Axles only support components and are therefore subject to bending
stresses. For axles, as for shafts, design and verification calculations are
carried out. Design (preliminary) calculations of the axles for static strength
are carried out, as for beams with pinned supports, using conventional
material strength methods, determining the lengths ofthe sections
depending on the design of the node. Fixed axis calculations are based on the
assumption that bending stresses vary according to a zipper cycle, the most
unfavourable of all known fixed cycles, and moving axis calculations are
based on the assumption that stresses vary according to a symmetrical cycle.
The diameter in the calculated section is determined from the bending
strength condition:

M, ’ Yo
% = 01d® = k-1(0)g from where d > 0.1k 1)

where Mg - bending moment, Nmm;

d - axle diameter, mm;

k_10g — Permissible bending stresses for symmetric and zero cycle,

respectively, MPa.

For axles made of medium-carbon steels, allowable bending stresses are
kog = 100 + 160 MPa. Lower values are recommended for sharp stress
concentrators. The stresses in axles rotating in a symmetrical cycle assume
k.1g= (0.5 + 0.6)kog. If the axle in the calculated section has a groove or veneer
in the structural section, the resulting diameter is increased
by approximately 10% and rounded to the nearest standard diameter.

Verifying (final) axle calculations for fatigue strength and stiffness
are carried out, as for shaft calculations, at T = 0.
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Examples of calculations

Example 3.31. The drive (Fig. 3.46) contains amotor, a belt
transmission, and areducer. From the strength condition, determine
the diameter of the output end of the low-speed shaft if the motor power
Nm= 10 W; motor shaft speed nm= 1000 min-, pulley diameters D1= 160 mm,
D2 = 320 mm, transmission ratio up = 5, permissible torsional stress for the

shaft material ks = 45 MPa.

Data: Searched for:
Nm= 10W @ X dw,c, '?
Nm=1000 min-1 J |

D1=160 mm T
D2=320 mm 1 i _1
Up=5 |-

ks =45 MPa.

Fig. 3.46. Drive to the calculations

Solution

1. Write down the torsional strength condition for the low-speed shaft.

— TW.C
0.2d3 .

< ks

Ts

2. Define unknowns.

2.1. Determining the motor shaft torque.

T, —955Nm—95510'103 96N
T

2.2. Determining the transmition ratio.
D, 320

uprZ=D—1up=ﬁ-5=10

2.3. Determining the efficiency of the drive.

The drive consists of a belt drive and a gearbox, given that the ratio
is 5, it will be asingle-stage gearbox and the parallel arrangement
of the shafts in the diagram indicates that it is a cylindrical gearbox. From
Table D.17, we take the efficiency of the belt drive 75, = 0.96, the efficiency

of the pinion gear 77, = 0.98, and then the efficiency of the drive.
Nn = Nprz " Nred = 0.94
2.4. Determining the torsional moment on the low-speed shaft.
Tw.e =T Uy, Nprz = 96-10-0.94 = 902 Nm
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2.5. From the torsional strength condition we determine the diameter
of the low-speed shaft

o [T 108 _sjo02-10°
we= T2k, | o02-45 = MM

From Table D.43 we assume dw..= 48 mm.
Answer: dy.c. = 48 mm.

Example 3.32. Determine the at the point of application of the load Fj,
if: transmitted power N = 10 KW; rotation shaft speed n = 500 min-!; F1 = 3 kN;
shaft material C45 steel; a= 300 mm; b=200 mm; section weakened

by keyway.

Data: Searched for:
N =10 kW i 1 K d-?

n =500 min-? A g C

Fi=3kN a b I

a =300 mm

Fig. 3.47. Diagram of forces acting on the
b =200 mm shaft

material - C45 steel
Solution
1. Write down the strength condition for the shaft keep in mind
the bending and torsional moments:

M red

Ored = 013 = k_1g

2. Define unknowns.

2.1. Determine the permissible stresses for the shaft material.

For C45 steel from Table D.41 we take ¢ = 560 MPa (since the diameter
of the shaft is unknown), for which we take the permissible stresses from
the Table D.42 k_,, = 50 MPa.

2.2. We determine the torsional moment which the shaft transmits.

10- 103
500
2.3. Determine reactions in the supports.

N
T = 9.55; = 9.55 =191 Nm

We adopt the sign rule. We take the counterclockwise moment as

positive.
Fia 300003

ZMAZO, RB(a+b)_F1a=O,RB=a+b— 03+02

= 1800 N
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Fib 3000-0.2
a+b 03+02
Verification
LF, = 0.Ry — F; + Rz = 0;1200 — 3000 + 1800 = 0;0 = 0
Reactions were determined correctly.

IMg = 0; —Rs(a+b) + F,b = 0;R, = = 1200 N

2.4. Determining the bending moment
M = Rya = 1200- 0.3 = 360 Nm
2.5. Determining the reduced moment
Myeq = |MZ +T? =+/360%2 + 1912 = 408 Nm

2.6. From the strength condition we determine the diameter of the shaft

Lo Mrea _@fa08-10°
= odfo,  Jo01-50 M

As the cross-section is weakened by the keyway, we increase the
diameter by 10 %.

d-11=43-11=473mm
The resulting value is rounded up to the value in the Table D.43 d = 50 mm.
Answer: d = 50 mm.

Example 3.33. Check the strength ofthe axle at the point
of application of the force Fj, if the load value F1 = 10 kN, axle diameter
d=40 mm; a=300 mm; b = 200 mm, fixed axle, section weakened
by a keyway, permissible stress of the axle material ko = 70 MPa.

Searched for:

Data: @ k
O-g = .

Fi=10kN F Ry
d =40 mm A g
a =300 mm a b

b =200 mm
kog =70 MPa

Fig. 3.48. Diagram of forces acting on the axle

Solution
1. Plot a calculation scheme (Fig. 3.48).
2. Write the strength condition for the axis

% =g1q7 S koo
3. Define unknowns.
3.1. Determining the value of the reaction in the supports.

Adopt the sign rule. We take the counterclockwise moment as positive.
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Fia  10000-0.3

a+b  03+02
Fib 10000 - 0.2

a+b 03+02
Verification
IF, =0
Ry — F; + Rg = 0;4000 — 10000 + 6000 = 0;0 = 0
Reactions were determined correctly.
3.2. Reactions were determined correctly.
M = Rya = 4000 - 0.3 = 1200 Nm
3.3. Determine the bending stresses and assess the strength of the shaft.
My, 1200103
% = 01d® _ 01403
As the axle section is weakened by the keyway, we increase
the calculated stresses by 10 %:
0y 1.1=188-1.1 = 207 MPa > ko, = 70 MPa
The strength condition is not met. In order to meet the strength

condition, either the diameter has to be increased or a stronger material
has to be chosen.

XM, =0; Rg(a+b) —Fa =0;Ry = = 6000 N

IMg =0; —Ry(a+b) + F,b = O;R, = = 4000 N

N
= 188 > = 188 MPa
mm
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Table 3.20. Initial data for Task 3.16

Individual tasks

(calculation)

Task 3.16. Determine the diameter ofthe shaft at the point
of application of the load F1. The initial input data is shown in Table 3.20.

Var. | Fi, F, N ni, a, b, I k.1g
) Scheme
no | kN | kN | kW [ min? | mm | mm | mm | MPa
1 | 45 | 30 | - N 50 100 | 300 30
2 | 50 | 40 | - - 100 | 150 | 400 35
3 | 55 | 50 | - Z 150 | 200 | 500 40
4 | 60 | 20 | - N 200 | 250 | 600 45 £ £
5 | 65 | 40 | - - 300 | 300 | 700 50 2
6 | 7.0 | 50 | - - 250 | 120 | 800 55
7 | 75 | 25 | - N 350 | 140 | 600 60
8 | 80 | 30 | - Z 180 | 160 | 700 | 65 T a, o
9 | 85 | 50 | - - 220 | 180 | 800 | 70 L
10 | 95 | 60 | - - 300 | 150 | 1000 | 75 o o
11 | 100 | 40 | - - 180 | 240 | 600 | 80 Section weakened by
12 | 105 | 30 | - N 150 | 125 | 700 85 keyway
13 | 11.0 | 50 | - N 100 | 140 | 500 90
14 | 115 ] 20 | - - 200 | 160 | 650 30
15 | 120 | 1.0 | - N 250 | 180 | 750 35
16 | 165 | - | 165 | 900 | 100 50 N 40
17 | 125 | - | 125 950 | 150 | 100 - 45
18 | 130 | - | 13.0 | 1000 | 200 | 150 N 50
19 | 135 | - | 135 | 1050 | 250 | 200 - 55
20 | 140 | - [ 140 ] 1100 | 300 250 - 60 | &
21 | 145 | - | 145 | 1200 | 120 50 N 65 A A F A%
22 | 150 | - | 150 | 1250 | 140 | 100 - 70 A |8
23 | 160 | - | 160 | 1300 | 160 | 120 - 75 a h BT
24 | 170 | - | 17.0 | 1400 | 180 | 140 N 80
25 | 175 | - [175| 1450 | 150 | 100 - 85 Section non-weakened by
26 | 180 | - | 180 | 1500 | 240 | 200 N 90 keyway
27 190 | - [19.0] 750 | 125 50 N 30
28 | 200 | - |200]| 800 | 140 | 100 35
29 | 210 | - | 210 750 | 160 | 120 40
30 | 220 | - | 220 800 | 180 | 150 45
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Task 3.14. Determine the diameter ofthe axis at the point
of application of force F. The initial input data is shown in Table 3.21.

Table 3.21. Initial data for Task 3.14

Var. Fi, P2, a, b, c, I, K.1g Scheme

no kN KN | mm | mm | mm mm MPa

1 45 | 3.0 50 | 100 - 300 | 30

2 50 | 4.0 | 100 | 150 - 400 | 35

3 55 |50 | 150 | 200 - 500 | 40

4 60 | 2.0 | 200 | 250 - 600 | 45

5 65 | 4.0 | 300 | 300 N 700 | 50 F £

6 70 |50 | 250 | 120 N 800 | 55

7 75 | 255 | 350 | 140 - 600 | 60

8 | 80 |30/ 180 | 160 | - 700 | 65 T | a, | 6T
9 85 | 50 | 220 | 180 - 800 | 70 e

10 | 95 | 60 | 300 | 150 - 1000 | 75 | g tion non-weakened by
11 | 10.0 | 40 | 180 | 240 - 600 | 80

12 | 105 |30 150 | 125 | - 700 | 85 keyway

13 | 11.0 | 5.0 | 100 | 140 - 500 | 90

14 | 115 | 2.0 | 200 | 160 - 650 | 30

15 | 12.0 | 1.0 | 250 | 180 - 750 | 35

16 | 165 | 50 | 100 | 50 50 - 40

17 | 125 | 25| 150 | 100 | 100 - 45

18 | 13.0 | 3.0 | 200 | 150 | 150 - 50

19 | 135 | 5.0 | 250 | 200 | 200 - 55

20 | 140 | 6.0 | 300 | 250 | 300 - 60

21 | 145 | 40| 120 | 50 | 250 - 65 | /2 £

22 | 15.0 | 3.0 | 140 | 100 | 350 - 70 | B -
23 | 160 | 5.0 | 160 | 120 | 180 - 75 c T «a b T
24 | 17.0 | 2.0 | 180 | 140 | 220 - 80

25 | 175 | 1.0 | 150 | 100 | 300 - 85 Section weakened by

26 | 180 | 3.0 | 240 | 200 | 180 - 90 keyway

27 | 19.0 | 40 | 125 | 50 | 150 - 30

28 | 200 | 5.0 | 140 | 100 | 100 - 35

29 | 21.0 | 20 | 160 | 120 | 200 - 40

30 | 220 |50 | 180 | 150 | 250 - 45
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3.9. Calculation of plain bearings

General information
Plain bearings are supports for rotating shafts and axles that ensure
their positioning in space, their ability to rotate or sway and to carry all
the loads acting on them.
Plain bearing system
In the simplified version (Fig. 3.48), the plain bearing consists of insert
1 installed in housing 2.

z,{fﬂ’-irlﬂlrtf?

Akwamay

\“‘-- L A ]

k“

o d S
| =
\\} \ J

Fig. 3.48. Slide bearing:
1- insert; 2 - housing; 3 - lubricator

The insert, housing, lubricator and seal form a bearing node, which is
often referred to as a plain bearing.

The operation of a plain bearing is associated with different modes
of friction.

Depending on the mode ofoperation ofthe bearing, the friction
in the bearing can be dry, boundary, semi-dry, semi-fluid and fluid,
transitioning from one mode to another when the angular velocity of the shaft
is increased from zero to a certain value. The most favourable friction
conditions for a plain bearing is the fluid friction mode, where the friction
surfaces are completely separated by lubricant (Fig. 3.49), athickness h
which is greater than the sum of 61 + 5.
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Fig. 3.49. For calculation of the fluid friction mode:
1 - insert; 2 - thrust surface of the shaft; 3 - layer of grease

With fluid friction, there is no surface wear, minimal rotational
resistance, heat release and high efficiency. Fluid friction only occurs
in special bearings under certain conditions. With other friction modes, wear
of the friction surface, significant heat release and reduced efficiency
are observed.

Most plain bearings operate under conditions of semi-fluid friction,
and when starting and stopping, under conditions of semi-dry and boundary
friction.

Boundary, semi-dry and semi-fluid friction share a concept - friction
with imperfect lubrication.

Insert - is the plain bearing itself. They are used to avoid the need
for housing made of expensive wear-resistant material so that they can be
replaced after start-up. Inserts are non-detachable, detachable and,
in the case of large-diameter shafts, take the form of a set of washers that
form a bearing surface.

The materials for the contributions are:

a) metals and metal alloys - babbite, bronze, zinc-based alloys,
aluminium-based alloys, anti-friction cast irons;

b) bimetallic materials;

c) non-metallic materials (plastics, wood, rubber, graphite materials);

d) composite materials;

e) metalloceramics.

The choice of insert material depends on the load, speed and operating
conditions. The most common insert materials and their properties are
shown in Table D.44.
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Basic calculation formulae
The main performance criterion for plain bearings is wear resistance -
resistance to wear and jamming.

Calculation of bearings operating in imperfect lubrication mode

As mentioned above, most plain bearings operate under imperfect
lubrication conditions (semi-dry, boundary and semi-fluid friction). Due
to the lack of calculation theory in the imperfect lubrication mode, bearings
are calculated conventionally based on the average pressure p and the
specific work of friction forces pu. The calculation based on the average
pressure p guarantees the absence of grease extrusion, while the calculation
of puv - guarantees the normal thermal mode and the absence of jamming.

1. Transverse bearings (Fig. 3.50, a)

average pressure

B
p_-d =S |p

o~

proper work of friction forces
pv < [pv]
Angular velocity of the opposing shaft surface (sliding speed)
wd nnd
= = < Umax,
2-1000 60-1000

where F, - radial bearing force, N;
v - peripheral speed of the journal surface (sliding speed);
d and [ - diameter and length of the bearing surface of the shaft, which
are determined during the calculation and design of the shaft, mm.
For most bearings [ = (0.5 + 1.3)d;
[p] and [pv] - permissible pressure and specific work of friction forces,
MPa.
Umax — maximum sliding speed;
1000 - conversion factor of millimetres into metres;
n -rotation speed of the supporting surface, min-1;

@ - angular velocity of the bearing surface, s-1.

v

The permissible values [p], [pv], Umax depend on the material
of the friction surface and are determined based on the operating experience
of similar structures, selected from Table D.44.
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ST 1F

a

Fig. 3.50. Diagram of occurrence of forces in sliding bearings
with imperfect lubrication:

a - thrust bearing; b - flange bearing, ¢ - thrust ring bearing,
d - thrust bearing with comb

2. Flat thrust bearings (thrust bearings):
(a) thrust bearing with solid foot (Fig. 3.50, b)
average pressure

NPy
wd?p ~ pl

where @ - coefficient taking into account the reduction in bearing area by
lubrication grooves, 0.8 + 0.9.

p:

The specific work of the frictional forces and the sliding speed are
determined for radial bearings.
(b) bearing with thrust ring (Fig. 3.50, b)

average pressure
4F,
=—————x
m(d? - d§)e
proper work of friction forces
pv < [pv]

4 [p]

average glide speed
_ WOyreq _ TMMNOyreq

= = <
Yav =000 ~ 30 - 1000 — Lmax
where do - internal diameter, is assumed (0.6 ... 0.8)d, mm;

d3-d3
Orea = 0,33
re T d2-d?

(c) comb thrust bearing (Fig. 3.50, d)
average pressure

- reduced foot radius, mm;

4F,

m < [pl,

p:

where z - the numer of combs.
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The specific work of frictional forces p and the average sliding speed
Vavare determined as for ring bearings.

The values of [p] and [pv] will decrease by 20 + 40 % compared to [p]
and [pu] for other bearings due to uneven axial load distribution F, between
the supporting surfaces of the combs.

Dimensions of the flanged bearing insert (Fig. 3.51)

b

=

9 i

)
777077 —

!

WILIIII IS IIIIIIII S
% |

Fig. 3.51. Diagram for determining the dimensions of a flanged insert

Insert wall thickness

Cast iron, bronze
s =0.03d + (2 +5) mm

Flange feight
H=12s+(3+5)mm
Flange width
b=1.2s
Flange outer diameter
D=d+2H

Radius of rounding:
p = (0.03 +0.05)d
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Examples of calculation

Example 3.34. Check the bogie axle bearing (Fig. 3.52) if the neck
dimensions are d = 60 mm and / = 70 mm. Radial bearing load F:= 16 kN
at maximum angular velocity o = 30 s-1. Insert material - CuSn6Zn6Pb3. Axle
material - normalized C45 steel.

Data: - Searched for:
Fr=16 kN ] v-?

d =60 mm ogie axle p-7?

[=70 mm = pv -7
®=30s1 —

insert

CuSn6Zn6Pb3 o=

axle -

7’

normalized C45 steel Fig. 3.52. Bearing to Example 3.34

Solution
1. For a given input material from Table D.44 we take
[p] =4 + 6 MPa; [pv] =4 + 6 MPa-m/s; Umax = 8 m/s.
2. Determine the angular velocity (glide speed) and compare with

the maximum:
_wd _ 30-60
Y= 271000 2-1000
the condition is met.

=09m/s < vUpx = 8m/s

3. Check the average bearing pressure:
E. 16-103
P=41~ 60-70

the condition is met.

N
=38—s;
mm

= 3.8 MPa < [p] =4+ 6 MPa

4. Check the bearing for heat and no jamming:
m m
pv=23.8-09 =342 MPa-?< [pv] = 4+6MPa-?

the condition is met.

Conclusion: the bearing is suitable for the specified operating conditions.
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Example 3.35. Select the material for the plain bearing if: acting radial
load Q- = 7 T; pivot material d = 80 mm; rotation shaft speed n = 100 min‘};
shaft material - hardened C45 steel.

Data: Q Szukane:

Qr=7T _ [-?

d =80 mm AT v-?

n =100 min-! b} _ p-?

shaft pv-?

hardened C45 steel + 77 77 X Insert material
{

Fig. 3.53. Slide bearing scheme
to Example 3.35
Solution
1. Plot a scheme (Fig. 3.53).
2. Convert units:
Q-=F.=7T=70-103N
3. Determine the insole lenght:
[ =(0.5+1.3)d = (0.5+1.3)-80 = 40 = 104 mm

For design reasons, we assume [/ = 70 mm.

4. Determine the pivot speed (sliding speed):
nnd ~ 3,14-100 - 80

V=60-1000 60-1000 _ CAZm/s
5. Determine the average bearing pressure:
F. 70-10° N
p :a =m: 12,5@ = 12.5 MPa

6. Determine the proper work of frictional forces:
pu = 12.5- 0.42 = 5.25 MPa-?

-7

7. From Table D.44 taking into account the calculated values, we select

the material of the plain bearing. We adopt CuAl9Fe4, for which:

Umax = 8 m/s >v =0.42 m/s - condition is met;
[p] = 15 MPa > 12.5 MPa - condition is met;
[pv] = 12 MPa-m/s > pv - 5.25 MPa-m/s - condition is met.

Answer: v=0.42 m/s; p = 12.5 MPa; pv=5.25 MPa-m/s; insert material

- CuAl9Fe4.
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Example 3.36. Calculate the sliding bearing of a worm gear shaft
(Fig. 3.54) if: bearing radial load F = 11 kN, axial load F. = 4.4 kN, pivot shaft
diameter d = 80 mm, rotational speed n = 115 rpm.

Data: Searched for:
Fr=11KkN [-7?
Fa=4.4kN i v-7?
d =80 mm . p-7?
n=115rpm : pv -7
: insert material - ?

Fig. 3.54. Worm gear to Example 3.36

Solution
1. Determine the length of the insert:
I =(0.5+1.3)d = (0.5=+1.3)-80 = 40 + 104 mm
For design reasons, taking into account the chamfer in Table D.21, we
assume a working insert length of / = 60 mm.
2. Determine the speed of the pivot (sliding speed):
nnd 3.14-115- 80
Y~ 60-1000 601000
3. Determine the average bearing pressure due to the radial load F-:
p:i=11'103 _23-N  _23MPa
dl  80-60 mm?
4. Determine the proper work of frictional forces due to the radial load F:-
pv=23-048=11MPa-m/s
5. The material of the insert is selected from Table D.44 - wear-
resistant cast iron EN-GJL-HB200, for which:
atv =2 m/s we have [p] = 0.05 MPa; [pv] =0.1 MPa-m/s;
atv =0.2 m/s we have [p] =9 MPa; [pv] = 1.8 MPa-m/s.
6. For the calculated sliding speed v = 0.48 m/s by interpolation we

determine the values [pv] = 1.54 MPa-m/s > 1.1 MPa-m/s, then

[pu] 1,54
[p] = ~ "om- 3.2 MPa > 2.3MPa

=0.48m/s

the condition is met.
7. Determine the dimensions of the cast iron insert:

We assume the length of the insert
$s=0.03d+ (1 +3)mm=0.03-80+ 2.6 mm =5 mm
Flange height
H=12s4+@3+5mm=12:54+4=10mm
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Flange thickness
b=12s=12-5=6mm
Diameter
p =0.03d = 0.03-5 = 0.15 mm
We assume p=2 mm.
Outer flange diameter D =d + 2H =80 + 2-10 = 100 mm.
The inner diameter of the annular surface of the insert is determined
taking into account the radius p=2 mm
do=d+2p=80+2-2=84mm
8. Determine the reduced diameter of the lateral surface of the insert:

D3 —dj 0331003—843 s
Dz—q2 U 1002—g4z MM
9. Determine the average sliding speed ofthe lateral surface

of the insert:

Oreq = 0.33

_ T NOyreq
v = 301000
10. Determine the average pressure on the lateral surface of the insert

under the action of the axial force F, assuming a coefficient that takes
into account the reduction in the area ofresistance by lubrication

= 0.54m/s

grooves ¢ =0,9:
B 4F, B 4-44-10° B ,
PT = (DT —dByp  3.14(1002 —802). 09 _ 1 N/mm"=21MPa
11. Determine the specific work of the frictional forces on the lateral
surface of the cartridge when the axial force Fa:
PVUy, = 2.1-0.54 = 1.1 MPa-m/s

12. Determine the permissible values of [p] and [puv] by linear

interpolation at vay = 0.54 values of [pv] =1.48 MPa-m/s, so

[pv] 1.48
Yo 7amp
Pl ==0- =054 = 274 MPa

Comparing the permissible values with the design values for the lateral
contribution surface p = 2.1 MPa < [p] =2.74 MPa and
puw = 1.1 MPa-m/s < [pv]=1.48 MPa -m/s- condition is met.

Answer: = 60 mm; v = 0.48 m/s; vav = 0.54 m/s; p = 2.3 MPa;
pr = 2.1 MPa; puay = 1.1 MPa-m/s; insert material - wear-resistant grey
cast iron EN-GJL-HB200.
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Individual tasks
(calculation)

Task 3.18. Check the bogie axle bearing (Fig. 3.52). Axle material -
normalized C45 steel, the data for the calculations are given in Table 3.22.

Table 3.22. Initial data for Task 3.18

Var. | Neckdimension, mm Load Angul.ar :
velocity Insert material

1o d l Fr, kN o, 51

1 40 20 7 30

2 45 30 6 40

j gg 43}2 853 ii CuSn6Zn6Pb3

5 60 55 9 35

6 65 35 10 52

7 70 40 11 22

8 75 43 12 33

9 80 52 20 38

10 85 62 16 51 Cusn10F1
11 90 72 17 65

12 95 60 19 30

13 100 50 3 15

14 55 23 4 18

15 60 28 > 16 EN-GJS-400-15
16 65 33 6 14

17 50 41 3.5 13

18 70 35 2.5 44

19 75 38 14 32

20 80 42 13 44

21 85 44 15 48

22 40 46 16 54 Cul9Fed
23 45 60 17 62

24 50 80 17.5 70

25 55 64 10.5 35

26 60 56 11.5 38

27 65 46 8.5 41 Babbit B16
28 70 44 9.5 43

29 75 34 7.3 60

30 105 72 6.2 24
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Task 3.19. Calculate the sliding bearing ofthe worm gear shaft
(Fig. 3.54). The data for the calculations are given in Table 3.23.

Table 3.23. Initial data for Task 3.19

Shaft .
Var. Load, kN diameter, Rotational
speed
no mm
Fr Fq d n, min-?
1 7 3.6 40 100
2 6 4 45 115
3 5 2.5 50 125
4 8 4.4 55 120
5 9 5.6 60 135
6 10 5.9 65 152
7 11 6 70 122
8 12 4.6 75 133
9 14 7 80 138
10 16 7.3 85 151
11 17 8 90 165
12 13 5.5 95 130
13 3 2 35 115
14 4 2.4 55 118
15 5 2.8 60 116
16 6 3.3 65 114
17 3.5 2.3 50 113
18 2.5 1.7 70 144
19 14 7.4 75 132
20 13 6.9 80 144
21 15 7.5 85 148
22 16 8 40 154
23 17 8.3 45 162
24 17.5 6.2 50 170
25 10.5 5.8 55 135
26 11.5 7.3 60 138
27 8.5 6.4 65 141
28 9.5 5.9 70 143
29 7.3 4.7 75 160
30 6.2 3.8 35 124
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3.10. Selection of rolling bearings

General information
Rolling bearings are supports for rotating shafts and axles that ensure
their specific position in space, their ability to rotate or sway and to absorb
all loads acting on them.

Fig. 3.55. Rolling bearing

A rolling bearing (Fig. 3.55) is afinished assembly consisting
of an outer (a) and an inner (5) ring, between which the rolling elements (2)
- balls, and rollers - are placed. To prevent the rolling elements from moving
against each other and colliding, they are separated from each other by
a separator (3). During operation, the rolling elements roll on the raceways
(4) ofthe rings, one ofwhich, in most cases, is stationary. The load
distribution between the load-bearing rolling elements is uneven and
depends on the amount of radial clearance in the bearing and the accuracy
of the geometrical shape of its elements.

In some cases, to reduce the geometrical dimensions of the bearing,
the rings are omitted and the rolling elements move directly on the journal
and housing.

In addition to the rolling bearings themselves, bearing assemblies
include a housing with covers, bearing ring mounting devices and protective
and lubricating devices.

Basic parameters of rolling bearings
The basic force parameters of rolling bearings are their static load
capacity Co [N] and dynamic load capacity C [N].
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The basic geometrical parameters are outer ring diameter, D [mm]
inner ring diameter, d [mm], bearing width B [mm] or height H [mm].

The basic kinematic parameter is the limiting speed ny.

The values of these parameters are given in the tables for rolling
bearings (Tables D.50 + D.55).

Basic calculation formulae

The correct selection ofthe bearing with correct installation
and handling, determines its reliable operation and the functioning
of the mechanism and device as a whole.

When selecting a rolling bearing, the following factors must be taken
into account: the value and direction of the load; the nature of the additional
load; the diameter of the shaft; the speed of one or both rings; the operating
conditions (temperature) and other requirements arising from the design
of the device.

Bearings are selected for their dynamic load-carrying capacity
to prevent fatigue fracture and their static load-carrying capacity to prevent
plastic deformation.

Selection of bearings based on dynamic load-carrying capacity

The calculation method for the dynamic load capacity C
(for the specified service life or durability) is performed at an assumed
rotational speed n >1 min-1.

Ifn=1+10 min! n=10 minis used for calculations.

Bearing selection condition:

Cs, < C;n < Nyjy,

where (s, - adjusted design dynamic bearing load capacity, N;

C - assumed dynamic bearing load capacity, N;

n - shaft or housing speed, min-1;

nim — limiting bearing speed, min-! (selected from catalogue).

Dynamic load-bearing capacity and durability (service life) are linked
by an empirical relationship.

The adjusted calculated bearing life (service life) in millions
of revolutions or the calculated adjusted dynamic load carrying capacity
are determined from the formulae:
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C 14
L, =aja,3 (F) or Csa =P

p LSa
(aaz3)

then the bearing selection condition
Ls, = Ls, orCs, < C;n < ng
The adjusted calculated bearing life (service life) [h] or the adjusted
calculated dynamic load carrying capacity are determined from the formulae:

106 /C\P P |Legn - 60 -1
Lsan = @103 60-n (F) orCsa =P 106(a,a,3)

then the bearing selection condition
Lsqn = Lsgp or Cs, < C;n < ng
where C - specified dynamic bearing load capacity, N;
P - reduced dynamic load, N;
p - step index; for ball bearings p = 3; for roller bearings p = 10/3;
n - rotation speed of outer or inner ring, min -1;
L, - basic durability, mln rpm;
L., - basic bearing life (life expectancy), h; (this is either given or
taken from tables);
nim — limiting bearing speed, min-1;
a; - reliability correction factor;
azz — material and lubricant correction factor.

Instead of the index s in the designation of service life and dynamic
load carrying capacity, s = 100-S is written, where S - bearing reliability
(given in tables). Most bearings are made with areliability of 90 % then
s =10 or Lioan.

For the generally accepted reliability of 90 % at ordinary steel quality
and lubrication conditions which condition the separation of working
contact surfaces, the correction factors are a1 = 1; a23 = 1. For other reliability
requirements, steel quality and lubrication modes, the values
of the correction factors a1 ,az3 are selected from the bearing catalogues.

Determination of the reduced dynamic load capacity
Reduced dynamic load for radial and angular contact bearings
P = (XVE. +YE,) K, - Kr
Reduced dynamic load for radial thrust bearings
P=(XF. +YF) K, Kr
Reduced dynamic load for thrust bearings
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P=F, K, Kr
where F; - the highest radial load, N;
F, - the highest axial load, N;
X, Y - radial and axial load factors (indicated in the catalogues
according to the ratio F./VF;);
V - ring rotation factor (with inner ring rotation V=1, with outer ring
rotation V=1.2);
Ky - safety factor, taking into account the nature of the load (selected
from tables);
K: - temperature coefficient selected from tables. For t< 100 °C K: = 1.

The above formulae are applied at continuous load and speed.
Variable-mode bearings are selected on the basis of reduced load and
conditional speed. If the load varies linearly from Pmax and Puin (for example,

supports with single-sided winding), the reduced load:
Pmin+2Pmax
3
If the change in load and speed follows a more complicated law,

the load is reduced:

P i/Pf Ly + P Ly+....+B% - L,
L
where Pi, P, ..., Py - constant loads, acting within Li, Lz, Ly - milions of rpm;
L -the total number ofrevolutions in millions during which
the indicated loads operate.

Characteristics of angular contact bearing selection
In angular contact bearings, when radial loads are applied to them,
there are axial components S, which are calculated from the formulae:
S = 0,83¢F, - for tapered roller bearings
S = ek, - for radial ball bearings
where e - axial load influence factor (Tables D.48, D.51, D.52, D.55).

The axial components are designed to reduce the external axial forces
and spread the bearing rings in the axial direction. This is prevented by
the thrust arms of the shaft and housing with reactions Fa1 i Faz. For normal
bearing operation, the axial force loading the bearing mustn't be less than
the axial component of the radial force:

286



Fp, =281 and Fy, 2 S,
In addition to this, the equilibrium condition of the shaft should be met
- the sum of all axial forces should be zero. For the scheme in Fig. 3.56, a:
Fp,+F,—F, =0
The positive directions of the axial forces are those coinciding with
the direction of the force F.. The number 2 indicates the bearing which takes
the axial load Fa.

Ef EZ ﬁf ’F'rZ
f, 1 L 7 4, fo, 1 7 Ei.,
— - B
a

A —

b

Fig. 3.56. Load patterns for angular contact bearings:
a - "striping" scheme; b - "extending" scheme

Table 3.24 shows the formulae for calculating the axial forces.

Table 3.24. Formulae for calculating axial loads on angular contact bearings

o Design axial loads
Load conditions
support I support Il
51252; FaZO Fal :-51 Fa2= Fa+51
$1<S8,; F,>85,—-5, By, =85—-F Fa, =S,

Reduced dynamic loads P are determined for each support, only
instead of the axial load F, the corresponding axial load Fa; or Foz is used.
The design life is determined by the more heavily loaded support.

When determining the radial reactions of angular contact bearings, it is
worth remembering that the point of addition of this reaction is located
at the intersection ofthe normal to the centre ofthe contact surface
of the rolling body with the outer ring and the shaft axis, i.e. at a distance
a from the lateral surface of the bearing ring (Fig. 3.57).
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o
90° -
/7
¥ }
i K
LR*_a ) <
-t—-h- B _-———;-r
a b

Fig. 3.57. Diagram for calculating the addition points of the angular contact bearing
support reactions: a - "striping" scheme; b - "extending" scheme

The distance a can be determined either by a graphical method or by
one of the following formulae:

for single angular contact ball bearings

a=05-[B+05-(d+D)-tga]
for single-row tapered roller bearings
a=05H+ (d+D)e/6

where a - the distance from the lateral surface to the point of addition

of the radial reaction;

B, d, D, H - bearing dimentions;

o - contact angle;

e — axial load affect factor.

Bearing selection based on static load-carrying capacity

Bearings accepting loads at astandstill or n < 1 rpm (bearings
for cranes, transport equipment and other equipment, for example, thrust
bearings for slewing cranes, load hooks, elevators, rolling presses, bearings
for rotating propeller blades of aircraft and helicopters, etc.) are selected by
the static load rating Cy. Bearings with increased requirements are selected
based on dynamic load-carrying capacity and are additionally checked
for static load-carrying capacity.

Condition for checking and selecting bearings

Py < Cy

where Py - reduced static load, N;

Co - permissible static load rating of a rolling bearing, N (for each

bearing type from Tables D.55 + D.61).
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Determination of the reduced static load
For radial and angular contact ball and roller bearings, the reduced

static load is defined as the greater of the two formulae:
Py = XoF. + YoF,
If Py < F. then P, = F,,
where Xo, Yo - radial and axial load factors selected from Tables D.55 + D.61.

For radial roller bearings with short cylindrical rollers, the reduced
static load is:

Py =F

Most rolling bearings are selected and calculated in terms of dynamic
load-carrying capacity.

If bearings of the same type are installed on the same shaft, but carry
different loads, it is advisable to select the most heavily loaded bearing
to reduce the range of bearings used in the product, and the second bearing
should be the same size.

Sequence of bearing selection based on dynamic load-carrying
capacity

1. Pre-determine the type and mounting scheme of bearings, taking
into account loads, operating and mounting conditions.

2. From the catalogue, taking into account the diameter of the bearing
seat for the type of bearing envisaged, list its power, geometrical, kinematic
parameters, e, Y, Yo factors (for tapered, spherical).

3. Make a conditional or full scheme of the shaft including the bearings
on it and the approximate distance between supports. In this case, you need
to know in advance which parts are on the shaft and what their dimensions are.

4. Make a design load scheme for bearing supports.

5. Determine the total reactions of each support and select the most
heavily loaded bearing for which further calculations will be carried out. For
radial thrust bearings, depending on the type of bearing and mounting
scheme ("striping” or "extensile" Fig.s 3.56 and 3.57), determine:

- points of application of radial reactions (dimension a) of each support;

- determine the total reactions of each support;

- determine the axial components S of the radial loads for each support;

- determine the calculated axial loads using the formulae given in Table 3.5.

6. Determine the reduced dynamic loads, whereby:
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a) taking into account ring mobility, temperature conditions and
the nature of the load on the bearing unit, the coefficients V, K», and Kr should
be selected (for thrust and radial thrust bearings the coefficient V- is not
taken into account).

b) taking into account the type of the planned bearing, determine
the ratio F/Ca, by which, using linear interpolation from the tables,
determine the coefficient e (for angular contact and spherical bearings,
the values of e are indicated in the tables oftheir main parameters),
determine the ratio Fs/Vrand compare it with the coefficient e, based on the
results of the comparison Fu/Vr < or > e, determine the coefficients X, Y
according to the tables;

For angular contact bearings, the equivalent load is determined
for each bearing (see specific features of angular contact bearing selection).

7. Determine the design life Lsqs» adjusted based on the reliability level
and operating conditions or the adjusted design dynamic load rating Csq
for the most heavily loaded bearing.

8. Evaluate the suitability ofthe intended bearing size under
the following conditions:

Lean = Lggp 0r Cs, < c;n <1y
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Examples of calculations

Example 3.37. Determine the life of the radial single row bearing

NUP 412 M ZVL, which is subjected to the highest radial load F: = 7 kN, loads
with significant shocks, temperature mode t < 100 °C, rotational shaft speed
n =500 min’, , inner ring rotates, no ring warping, lubrication conditions
good.

Data: Searched for:
Bearing NUP 412 M ZVL Lioan = ?
Fr=7KkN

t<100°C

n =500 min-!

significant shocks

Solutions

1. From Table D.50 we take the basic force and geometric parameters
for the ball bearing NUP 412 M ZVL:

C=108kN; Co=70KkN; d=60mm; D=150 mm; B=35mm.

2. Determine the reduced dynamic load.

From Table D.46, we take K: =1; from Table D.45 K, = 1.8 and, taking
into account the mobility of the inner ring, V' = 1.

Since only the radial load acts on the bearing, the formula for reduced
loads will take the form:

P =VFEK,K; =1-7000-1-1.8 = 12600 N

3. Determine the adjusted design life of the bearing.

Taking into account the probability of continuous operation of 90 %
(most bearings), the absence ofring warping and good lubrication
conditions, from Tables D.53 and D.54 we take the corrective factors a:
=1, az3= 1, the grade index p for ball bearings p=3.
10° (C)p 11 10° (108-103

3
10ah = 12303\ p 60-500\ 12600 > 00

Answer: The service life of NUP 412 M ZVL bearing in the specified
operating mode is h.
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Example 3.38. Check the service life of a single-row SKF 210-2Z ball
bearing placed on the low-noise shaft of a single-stage helical bevel gear
reducer (Fig. 3.58) if: axial load Fa = 1.2 kN, highest radial load F- =3.3 kN;
rotational shaft speed n =200 min-1. Gear operation mode - moderate shocks;
required bearing life 95% reliability L, = 20000 h, bearing junction
temperature mode t < 100 °C, possible bearing warping, lubrication
conditions poor.

Data: - Searched for:
Bearing 210-2Z SKF ; [ ] Lsan - ?
Fa=1.2kN \ i

Fr=3.3kN N —

n =200 min-1 f .

Lean =20000 h ~— |

t <100 °C L,J I
moderate shocks
reliability 95% Fig. 3.58. Bevel gear reduction gearbox

Solution
1. From Table D.50, we take the basic force and geometric parameters
of the SKF 210-2Z ball bearing 210-2Z SKF:
C=35.1kN; Co=19.8KkN; d=50 mm; D =90 mm; B =20 mm
2. Determine the reduced dynamic load according to the formula:
P = (XVE.-+YE) -K, - Kr

Define:
a) ratio
F _ 12-10° _ 03654
VE. 1-33-103
b) ratio
F, 12-10° 0,061
C, 19.8-103%

From Table D.48 we determine the axial load ratio e by linear
interpolation. In Table D.48, the value of this ratio is in the range of 0.056
and 0.084, for values of the coefficient e of 0.26 and 0.28. Let us denote
the values of the ratios F./Co and the coefficients e by any symbols, then
mathematically:
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0.056 -a 0.26 -e1
0.061-b x-e

0.084 - ¢ 0.28 - e
Then
= (c — b) 251 — 0,28 — (0.084 — 0.061) 028-0.26 _ 64
R c—a ' Y0084 - 0056

For e= 0.264 from Table D.48, in the same way, determine the axial load
factor Y =1.58. Compare F./VF: with e.

Since the ratio F./VF: =0.3654 > e = 0.263, from Table D.48 we take

X=056-Y =158

c) we assume V=1 because the inner ring rotates; from the Table D.46
we assume Kr = 1; from the Table D.45 taking into account the bearing
mode Kp= 1.3. From the formula determining the reduced load we obtain:

P=(056-33-10%+1.58-1.2-10%)-1-1.3 = 4867 N

3. Determine the adjusted design life of the bearing.

We calculate areliability of 95%, taking into account the possibility
of ring warping and poor lubrication conditions, from Tables D.53 and D.54
take the correction factorsai=0.62, a23=0.75, degree index p for ball
bearings p = 3.

106 /C\P 106 /31.5-103\°
Lsqn = a1a23m(—> = 0.62-0.75 = 14531h

P 60200\ 4867
4. Assess the suitability of the bearing.

Taking into account the bearing selection condition, we have
Lsan = 14531 h < Lig, = 20000 h

The bearing given is not useful.

Example 3.39. Carry out abearing selection for ahigh-speed gear
shaft (Fig. 3.58) if: acting radial forces are Fr; = 4.2 kN and F;2 = 5 kN; axial
force F, = 2 kN, direction - right support; diameter of the shaft under bearing
d = 50 mm; shaft speed n= 975 min-!; gearbox operation mode - moderate
shocks; operating temperature t < 100° C; required bearing life
L oan = 18000 h, ring warping does not occur; lubrication conditions good.

Data: Searched for:
Fri=4.2KkN Bearing -7
Fr2=5KkN L1oan =7
Fa=2kN

D =50 mm
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n =975 min-!
t<100°C
Lioan = 18000 h
Solution

1. Determine the type of bearing.

When determining the type of bearing, it is important to consider
the factors influencing the choice of bearing and to familiarise yourself
with the characteristics of bearings.

It is recommended to start with a deep groove ball bearing, which is not
expensive, is not scarce and can carry axial loads. It is also possible to use
recommendations which, derived from the ratio F./Frmax make it possible
to tentatively determine the type ofbearing from Table D.49.
We tentatively assume a radial ball bearing NJ 310 E ZVL, for which we

extract the force, kinematic and geometric parameters from Table D.50.
C = 65.8kN; Cy = 36 kN;d = 50 mm; D = 110 mm;
B = 27 mm; ny;,, = 6,3 thousand min™?!
2. Determine the reduced dynamic load:
P = (XVE. +YE,) - K, - Ky
The calculation is carried out for the most heavily loaded bearing.

Determine the ratio

E, 2000
/Fmax " 5000 0.4
F 2000
=—— =0.055
/Co 36000

From the Table D.48, we determine the axial load influence factor

e =0.255 Y=1.75 by linear interpolation.

Since Fa/VFrmax =0.4 > e = 0.255, from the Table D.48 the radial and axial
load factors X= 0.56 and Y =1.75.

We assume V = 1, because the inner ring rotates. From the Table D.46
we take K7 = 1; from the Table D.45, taking into account the gear mode, we

take K»= 1.3. From the reduced load formula:
P =(0.56-1-5000+ 1.75-2000)-1-1.3 = 8190 N

3. Determine the design-adjusted dynamic bearing capacity.

Taking into account the probability of reliable operation of 90 % (most
bearings), the absence of ring warping and good lubrication conditions,
from Tables D.53 and D.54 we take the correction factors ai1=1, a3 =1,
the degree index p for ball bearings p = 3.
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o _p |l 60-m 41800060975
10a = 106(asaz;) 106-1-1

4. Assess the suitability of the selected bearing.

Considering the bearing selection condition based on dynamic load
carrying capacity:

Csa < C; n < mim, we get C10a = 83 303 N > C = 65 800 N - the selected
bearing does not suit.

We accept the radial ball bearing of the NU-410 series, for which:
C = 87.kN; Cy = 52kN;d = 50 mm; D = 130 mm;
B = 31 mm; ny;,, = 5 thousand min~!

Repeat calculations:

From Table D.43, we determine the axial force influence coefficient
e = 0.234 and Y = 1.81 by linear interpolation.

Since the ratio Fa/VFrmax= 0.4 > e = 0.234, from Table D.48 the radial and
axial load factors X = 0.56 and Y = 1.81; V = 1; from Table D.45 and D.46
Kr=1; Ky=1.3.

Reduced dynamic loads:

P =(0.56-1-5000+ 1.81-2000)-1-1.3 = 8346 N

Design adjusted dynamic bearing load capacity:

o _p "|laow 60n_ o 5[18000-60-975 o
10a = 10%(asaz;) 106-1-1

We assess the suitability of the bearing
Cioqa =84889N<(C=87100N

n =975 min"! < ny, = 5000 min~?!
5. Determine the adjusted life of the selected bearing:
1_06(£)p 11 10° (87.1 -103
60 - n \P 60-975\ 8346
A selected bearing with a spare will provide the required durability.

3
Lioan = a1023 ) =9340 h > L), = 18000 h

Answer: Bearing NU-410; Ligan= 19430 h.

Example 3.40. Carry out abearing selection for a high-speed gear
shaft (Fig. 3.59). Forces acting in the system: rotational force F; = 3 kN; radial
force Fr = 1 kN; axial force Fa= 0.5 kN; d =40 mm, d1 = 100 mm, b1 = 45 mm,
c1= 85 mm, the working temperature of bearings 60 °C, load with moderate
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run-out, required life of bearings L’,,, = 25000 h, rotational shaft speed
n = 1475 min1; normal work conditions.

Data: | %}\: ] Searched for:
Fi=3 kN ;;gm ' Bearing - ?
Fr = 1 kN / ah — ?
gl L10an
Fa = 05 kN ?’I
d =40 mm ?/'
ZN
di=100 mm mgr
b1=45 mm L=
c1=85 mm
n=1475 min!
T=60°C

L oan = 25000 h

moderate beatin
& Fig. 3.59. Bearing to Example 3.40

Solution

1. Determine the type and dimensions of the bearing.

Firstly a medium series tapered roller bearing with an angle o =12 °,
Designation of the angular contact tapered roller bearing 7308 B ZVL, for
which from Table D.55:

C=66KkN, Co=47.5kN; d=40 mm; D =90 mm;
T = 25.25 mm; with liquid grease niim = 4000 min-1;
e=0.28; Y=2.16; Yo = 1.18.

Placement diagram for the bearing - striping.

2. Plot adiagram of the shaft loading and determine the reactions
of the supports (Fig. 3.59).

The distance from the lateral bearing surface to the point of addition

of the radial reaction a is determined from the formula:
(40 + 90)6
a=0.5T+[(d+D)/6]-e=0.525.25 +Wz 19 mm

Determine the dimensions ¢ and b, which determine the position

of the points of addition of the radial bearing reactions (Fig. 3.59)
c=c¢c;+T—-—a=85+2525-19 =91 mm
b=by+T—-—a=45+2525-19 =51 mm

Determine the reactions of the supports in two mutually perpendicular
planes:
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Vertical plane (YZ)

d
ZMl = 0; Ryz(c+b)—Frb—Fa?1= 0;
Frb+Fa% 1000-51+500-$
Ry, = = = 535N
c+b 91 + 51
d
ZMZ = 0; —Rl(c+b)+Frc—Fa71= 0;
Frc—Fa% 1000-91—500-12ﬂ
R, = = = 465N
i c+b 91+ 51

Verification

ZY=0; Ry, —F + Ry =0;
535 — 1000 + 465 = 0;
0 = 0 - reactions determined correctly.
Horizontal plane (XY)
ZMl = 0; sz(C +b) _Ftb = 0;
R _ Feb _3000-51
7 c+b 91+51
ZMZ = 0, —Rxl(C + b) + FtC = 0,
. _ frc _3000-91
T c+b T 91+51
Verification
D ¥ =0 Ry~ F+ Ry =0
1078 — 3000 + 1922 =0
0=0 - reactions determined correctly.
Determine the summed reactions of the supports:

Ry = Fpy = |R% +R% =1922% + 4652 = 1978 N
Ry, = Fyy = |R%, +R2, =1/10782 + 5322 = 1202 N

3. Determine the axial components of the radial forces and the design
axial forces acting on the bearings.

Axial components (e = 0.28 - from Table D.55)
S, = eF,; =0.28-1978 = 554N
S, = eFy, = 0.28-1202 = 337N

= 1078 N

= 1922 N

Design axial forces
Using the calculation scheme and formulae in the Table 3.5 we get:
S, =554N>S, =337N,F, =500N > 0,
then
Fsy =S, =554 N;F,y = F, +S; = 500 + 554 = 1051 N
4. Determine the reduced dynamic loads P: and P; of bearings.
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We assume V = 1 because only the inner ring rotates. From Table D.46,
we assume Kr = 1, from Table D.45 taking into account the gear mode
we assume K= 1.3.

Right-hand bearing

Determing the ratio
Fq 554
VFE, 1-1978
which is greater than e = 0.28; so from Table D.55 X= 0.4, Y = 2.16.
Reduced dynamic radial load:
P, = (XVF,4 + YF,;) - K, - Ky = (0.4-1-1978 + 2.18-554) - 1-1,3 ~ 2599 N
Left-hand bearing
Determine the ratio

= 0.88

Fp, _ 1054
VF,, 1-1978
Which is equal to e = 0.28; therefore from Table D.55 X= 0.4, Y =2.16.
Reduced radial dynamic forces
P, = (XVF,, + YF,;) - Kp - Kr = (0.4-1-1202 + 2.18 - 1054) - 1- 1.3 ~ 3612 N

5. We determine the calculated corrected life for the more heavily
loaded bearing (the left).

Considering 90% bearing life and normal operating conditions
and grease, from Tables D.53 and D.54 we assume a1 = 1, a23 = 0.65. Degree
index p for roller bearings p = 10/3.

= 0.28

10

3
) =116883h >

106 /C\P
LlOah = alazgm(_> =1 065

10° 66 - 103
P

60 - 1475\ 3612
Liogn = 25000h

The selected bearing significantly exceeds the specified life. It is
recommended to change the series and type of bearing and repeat
the calculation (by yourself).

6. Check the selected bearing based on the static load carrying capacity
including an overload of 1.5 (input data and Table D.55).

Reduced static loads:

From the Table D.55 X0 = 0,5,Y0 =1.18.

Po1 = (XoFy1 + YoF,,)1.5 = (0.5-1978 + 1.18 - 554) - 1.5 = 2464N < C, = 47500 N

condition Po < Cp is met.

Poz = (XoFyz + YoF,,)1.5 = (0.5 1202 + 1.18 - 1054) - 1.5 = 2767N < C, = 47500 N

condition Py < Co is met.

Asnwer: Lyy,n = 116883 h; bearing 7308 B ZVL.
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Individual task
(calculation)

Task 3.20. Select abearing for the given operating conditions
(Table 3.25).

Table 3.25. Initial data for Task 3.20

Load 5 o = . g
] g E. | & |2z 2
Var. | Radial kN | & Z ° n | &4 S | g2 =
no ’ < g = minl| £ 2 = 2 g s
s a0 3 00 £ o 3
2 < £ e ° <
Fr1 Fr2 Fa A &= ~ S
1 40 3.0 3.2 1.0 —_— 750 12.0
2 45 2.5 2.0 0.8 - 930 16.0 £ .
3 50 3.56 | 3.6 1.3 — 975 18.0 g_qg
4 55 7.0 4.2 1.5 -~— | 1200 20.0 S
5 60 45 | 3.62 1.6 I 860 10.0
6 70 20 | 225 | 0.85 - 730 8.0 .
7 75 2.5 2.2 0.9 . 600 12.0 §
8 80 3.2 4.0 1.6 -~ 650 18.0 2
9 85 3.6 4.2 1.5 — 700 20.0 é%
10 90 3.8 4.5 1.43 - 800 5.0
11 100 4.2 4.6 1.6 —_— 960 2.5
12 40 4.6 5.0 1.8 - 950 10.0 £ .
13 60 5.0 5.5 2.0 —— | 1110 12. - g_qg
14 45 56 | 48 | 165 | —— | 1255 8.0 £ |2
15 55 5.8 6.2 1. —— | 1300 6.0 = ©
16 75 6.0 6.2 1.2 I 500 10.0 B
17 85 6.25 | 6.5 1.8 —_— 400 8.0 §
18 90 6.6 | 5.68 2.4 -~ 300 20.0 o
19 100 1.2 1.0 0.5 — 200 25.0 é%
20 50 6.8 7.0 2.6 -~ | 450 12.0
21 55 70 | 685 | 255 —_— 620 8.0
22 65 725 | 7.86 | 2.65 - 750 12.0 £ .
23 75 75 | 80 | 30 | — [ 550 | 160 3§
24 85 85 | 865 3.2 - 950 12.0 S
25 45 8.67 | 85 3.15 —— | 1050 16.0
26 40 9.0 | 857 3.3 —~— | 1000 10.0 B
27 60 9.28 | 8.77 3.4 —— | 1250 12.0 _qg
28 80 9.53 | 8.64 2.8 -~— | 1100 8.0 <
29 50 10.0 | 8.67 12 [ 735 22.0 g
30 70 12.5 | 10.0 4.0 - 620 8.0 @
Additional data for variants
Bearing arrangement diagram striping
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3.11. Selection of connectors

General information

In the modern engineering industry, most machines consist
of assemblies and mechanisms. To ensure kinematic and force coupling,
the shafts of the components are connected by couplings.

Connectors are mounting units that, depending on their purpose
and design, can perform several primary and secondary functions.a

The main purpose of connectors is to connect the ends of composite
shafts or the shaft ends of individual machines and mechanisms; to transmit
torque without changing its value along the axis.

Additional functions of the connectors are compensation of minor shaft
misalignments that may occur as aresult ofinaccurate workmanship,
installation, thermal deformation, loads and design features of the machine
or mechanism; reduction of dynamic and vibration loads; protection
of machines and mechanisms from overloads; switching on and off
of machines and mechanisms.

Modern machines use alarge number of connectors, many of which
are standardised.

Connectors selection

Standard and standardised connectors are not calculated. As a rule,
they are selected, like rolling bearings, according to tables in reference books
or catalogues.

The selection of standard and standardised connectors consists
of selecting the required connector size from the catalogue according to
the torque.

The main characteristic of the connectors is the transmitted torque T.
The specific size of the connector is selected according to the intended use,
the design features of the drive and the operating conditions as follows

Teaic = Ky Tzn < Ttap,
where Tcalc is the design torque transmitted through the fitting, Nm;

K- - operating mode factor, assumed K, = 1.0 + 1.5 - for machines

of small weight and insignificant load (conveyors, machine tools),

K-=1.5 + 2.0 - for machines of medium weight and medium load

(compressors, pumps, woodworking machines), K, = 2.0 + 3.0 -
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for heavy and significantly loaded machinery (breakers, crushers,
rollers, cranes);

Tzn - rated torque at constant mode of operation on the corresponding
shaft, Nm;

T:a» - nameplate torque, for this type of connector.

When selecting a connector, it is also necessary to consider the diameters,
lengths and shapes ofthe ends ofthe shafts to be connected, the mode
of operation, the application of the machine or mechanism, the nature of the
movement (reversible, non-reversible), speed, weight requirements,
dimensions, design features of the drive and the characteristics of the connector.

The standard provides for the production of two types of connectors,
with cylindrical and conical holes, in two versions: for long and short shaft ends,
and also allows couplings with different d-hole diameters and shapes to be
combined.

Before selecting a fitting, it is important to familiarise yourself with its
design and characteristics.

All connectors used in machinery are subject to strength, stiffness and
wear resistance calculations.

The selection of connectors is usually a complex task, as it is often
necessary to determine the shaft diameter using shaft calculations, as well as
determining the kinematic and force parameters.
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Examples of calculations

Example 3.41. Write down the selection condition and select
the connector that connects the low-speed machine shaft (Fig. 3.60) if:
the drive and the working body of the machine are mounted on a common
rigid frame; motor power N, = 15 kW, motor shaft angular velocity
om = 102 s1; reducer ratio ureqd = 10; permissible torsional stress of the shaft
material ks= 70 MPa; mode factor K,= 1.5.

Data: Searched for:
Nm=15KkW I_ Connector - ?
Qn =102 s1

Ured = 10 A
ks =70 MPa

Kr = 1.5

Fig. 3.60. Scheme to Example 3.41

Solution
1. Write down the condition for the selection of the fitting including the shaft
Teatci-s = Kr " Toni-s < Ttap
2. Define unknowns.

2.1. Determining the moment on the high-speed shaft

o _Nm_15000
hes = o T 102 o

2.2. Determining the rated torque on the low-speed shaft
l—5 =Ty g Upeq = 14710 = 1470 Nm
2.3. Determining the design moment on the pulley shaft
Tearci—s = Kr * Tyn1—s = 1.51470 = 2205 Nm

In addition to the calculated torque, it is important to know the diameter
of the shaft for which the connector is selected when selecting the connector.

2.4. From the torsional strength condition, we determine the diameter
of the low-speed shaft.

Torsional strength condition
T-103

T =WS kg then

3 Toaters 103 2(2205-103
g e i
dis = 0.2k, 0z70 _o4mm
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3. Select the connector.

Given that the drive and the working body of the machine are on
a common frame, it is possible first to try to select asleeve and plug
coupling according to Table D.56, taking into account the selection
condition, the calculated torque on the low-speed shaft and its diameter.
From Table D.56 it can be seen that for the closed higher torque value
Ttab=4000 Nm, the shaft diameter should be in the range d = 80 + 95 mm,
which is significantly larger than the design diameter of the low-speed
shaft dis = 54 mm.

We will try to select a connector from Table D.57. From the data in
the table, you can see that the most suitable connector is a 3 mm,

the parameters of which
Trap = 3150 Nm > Tpogiei—s = 2205 Nm
The shaft diameter can be in the range d = 40 + 60 mm, within which

the calculated diameter of the low-speed shaft falls.

Answer: Connector 3 mm with Tt = 3150 Nm; d = 40 + 60 mm.

Example 3.42. Evaluate the feasibility of using a sleeve-and-plug fitting
to connect the output shaft of a drive reducer to the working shaft of a machine
(Fig. 3.61) if: motor power Nm = 5.5 kW; nyn = 960 min!; permissible torsional
stress on shaft material ks = 50 MPa; transmission ratio of belt reductor upp = 2;
transmition ratio ured = 3; dynamic coefficient K, = 1.8; torque Twp = 500 Nm;
diameter dwb= 40 mm.

Data: Searched for:

Nm=5.5kW Connector - ?
Nm =960 min1! X‘

ksz 50 MPa

5

K

N
1

dtab =40 mm
Fig. 3.61. Scheme to Example 3.42
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Solution
1. Write down the condition for the selection of the connector including
the shaft

Tcalc,l—s =K, - Tzn,l—s < Tiap
2. Define the unknowns.

2.1. Determining the motor shaft torque

T, _9%Nm_9%5w0 55N
m T I T PV gg0 T O

2.2. Determining the rated torque on the low-speed shaft of the reducer
Tyni—s = TinUpp Ureq = 55-2-3 = 330 Nm
2.3. Determining the design moment on the low-speed shaft
Tearcies = Kr * Tyn1—s = 1.8:330 = 594 Nm
2.4.From the torsional strength condition, we determine the design

diameter of the low-speed shaft.
Shaft torsion strength condition

T-103
T =Wﬁks,th€n
3 Tcalc.l—s'103 3/594.103
e = = =39
d, S.—\/ 0.2k, 0,250 39 mm

Assume dis = 40 mm.

3. Assess the feasibility of a connector.

Comparing the calculated values and the values in the table, we obtain:
Tcaici-s = 594 Nm > Ty, = 500 Nm - condition is not met
dyc=40mm = d;;;, = 40 mm - condition is met

Conclusion: the connector does not fit because the computational moment
is greater than the moment in the Table.
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Individual tasks
(calculation)

Tasks 3.21. Select the connector that connects the low-
speed coupling shaft to the working shaft of the machine
(Fig. 3.62). The data for the calculations is shown in
Table 3.26.

Table 3.26. Initial data for Task 3.21

Var. Nm, Nm, Dl, DZ, ks,

. Ured Kr

no kW min-1; mm mm MPa
1 10 750 100 300 3 35 2.0
2 11 850 120 360 4 40 1.5
3 15 950 140 420 5 45 1.2
4 17 1000 160 480 6 50 1.3
5 20 1100 180 360 8 60 1.4
6 5 1200 200 600 10 75 1.6
7 1500 250 500 3 80 1.8
8 10 750 100 300 3 35 2.2
9 11 850 120 360 4 40 2.0
10 15 950 140 420 5 45 1.5
11 10 1000 160 480 6 50 1.2
12 5 1100 180 360 8 60 1.3
13 1200 200 600 10 75 1.4
14 5 1500 250 500 3 80 1.6
15 11 750 100 300 3 35 1.8
16 10 850 120 360 4 40 2.2
17 15 950 140 420 5 45 2.0
18 18 1000 160 480 6 50 1.5
19 20 1100 180 360 8 60 1.2
20 10 1200 200 600 10 75 1.3
21 5 1500 250 500 3 80 1.4
22 15 750 100 300 3 35 1.6
23 10 750 100 300 3 35 2.0
24 11 850 120 360 4 40 1.5
25 5 950 140 420 5 45 1.2
26 10 1000 160 480 6 50 1.3
27 15 1100 180 360 8 60 1.4
28 5 1200 200 600 10 75 1.6
29 20 1500 250 500 3 80 1.8
30 15 750 100 300 5 35 2.2

Supplementary data
Variants 1 + 5,11 + 15,21 + 25
The drive and accessories are mounted on the same frame.
Variants 6 + 10, 16 + 20, 26 + 30
The drive and accessories are mounted on different frames.

| |Ured

1~
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Task 3.22. Evaluate the feasibility of using a connector to connect
the gearbox output shaft to the working shaft of the machine (Table 3.27).

=] . 5
™ §H 5, ®f] ; Y/
7
— = 2/

1 7 I !
, il H ‘E)M “x | l\uf\vf\d ) M
: L p
a b

Fig. 3.63. Machine gearbox schemes:
a - impact drum; b - worm mixer; 1- motor; 2 - belt transmission; 3 - reducer;
4, a - compensating connector - gear; 4, b — elastic connector;
5,a - impact drum; 5, b - mixer; 6 - plain
Table 3.27. Initial data for Task 3.22

Var. Nm, ks, Ttab, diap Fig.

no Non, kW min-1 Upsp Hred MPa Kr Nm mm 3.63
1 10 750 2 3 35 1.4 710 40

2 11 850 3 4 40 1.6 1400 40+50

3 15 950 2.5 5 45 1.8 3150 40+60 a
4 17 1000 6 50 2.2 5600 45+75

5 20 1100 3 8 60 2.0 8000 50+90

6 5 1200 2.5 10 75 1.5 500 40+45

7 1500 3 3 80 1.2 710 45+55

8 10 750 3.5 3 35 1.3 1000 50+70 b
9 11 850 2 4 40 1.4 2000 63+85

10 15 950 3 5 45 1.4 4000 80+95

11 10 1000 2.5 6 50 1.6 710 40

12 5 1100 8 60 1.8 1400 40+50

13 1200 3 10 75 2.2 3150 40+60 a
14 5 1500 2.5 3 80 1.4 5600 45+75

15 11 750 3 3 35 1.6 8000 50+90

16 10 850 3.5 4 40 1.8 500 40+45

17 15 950 2 5 45 2.2 710 45+55

18 18 1000 3 6 50 2.0 1000 50+70 b
19 20 1100 2.5 8 60 1.5 2000 63+85

20 10 1200 4 10 75 1.2 4000 80+95

21 5 1500 3 3 80 1.3 710 40

22 15 750 2.5 3 35 1.4 1400 40+50

23 10 750 3 3 35 1.4 3150 40+60 a
24 11 850 3.5 4 40 1.6 5600 45+75

25 5 950 2 5 45 1.8 8000 50+90

26 10 1000 3 6 50 2.2 500 40+45

27 15 1100 2.5 8 60 2.0 710 45+55

28 5 1200 4 10 75 1.5 1000 50+70 b
29 20 1500 3 3 80 1.2 2000 63+85

30 15 750 2.5 5 35 1.3 4000 80+95
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APPENDIX

Appendix A (recommended)
Order of performance and requirements for the practical task

. Select the task variant based on the number on the group list. If the table
is missing a number, then the task number is equal to the sum
of the numbers in the number on the list (e.g. for number "15" 1 + 5 = 6).

. Write down the task conditions in the short form "Data". On the right-
hand side, write down the values you are looking for "Searched for".
When writing down the task conditions, the given and sought values are
converted to letters (Appendix B).

. Plot a drawing or a schematic diagram (if not attached to the task), with
the necessary and sufficient number of types, sections, markings,
dimensions, acting forces and other parameters. Drawings and diagrams
are made by hand. When determining the dimensions, forces and other
parameters on adrawing or diagram, the letter designations of the
relevant values must be used. Dimensions are measured in millimetres
without units at the end.

. A centred "Solution” is written underneath the drawing or diagram,
under which the formulae are written and the calculations are
performed. The order in which the solution is performed can vary,
for example, all calculation formulas are written down first and then
the unknowns are determined, or aformula is written down and
the desired value is determined immediately. The procedure for
performing the calculation is as follows: first, the formula is written in
alphabetical notation, then their numerical values are replaced by letters
without specifying the wunits ofmeasurement, and the result
of the calculation is written with SI units of measurement. The letter
designation of the values must be the same within the calculation.
Intermediate calculations are not performed. The calculations must be
accompanied by brief explanations of the adopted coefficients, values,
design decisions, references, etc.

. At the end of the task, the answer is written if it is a design calculation
or the conclusion if it is a verification calculation. It is permitted to write
the conclusion immediately after the calculation while solving the task.
The sequence of practical tasks is shown in the script examples.
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Appendix B (recommended)

Designation of certain values
concentrated force;
Force (general designation); load; area;
peripheral force; tangential force;
radial (strut) force;
normal force;
force; load;
moment of force (general designation);
torque;
bending moment in the beam cross-section;
bending moment in the cross-section of the beam about the
X ory axis;
the reduced moment according to the adopted strength
hypothesis;
power; longitudinal force in the transverse section
of the beam;
normal stresses (general designation);
stresses normally in tension, compression, and bending
respectively;
reduced stresses according to the strength hypothesis;
strength limit (general designations);
yield point;
bending strength limit under symmetric stress cycling;
bending strength limit under pulsating stress cycling;
contact stresses;
permissible normal stresses (general designation);
allowable stresses in tension, compression, and bending
respectively;
permissible contact stresses;
tangential stresses (general designations);
shear stress;
torsional yield strength;
torsional strength limit under a variable stress cycle;
torsional strength limit under pulsating stress cycle;
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allowable tangential stresses (general designations);
allowable shear stresses;

pressure; thread pitch;

continuous force intensity, load per unit length of contact
line;

distributed permissible stresses;

permissible strength reserve factor;

longitudinal modulus of elasticity;

shear modulus; mass; gravity;

linear speed, rotational speed;

speed;

speed (ob./min); strength factor; number of products;
acceleration of free fall;

length;

altitude;

width;

diameter;

radius; cycle asymmetry factor;

thickness;

thickness; thread step;

distance between gear axes (toothed, belt, etc.); area;
the teeth hooking module;

normal tooth attachment modulus;

spur gear module; worm gear axial module;
centrifugal moment of inertia of the cross-section about
the x or y axis respectively;

polar moment of inertia of the beam cross-section;
centrifugal strength index relative to the x or y axis,
respectively;

polar strength index;

number of products; number of teeth;

gear transmision ratio; the number of products;

the number of spring coils;

the gear ratio of a pair of gears;

index of cylindrical threaded spring;

Brinell hardness;
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HRC. - Rockwell hardness (C scale);

HV - Vickers hardness;

HSh — Shore hardness;

a - coefficient of linear expansion; angle of attachment, angle
of thread profile, tooth; angle of belt pulley
circumference;

Jéj - tine angle;

g - linear deformation; slip factor; ratio overlap factor; scale

factor;

n - efficiency;

f - coefficient of sliding friction;

U - Poisson's ratio; dynamic viscosity;

yo, - friction angle; tightness; radius of curvature in gears;

1 - angle of ascent of the thread line; angle of turn.

Comments:

1. The designations of the values within the calculation should be the same.
2. Unpresented designations you can find while discussing the topics
of the theoretical and practical parts of the disciplines.
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Table C1. Greek alphabet

Appendix C (informative)

Symbol Pror.lunciat Symbol Prorllunci Symbol Pronunciati

10n ation on

Aa alpha It jota Pp R(h)o

B beta Kk kappa Yo sigma

ry gamma AA lambda T tau

Ad delta Mu mi Yv ipsilon

Ee epsilon Nv ni D fi

Z{ dzeta =& ksi Xx chi

Hn eta Oo omicron Yy dog

00 theta IIn pi Q2w omega

Nowadays, the International System of Units (SI) is used in all fields
of science, technology, economy and education.

Table C2. Selected SI units

Size name Unit Designation
Core values
Length Metre m
Mass Kilogram kg
Time Seconds S
Thermodynamic temperature Kelvin K
Additional values
Obtuse angle ‘ Radian rad
Derived values
Surface area Square metre m?2
Volume Cubic metre m3
Static moment and moment Cubic metre m3
of resistance of a plane section
Moment of inertia of a plane section | One metre to the power of four m*
Density Kilogram per cubic metre kg/m3
Speed Metre per second m/s
Speed Radian per second rad/s, s1
Power Newton N
Stress (mechanical pressure) Pascal (Niuton per square Pa (N/m )2
metre)
Power Watt w
Specific gravity Niuton per cubic metre N/m3
Moment of inertia (dynamic) Kilogram per square metre kg-m?2

Comment: In addition to Kelvin temperature, it is acceptable to use Celsius temperature (t),

expressed in degrees Celsius (°C).
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Table C3. Multipliers and their names and symbols currently used to form multiple
and sub-multiple units

Name Symbol | Multiplier Name Symbol Multiplier
Mega M 106 Decy d 101
Kilo k 103 Centy C 10-2
Hekto h 102 Nice m 10-3
Deka da 10 Micro 1 10-6

Comment: 1. It is not permitted to use two prefixes for a simple unit name, e. g,
mega-kiloton;

Comment 2. Prefixes may not be used for the names of the following units, which
denote a multiple or a unit of value, for example, in tonnes to centres.

Table C4. Conversion of some old and non-SI units to SI units

Units outside the SI system SI units
Units of length
1 millimetre, mm 103 m
1 centimetre, cm 10 m2
1 micrometre, pm 10 m©

1m=1000mm=100cm; 1 cm =10 mm; 1 pm = 0.001 mm (10-3 mm)*
Units of area

106 m2
10 m# =100 mm?
Units of static moment and moment of resistance of a plane section
10-°m3=1000 mm3
Units of the moment of inertia of a flat section

1 mm?

1 cm?

1 cm3 ‘

1 cm* | 108 m* = 10000 mm?*
Mass units
1 tonne, t ‘ 1000 kg
1kg=1000 g*
Speed units
1 rpm (min )1 n/180 rad/s
1 rpm 2nrad/s
Units of force, load, mass
1 kG (kgf) 9.80665~9.81~ 10 N
1T (tf) 9806.65 ~ 9810 ~ 104 N

Force moment units, force pairs
1 kGm (kgfm) 9.80665~9.81 ~ 10 Nm

1 kGem (kgfcm) 0.0980665 ~ 0.0981 = 0.1 Nm
1 Nm =1000 Nmm*
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Units outside the SI system SI units
Unity of labour, Energy
1 kGm (kgfm) 9.80665~9.81~ 10 ]
1kWh=3.6106J*
Power units

1 kGm- m/s; kG- cm/s

9.80665W~9.81 W10 W

1 HP

735,499 W~ 7355W=~736 W

Mechanical stress units, pressure

1 kG/cm? (kgf/cm )2

98066.5 ~9.81- 104 Pa= 0.1 MPa

1 kG/mm?2 (kgf/mm )2

9806650 ~9.81- 106 Pa~ 10 MPa

1 at

98066.5~9.81- 10 = Pa= 0.1 MPa

1at=1kgf/cm?; 1 N/mm? =1 MPa*

Dynamic viscosity units

1 pause P 0.1 Pas
1 centipauz cP 0.001 Pas
Kinetic viscosity units
1 stokes, St 1.0-10-4* m2/s
1 centistokes, cSt 1.0-10°m?/s

1cSt=1mm?2 /s=1.0-10°* m2/s*

Heat transfer units and heat transfer coefficients

1 kcal/m2 - h - step ‘

1.163 W/m?- °C

Units of thermal conductivity coefficient

1 kcal/m - degree ‘

1.163 W/m - °C

Heat rate unit

1 kcal

~4.187103 ~4103]

Units of vol

ume

11 |

103 m3

10001=1m™*3

Comment: * - additional coefficients are often used in calculations
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Appendix D (informative)

Table D.1. E, G, 14, pvalues for selected materials at 20 °C.

Temperature
E-modulus Kirchhoff ) . ) coefficient Density
. o Poisson's ratio .
Material of elasticity, modulus of linear Pm,
MPa G- 104, MPa H expansion kg/m3
o 10 -6 oC-1
0.25+0.3
Steel (1.90+2.15)-10> | 7.8 +8.30 0.33 10 + 13 7.7 +7.8
G t
FY@st | 078 +147)105 | 442 023+ 027 87+11 |7.0+7.1
iron
Tin bronze | (0.74 + 1.22)- 105 4.2 0.32+ 0.35 17 + 22 8.6+ 88
Tinless
(1.03+1.18)-10> | 4.0 + 4.2 0.36 17 + 22 8.6+ 88
bronze
Aluminium
(0.98 + 1.08)-10°| 3.63 + 3.92 0.32+0.34 17 + 22 8.2+85
brass
Aluminium
UM 687+ 707)- 100|265 0.33 22+24 | 26+27
alloys
Table D.2. Mechanical properties of selected steel grades
Steel Re, k, R-l, E,
MPa MPa MPa MPa
C10,S195 210 140 160
C20,S215 240 160 170
S235 260 175 180
C25 280 190 210
C30,S275 300 200 225 2-105
C35,S315 320 210 240
C45 360 240 275
C50 380 250 290
09G2S 310 205 240

Comment. Re - yield point, k - allowable stress,
E - elastic modulus, R - flexural strength limit
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Table D.3. Permissible stresses for welded joints

Permissible stresses for welded joints
Welding _ _ _
stretching bending | shearing
kr’ kg, ktl
Automatic, semi-automatic with self-
consuming wire (flux), manual, with E42A
. . k: kr 0.65 kr
and E50A electrodes, in the protective gas
environment, contact welding
Manual welding with electrodes E42, and
. . 0.9 k- kr 0.6 kr
E50 (usual quality), gas welding
Manual with E34 electrodes 0.75 kr 0.6 kr 0.6 kr
Contact point - — 0.5 k-

Comment 1. The accepted stress standards apply to low and medium carbon and low alloy steels
(types 14GS, 09G2S, 09G2, 15GS, 15HSND and others).

Comment 2. kr = Re/n - permissible stresses for the material of the elements to be joined under static
loading. For metal structures, the safety factor is n = 1.4 + 1.6. The higher value applies to heavy loading
modes.

Under variable loads, the strength of welded joints decreases (influence of thermal zones,
technological defects). The calculation of joints under variable loads is carried out using the formulae for the
calculation of static loads, the permissible weld stress under static load is multiplied by the variable load
factor y. For variable loads, it is recommended to calculate the strength not only of the weld but also of the
components to be joined in the weld zone. The permissible stresses in the weld zone are multiplied by
the factory calculated from the formula:

1
(0,6K,; +0,2) — (0,6K,; — 0,2)R
where R = Omin/Omax O Tmin /Tmax - Stress cycle asymmetry factor;
Ker - effective stress concentration factor (from Tables D.4 and D.5).

14

Table D.4. Effective stress concentration factor (for welds and welded
components)

Ker - electric arc welding
Calculation element Low-headed
Low-alloy steel

steel
Element at the transition to the butt joint 1.5 1.9
Element at the transition to the butt weld 2.7 3.3
Element at the transition to the side weld 3.5 4.5
Fully remelted butt welds 1.2 1.4
Angle butt welds 2.0 2.0
Angled side welds 3.5 4.5
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Table D.5. Effective stress concentration factor (for welds and welded pieces)
in contact welding

Steel brand Sample condition Thickness, : Keyin points :
mm Links Working
C10 steel Normalization 3+3 1.4 (1.25) 7.5 (5)
30HGSA steel Stress relieving 1.5+1.5 1.35 12
T‘taé‘;:i;lloy Delivery 15+15 20(13) | 10(5)
Aluminium alloy Delivery 1.5+ 1.5 20(13) | 5(225)
2024 (PA7)

Comment. In brackets, the factor for butt welding and welding

Table D.6. Permissible safety factors for threaded connections

[n] in case of uncontrolled screwing on
Fixed loads Variable loads
Steel Thread diameter d, mm Thread diameter d, mm
6 to 16 from 16 from 30 610 16 from 16 30 to 60
to 30 up to 60 to 30

Carbon 5+4 4+25 25+1.6 | 10+6.5 6.5 6.5+5

Alloy 6.6 +5 5+33 3.3 75+5 5 5+4

[n] = 1.5 = 2.5 for controlled turning

Table D.7. Permissible stresses for threaded connections, MPa

Type of load Recommended value

External tensile forces:
Without tightening the screw kr=0,6Re
External lateral forces:

ke = 0.4Rm (static)
ke=0,2 + 0,3Rm (variable)
kc=0,8Rm - steel
ke = (0.4 = 0.5)Re - cast iron
kc=1.2 Re - concrete
kc=2.4 Re - wood
Wear-resistant propellers and load screws
steel+cast screw- )
steel+bronze _ steel+steel nut-steel nut-iron
iron bronze

c=10+13 | kc=45+8 ke=7.5+13 ke=0.2Rm ke=20+25| ke=20+ 30

Bolts without backlash

Element strength at the joint
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Table D.8. Metric threads (PN-ISO 261:2001), mm

Nominal thread Coarse thread Fine thread
diameter d p dr do p d1 ds
M6 1 4918 5.350 0.75 5.188 5.513
M8 1.25 6.647 7.188 1 6.918 7.350
M10 1.5 8.376 9.026 1.25 8.647 9.188
M12 1.75 10.106 10.863 1.25 10.647 | 11.188
(M14) 2 11.835 12.701 1.5 12.376 | 13.026
M16 2 13.835 14.701 1.5 14.376 | 15.026
(M18) 2.5 15.294 16.376 1.5 16.376 | 17.026
M20 2.5 17.294 18.376 1.5 18.376 | 19.026
(M22) 2.5 19.294 20.376 1.5 20.376 | 21.026
M24 3 20.752 22.051 2 21.835 | 22.701
(M27) 3 23.752 25.051 2 24.835 | 25.701
M30 3.5 26.211 27.727 2 27.835 | 28.701
(M33) 3.5 29.211 30.727 2 30.835 | 31.701
M36 4 31.670 33.402 3 32.752 | 34.051
M(39) 4 34.670 36.402 3 35.752 | 37.051
M42 4.5 37.129 39.077 3 38.752 | 40.051
M(45) 4.5 40.129 42.077 3 41.752 | 43.051
M48 5 42.587 44752 3 44752 46.051
(M52) 5 | 46587 | 48.752 3 48.752 | 50.051
M56 5.5 50.046 52.428 3 52.752 | 54.051
(M60) 5.5 54.046 56.428 3 56.752 | 58.051
M64 6 57.505 60.103 3 60.752 | 62.051
(M68) 6 61.505 64.103 3 64.752 | 66.051

Warning. Values in brackets should not be used if possible.

Table D.9. Permissible stresses k; of keyway connections, MPa

: : Nature of the load
Type of connection | Hub material Fixed Variables
Immobile Steel 150 100
Castiron 90 60
Mobile Steel 50 30
ke=70+ 100

The higher value is taken at a constant load

317



Table D.10. Permissible stresses kcof spline connections, MPa.

Tooth surface

: Operatin .
Type of connection PETAHNE M Without heat After heat
conditions
treatment treatment
a 35+50 40 +70
Immobile b 60 + 100 100 + 140
C 80 + 120 120 + 200
Moving without load (e.g. E ;(5) : gg gg : 23
gearbox] c 25 = 40 40 = 70
Moving with load (e.g. ﬁ : 2 : 1(5)
cardan shaft in cars) . - 10 " 20

Comment: a - heavy operating conditions - loads with run-out, high-frequency and
amplitude vibration, poor lubrication conditions in moving joints, low manufacturing
accuracy; b -- medium operating conditions; ¢ - good operating conditions. Smaller

values for light load modes.

)

A

1
T

h

b

Fig. D.1. Prismatic inlets
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Table D.11. Prismatic inlets (PN 85005), mm

Shaft

Groove

diameter Dimensions depth Length L Radius r Chamfering
cor Lt | b . |shaft [ hub ¢

t t1 from | to | from | to | from | to
8 10 3 3 1.8 1.4 6 36
10 12 4 4 25 18 3 45 0.08 | 0.16 | 0.16 | 0.25
12 17 5 5 3 2.3 10 56
17 22 6 6 3.5 2.8 14 70 0.16 | 0.25 | 0.25 0.4
22 30 8 7 4 3.3 18 90
30 38 10 8 5 3.3 22 110
38 44 12 8 5 3.3 28 140
44 50 14 9 5.5 3.8 36 160 | 0.25 0.4 0.4 0.6
50 58 16 10 6 4.3 45 180
58 65 18 11 7 4.4 50 200
65 75 20 12 7.5 4.9 56 220
75 85 22 14 9 5.4 63 250
85 95 25 14 9 5.4 70 280 0.4 0.6 0.6 0.8
95 110 28 16 10 6.4 80 320
110 130 32 18 11 7.4 90 360
130 | 150 36 20 12 8.4 100 400
150 170 40 22 13 9,4 100 400 0.7 1.0 1.0 1.2
170 | 200 45 25 15 10,4 | 110 450

Comment: An example of the designation and a standard series of values are
shown in the Comments to Table D.12.

7 cxd5°

h

Fig. D.2. High prismatic drains (PN 85001)
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Table D.12. High prismatic inlets (PN 85001), mm

_Shaft Dimensi Groove Length L | Radius r Chamfering
diameter ons depth c
from | to | b h shaft | hub

t t1 |from | to | from | to t t
30 [38 /10| 9 5.5 3.8 22 | 110
38 |44 |12 | 11 7 4.4 28 | 150 | 0.25 | 0.4 | 04 0.6
44 |50 | 14 | 12 7.5 4.9 36 | 160
50 |58 |16 | 14 9 5.4 45 | 180
58 | 65 | 18 | 16 10 6.4 50 | 200
65 | 75 | 20 | 18 11 7.4 56 | 220 | 04 |06 06 0.8

75 85 | 22 20 12 8.4 63 250

85 95 | 25 22 13 9.4 70 280

95 110 | 28 25 15 10.4 80 320

110 | 130 | 32 28 17 114 90 360
130 | 150 | 36 32 20 12,4 100 400 0.7 1.0 | 1.0 1.2
150 | 170 | 40 36 22 14,4 100 400
170 | 200 | 45 40 25 15,4 110 450

Comment 1. Material - drawn steel for drains with an instantaneous strength limit
of not less than 500 + 600 MPa.

Comment 2. Length series [ by PN 85001: 6, 8, 10, 12, 14, 16, 18. 20, 22, 25, 28, 32,
36, 40, 45. 50, 56, 63, 70, 80. 90, 100, 110, 125, 140, 160, 180, 200, 220, 250, 280. 320,
360, 400, 450.

Fig. D.3. Spigot drains (PN 85008)
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Table D.13. Spigot drains (PN 85008), mm

) ) ) ) Groove
Shaft diameter d Dimensions of drains i
- depth
RS
Communicating Setting b hold I corr -%D shaft | hubs
the moment elements 1 max | min g t t
2 2.6 7 6.8 0.204| 1.8
6to8 10to 12 2 3.7 110 | 9.7 0.414| 2.9 1.0
25 (3.7 ] 10 | 9.7 0.510| 2.9
3.7 110 | 9.7 0.612| 2.5
8to 10 12to 17 3 5 13 |12.6 1.05 | 3.8 1.4
6.5 | 16 |15.7 0.16 | 0.25 1.60 | 5.3
5 13 |12.6 1.40 | 3.5
6.5 | 16 |15.7 2.12 5
10to 12 17 to 22 4 25119 1186 304 6 1.8
9 22 |21.6 410 | 7.5
6.5 | 16 |15.7 2.68 | 4.5
75|19 |18.6 404 | 5.5
12to 17 22 to 30 5 9 22 1216 = 66 7 2.3
10 | 25 | 24.5 6.90 8
9 22 |21.6 6.78 | 6.5
10 | 25 245|025 | 0.4 |848 | 7.5
17 to 22 30 to 38 6 11 1 28 (273 103 | 85 2.8
13 | 32 | 314 14.5 | 10.5
11 | 28 [27.3 13.8 8
22 to 30 38 to 44 8 13 | 32 |31.4 19.3 | 10 3.3
15 | 38 (371 254 | 12
13 | 32 | 314 241 | 10
15 | 38 |37.1 32.3 | 12
30to 38 44050 110 = e 31| 04 | 06 [395 ] 13 | O3
17 | 55 |[50.8 452 | 14
38 to 44 50 to 58 12 | 19 | 65 |59.1 62.1 | 16 3.3
a f b c B

Fig. D.4. Parallel spline connections (PN-M 85017):
a - alignment outline on d; b - alignment outline on D or B; ¢ - hole outline
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Table D.14. Parallel spline connections (PN-M 85017), mm

r
Nominal d1 a

size Z d D | b . No

zxdxD No less Size tol. more

nom.
than
Lightweight series
6 x 23 x 26 6 | 23 [ 26 [ 6 ] 221354 03 [ +02 ] 02
6 x 26 x 30 6 | 26 | 30 | 6 | 246 | 385 | 03 | +02 | 02
6 x 28 x 32 6 | 28 | 32 | 7 | 267 | 403 | 03 | +02 | 02
8 x 32 x 36 8 | 32 | 36 | 6 | 304 | 271 | 04 | +02 | 03
8 x 36 x 40 8 | 36 | 40 | 7 | 345 | 346 | 04 | +02 | 03
8 x 42 x 46 8 | 42 | 46 | 8 | 404 | 503 | 04 | +02 | 03
8 x 46 x 50 8 | 46 | 50 | 9 | 446 | 575 | 04 | +02 | 03
8x 52 x 58 8 | 52 | 58 [10] 497 | 489 | 05 | +03 | 05
8 x 56 x 62 8 | 56 | 62 |10] 536 | 638 | 05 | +03 | 05
8 x 62 x 68 8 | 62 | 68 |12 ] 598 | 731 | 05 | +03 | 05
10x72x78 | 10 | 72 | 78 |12 ] 696 | 545 | 05 | +03 | 05
10x82x88 | 10 | 82 | 88 | 12| 793 | 862 | 05 | +03 | 05
10x92x98 | 10 | 92 | 98 | 14 | 89.4 | 1008 | 05 | +03 | 05
10 jégz * | 10 | 102 | 108 | 16 | 99.9 | 1149 | 05 | +03 | 0.5
10 12182 * | 10 | 112 | 120 | 18 | 1088 | 10.72 | 05 | +0.3 | 0.5
Medium series

6x13x 16 6 | 13 | 16 3; 12.0 B 03 | +02 | 02
6 x 16 x 20 6 | 16 | 20 | 4 |1454 | - 03 | +02 | 02
6 x 18 x 22 6 | 18 | 22 | 5 | 167 - 03 | +02 | 02
6 x 21 x 25 6 |21 | 25 | 5 [ 195 | 195 | 03 | +02 | 0.2
6 x 23 x 28 6 | 23 | 28 | 6 | 213 | 134 | 03 | +02 | 02
6 x 26 x 32 6 | 26 | 32 | 6 | 234 | 1.65 | 04 | +02 | 03
6 x 28 x 34 6 | 28 [ 34 | 7 [ 259 170 04 | +02 | 03
8x 32 x 38 8 |32 |38 | 6 | 294 _ 04 | +02 | 03
8 x 36 x 42 8 |36 | 42 | 7 [ 335 | 1.02 | 04 | +02 | 03
8 x 42 x 48 8 |42 | 48 | 8 [ 395 | 257 | 04 | +02 | 03
8 x 46 x 54 8 | 46 | 54 | 9 | 427 - 05 | +03 | 05
8x 52 x 60 8 [ 52 | 60 [10 | 487 | 244 | 05 | +03 | 05
8 x 56 x 65 8 |56 | 65 |10 | 522 | 25 05 | +03 | 05
8x 62 x 72 8 |62 | 72 [12 | 578 | 24 05 | +03 | 05
10x72x82 | 10 | 72 | 82 [12 | 674 - 05 | +03 | 05
10x82%x92 | 10 | 82 | 92 [12 | 771 | 3.0 05 | +03 | 05
10x92x 102 | 10 | 92 | 102 |14 | 87.3 | 45 05 | +03 | 05
10x102x 112 | 10 | 102 | 112 | 16 | 97.7 | 63 05 | +03 | 05
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r
Nominal di a
size z d D b Si No
zxdxD No less ntl)?rel. tol. more
than
10x112x125 | 10 | 112 | 125 | 18 | 106.3 | 4.4 0.5 +0.3 0.5
Heavy series

10 x 18 x 23 10 18 23 3 15.6 - 0.3 +0.2 0.2
10 x 21 x 26 10 21 26 3 18.5 - 0.3 +0.2 0.2
10 x 23 x 29 10 23 29 4 20.3 - 0.3 +0.2 0.2
10 x 26 x 32 10 26 32 4 23.0 - 0.4 +0.2 0.3
10 x 28 x 35 10 28 35 4 24.4 - 0.4 +0.2 0.3
10 x 32 x 40 10 32 40 5 28.0 - 0.4 +0.2 0.3
10 x 36 x 45 10 36 45 5 31.3 - 0.4 +0.2 0.3
10 x 42 x 52 10 42 52 6 36.9 - 0.4 +0.2 0.3
10 x 46 x 56 10 46 56 7 40.9 - 0.5 +0.3 0.5
16 x 52 x 60 16 52 60 5 47.0 - 0.5 +0.3 0.5
16 x 56 x 65 16 56 65 5 50.6 - 0.5 +0.3 0.5
16 x 62 x 72 16 62 72 6 56.1 - 0.5 +0.3 0.5
16 x 72 x 82 16 72 82 7 65.9 - 0.5 +0.3 0.5
20 x 82 x 92 20 82 92 6 75.6 - 0.5 +0.3 0.5
20x92x102 | 20 92 | 102 | 7 85.5 - 0.5 +0.3 0.5
20x102x115 | 20 | 102 | 115 | 8 98.7 - 0.5 +0.3 0.5
20x112x125 | 20 | 112 [ 125 | 9 104 - 0.5 +0.3 0.5

Comment. For centring on the inside diameter, use designs a and 3, for centring on

e
P2 _ -

Do

Shaft

a

ds

circular pitch

the outside diameter and spline side surfaces, use design B.

Figure D.5. Spline connections of the involute:

a - S alignment; b - D alignment

circular pitch

/' dedendum
/ circle

Table D.15. Convoluted spline connections (PN-ISO 4156:1999), mm

m=1 m=1.5 m=2 m=2.5 m=3.5 m=5 m=10
Outer D

z z X z X z X z z X X

30 28 0.5 18 0.75 14 0 - - - - - _

32 30 0.5 20 0.25 14 1 - - - - - -
35 34 0 22 0.25 16 0.5 12 1.25 - — — _
38 36 0.5 24 0.25 18 0 14 0.25 - — - -
40 38 0.5 26 | -0.25 18 1 14 1.25 - - - -
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42 - | - |26]| 075 | 20 0 |16 -025 | — - - - - | -
45 - | - |28]| 075 | 22 | -05 |16 125 | - - - - - | -
50 - | - |32]| 025 | 24 0 |18 125 | - - - - - | -
55 - | - |36| 025 | 26 | 05 |20]| 125 |14 | 125 | - - - | -
60 - | - |38] 075 | 28 1 |22 125 |16| 025 | - - - |-
65 - - |- - 32 | -05 |24 125 |18 -075 | — - - | -
70 - - |- - 34 0 |26] 125 |18 175 | 12 | 25 | - | -
75 S I - 36 | 05 |28| 125 | 20| 075 | 14 | © - |-
80 - - |- - 38 1 |30 125 |22 025 | 14 | 25 | — | =
85 - - |- - - - 32| 125 |24 -125 | 16 | 0 - |-
90 - - |- - - — | 34| 125 [24] 125 | 16 | 25 | - | -
95 - - |- - - - 36| 125 | 26| 025 | 18 | 0 - | -
100 | - | - | - - - - |38| 125 | 28] -075 | 18 | 25 | - | -
110 | - | - | - - - - 42| 125 [30] 075 | 20 | 25 | - | -
120 | - | - | - - - - |46| 125 |34 -125 | 22 | 25 | - | -
130 | - | - | - - - - |s50| 125 [36] 025 | 24 | 25 | - | -
140 | - | - | - - - - - - |38 175 | 26 | 25 | - | -
150 | - | - | - - - - - — |42 025 | 28 | 25 | 14 | 0
160 | - | - | - - - - - - |44 125 | 30 | 25 | 14 | 5
170 | - | - | - - - - - - |48 -075 | 32 | 25 | 16 | 0
180 | - | - | - - - - - - |s0| 075 | 34 | 25| 16 | 5
19 | - | - | - - - - - - - - 3 | 25 | 18 | 0
200 | - | - | - - - - - - - - 38 | 25 | 18 | 5

Comment. x - displacement of the initial rail contour, f= 0.1 m - value of chamfer.
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Table D.16. Recommended ratio values for different gearboxes

u
Gearbox Closed \ Opened
Toothed single-stage:
cylinder 2+6.3 3+6.3
conical 2+4 -
Toothed two-stage:
cylinder 6.3 + 40 -
Planetary
single row 3.15+6.3 -
split 6.3+ 18 -
Closed worm 8 + 60 -
Chain 2+6 -
Belt - -
flat - 2+4
wedge - 2+5
spline - 2+8
Table D.17. Approximate efficiency values
. Efficiency
Transmission, assembly Closed Opened
Toothed single-stage
cylidry 0.96 + 0.98* 0,93 + 0,95
conical 0.95 + 0.97* 0,92 + 0,94
Planetary
single row 0.9 + 0.95* -
split 0.85 +0.92* -
Wave 0.8 + 0.92* -
Snail 0.95(1-i/200)* -
Belt 0.97* 0,92 + 0,95*
Flat, spline - 0,97*
Wedge-belt - 0,96*
With roller bearing 0.99 + 0.995
With plain bearing 0.98 + 0.99
Coupling 0.98

Comment. * - values including loss of supports
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Table D.18. 44 closed type asynchronous electric motors (PN-M-88561:1987)

Synchronisation speed, rpm

E 3000 1500 1000 750
g

. S, T, . S, T, . S, T, . S, T,
i~ Size % T_z Size % T_z Size % T_z Size % T_z
055 | 63B2 (8.5 71p4 | 73 7186 | 10 S0B8 9
075 | 71A2 5.9 71B4 | 7.5 80A6 | 8.4 90LA8 | 84 |16
11 | 71B2 6.3 80A4 | 5.4 80B6 | 8.0 90LB8 | 7.0
15 | 80A2 4.2 |, | 80B4 |58 90L6 | 6.4 |, | 100L8 | 7.0
22 | 80B2 4.3 90L4 | 5.1 2.0 | 100L6 | 5.1 112MA8 | 6.0
30 | 90L2 4.3 100S4 | 4.4 112MA6 | 4.7 112M8 | 58 | o
40 | 100S2 [3.3 100L4 | 4.7 112MB6 | 5.1 132S8 | 4.1 |
55 | 100L2 3.4 112M4 | 3.7 13252 | 3.3 132M8 | 4.1
75 | 112M2 2.5 13254 | 3.0 132M6 | 3.2 160S8 2.5 14
11.0 | 132M2 2.3 |1.6 | 132M4 | 2.8 160S6 | 2.7 160M8 | 25 |
15 | 16052 2.1 160S4 | 2.3 160M6 | 2.6 180M8 | 2.5
185 | 160M2 2.1 160M4 | 2.2 180M6 | 2.7 | , | 200M8 | 23
22 | 180S2 2.0 |1.4 | 180S4 | 2.0 1.4 | 200M6 | 2.8 |"° | 200L8 | 2.7 |1.2
30 | 180M2 [1.9 180M4 | 1.9 200L6 | 2.1 225M8 | 1.8
37 | 200M2 [1.9 200M4 | 1.7 225M6 | 1.8 250S8 1.5

Comment 1. Example of designation of an 11 kW electric motor, synchronous speed

1500 rpm
Electric motor 4A132M4U3

Comment 2. The values of the symbols in the designations: the number 4 indicates
the serial number; the letter a - asynchronous motor, the values after the letter - the height
of the axis of rotation, mm; the letters L, S and M indicate the setting values after the
length; the numbers 2, 4, 6 and 8 indicate the number of poles. The last two symbols U3
show that the motor is designed for use in a temperate climate.

Comment 3. The s column indicates slip in %; the Tr/Tz column indicates the ratio
of starting torque to rated torque.
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Table D.19. Mechanical properties of selected steels used for gears with hardness

< HB 350
Steel di?'rclce}'ie Strength limit, Yield stress, | Hardness Heat treatment
grade MPa MPa HB
r, mm
up to 100 510 270
100+300 590 260 Normalized
€35 300+500 470 240 140 = 187
500+750 450 230
up to 100 550 280
100+300 530 270
€40 300+500 510 260 152 =207
500+700 490 250
up to 100 590 300
100+300 570 290
C45 300+500 550 280 167 =217
500+700 530 270
40+60 780+880 540 223 + 250
C45 60+90 730+830 440 207 =+ 236 Tempered
90+120 680+780 390 194 = 222
180+250 640+740 340 180 = 207
up to 100 610 320
100+300 590 300 180+229 Normalized
€501 3002500 570 290
up to 200 790 540 258+310 Tempered
up to 100 650 330
C55 100+300 630 320 185 + 229 Normalized
300+500 610 310
up to 60 980 840
30HGS 100+160 890 690 215+ 229 Normalized
160+250 790 640
up to 60 940 740
35H 60+100 740 490 190 = 241 Normalized
100+200 690 440
up to 60 980 790
100+200 760 490 .
40H 200300 740 490 200 + 230 Normalized
300+600 690 440
up to 120 880+980 690 257 + 285
40H 120+150 830+930 590 243 + 271 Tempered
150+180 780+880 540 230 + 257
180+250 730+830 490 215+ 243
up to 60 980 790
60+ 100 840 590 .
40HN 100+300 790 70 220 + 250 Normalized
300+500 740 550
up to 150 880+980 690 265 + 295
40HN 150+180 830+930 590 250 + 280 Tempered
180+250 790+880 540 235+ 265
Cast alloyed and unalloyed steel
L35 - 490 270
L40 : 520 290 =145
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Steel d]iigce}'lce Strength limit, Yield stress, Hardness Heat treatment
grade MPa MPa HB
r, mm
L45 - 540 310 >147
L50 - 570 330 >153
L55 - 590 340 >174 Normalized
L40G - 630 320 155-217
>174
L35G - 590 340 >174
L35HGS - 790 590 >202 Tempered
L35HN - 690 490 219+269 p
L40G2 - 630 320 190+225

Table D.20. Mechanical properties of selected steels used for gears with hardness
HB>350.

Mechanical
HRC tooth characteristics
Steel grade | Heat treatment 00 of the tooth material
surface hardness
Rm | R
MPa

C20 58 + 63 410 240
20G 58 + 63 450 270
12HN2 Carburising 56 + 58 780 590
15H 58 + 63 690 490
18HGT 58 + 60 980 830
20H 54 + 62 780 640
C40 38 + 52 550 270
C45 45 + 55 590 330
C50 Surface hardening 50 + 57 620 340
40H 50 + 55 740 490
40HN 51 + 57 790 490
38HA Nitrogenation 50 + 65 880 740
38HMA 50 + 65 980 830
35H 48 + 55 830 590
40H Carbonitriding 48 + 56 880 640
40HN 50 + 54 900 690
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Table D.21. Standardised linear dimensions (ISO 286-1:2010), mm

Rows Rows Rows
Ra5 | Ral0 | Ra20 | Ra40 | In. Ra5 | Ral0 | Ra20 | Ra40 | In. Ra5 | Ral0 | Ra20 | Ra40 | In.
10 10 10 10 10.2 | 40~ 40 40 40 41 160 160 160 160 165
- - - 10.5 10.8 - - - 42 44 - - - 170 175
- - 11 11 11 - - 45 45 46 - - 180 180 185
- - - 11.5 11.8 - - - 48 49 - - - 190 195
- 12 12 12 12.5 - 50 50 50 52 - 200 200 200 205
- - - 13 13.5 - - - 53 55 - - - 210 215
- - 14 14 14.5 - - 56 56 58 - - 220 220 230
- - - 15 15.5 - - - 60 62 - - - 240 240
16 16 16 16 16.5 63 63 63 63 65 250 250 250 250 270
- - - 17 17.5 - - - 67 70 - - - 260 290
- - 18 18 18.5 - - 71 71 73 - - 280 280 310
- - - 19 19.5 - - - 75 78 - - - 300 | 315
- 20 20 20 20.5 - 80 80 80 82 - 320 320 320 | 330
- - - 21 21.5 - - - 85 86 - - - 340 | 350
- - 22 22 23 - - 90 90 92 - - 360 360 | 370
- - - 24 24 - - - 95 98 - - - 380 | 390
25 25 25 25 27 100 100 100 100 | 102 | 400 | 400 400 400 | 410
- - - 26 26 - - - 105 | 108 - - - 420 | 440
- - 28 28 29 - - 110 110 | 112 - - 450 450 | 460
- - - 30 31 - - - 120 | 115 - - - 480 | 490
- 32 32 32 33 - 125 125 125 | 118 - 500 500 500 | 515
- - - 34 35 - - - 130 | 135 - - - 530 | 545
- - 36 36 37 - - 140 140 | 145 - - 560 560 | 580
- - - 38 39 - - - 150 | 155 - - - 600 | 615

Comment. When selecting sizes, rows with a higher gradation should be preferred (row Ra5), row
Ra10 should be preferred, etc.) When selecting sizes larger than 600, the Ra value should be taken from the
same rows but an order of magnitude higher. For example: the calculated value is 73.5 mm using the table,
we take the value from row Ra 20 + 71 mm.

Table D.22. Recommended combinations of steel grades for pinion and gear
at hardness below HB 350

Gearbox | Gear wheel | Gearbox | Gear wheel | Gearbox | Gear wheel
C35 C45
L35 L50 35H
C45 L40 500G L55 30HGS 40H
C40 50G L40G
C45 (S315)
C35
C50 L45 - -~ -~ -
(S275)
C50
35H
C45 C55
C55 L55 3251;” L55 40HN ‘igg
(S315) L35G L20C
L40G
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Table D.23. values of the gear width ratio relative to the inter-axial distance ¥
(ISO 6336-1:2019).

¥ 1010.125/0.160.2]0.25(0.315/0.40.5]/0.63|0.8| 1.0 |1.25

Straight tooth gearboxes ¥=0.125+0.25

Bevel gearboxes ¥%=0.25+04

Chevron gearboxes ¥=0.5+1.25
Table D.24. Values of the involute gear modulus (PN-ISO 54:2001)

Module mn, mm

Row 1 051(06/08| 1.0 | 1.25 | 1.5 | 2.0 | 25 |3.0[4.0
Row 2 0.55]0.7109]1.125|1.375|1.75]2.25|2.75|3.5|45
Row 1 5.0 [6.0/8.0] 10.0 | 12.0 | 16.0]20.0| 25 | 32 | 40
Row 2 55 17.0]/9.0] 11.0 | 14.0 | 18.0|22.0| 28 | 36 | 45

Comment. Second-order values are preferred

Table D.25. values of the coefficient of uneven load distribution along the length
of the tooth, Kup, Krp

b For pinion or wheel With hardness
Tpq = 7 hardness < 350HB pinion and wheel > 350HB
Y 11 11 I 11 11
0.2 1.08 1.01 1.00 1.10 1.02 1.00
0.4 1.22 1.05 1.02 1.24 1.06 1.02
0.6 1.40 1.08 1.03 1.46 1.10 1.04
0.8 1.70 1.12 1.05 1.80 1.15 1.07
1.0 2.03 1.17 1.09 2.10 1.23 1.10
1.2 - 1.22 1.11 - 1.36 1.14

Comment. [ - cantilever gear arrangement; Il - asymmetrical arrangement;
[II - symmetrical arrangement; Thd - the ratio of the wheel width to its diameter

Table D.26. Inter-axial distance values of cylindrical gears (ISO 6336-1:2019)

Inter-axial distance aw, mm
Row 1 40 50 63 80 100 125 160 200 250 | 315
Row 2 - - 71 90 112 140 180 225 280 | 355
Row 1 400 | 500 | 630 | 800 | 1000 | 1250 | 1600 | 2000 | 2500 -
Row 2 450 | 560 | 710 | 900 | 1120 | 1400 | 1800 | 2240 - -

Comment. Values for Row 2 are preferred
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Table D.27. Values of Kne and Kr« for bevel gears and chevron gears

Degree Circular velocity V, m/s
Ofprﬁasm tol | 5 | 10 | 15 | 20
6 1 1.02 | 1.03 | 1.04 | 1.05
7 1.2 | 1.05 | 1.07 | 1.10 | 1.12
8 1.06 | 1.09 | 1.13 - -
9 1.1 | 1.16 - - -

Comment. For wheels with straight teeth Ku, Kro = 1.

Table D.28. Kuv-values

Circular velocity V, m/s

Gearbox Hardness HB | to 5 \ 10 \ 15 \ 20

Tooth surfaces Degree of accuracy

8 7

: <350 1.05 | - - =

About straight teeth 350 110 - - -
With oblique teeth <350 1.0 | 1.01 |{1.02] 1.05
and chevron >350 1.0 | 1.05(1.07| 1.10

Table D.29. Values of tooth form factors Yr for uncorrected external abutment
(IS0 6336:2019)

zorze | 17 20 25 30 40 50 60 70 80 over 100

Yr 4.28 | 4.09 | 390 | 3.80 | 3.70 | 3.66 | 3.62 | 3.61 | 3.61 3.60

Table D.30. Kry-values

Hardness Circular velocity V. m/s
Degree HB
of accuracy tooth 3 3+8 8+125
surfaces
6 <350 1/1 1.2/1 1.3/1.1
> 350 1/1 1.15/1 1.25/1
; <350 1.15/1 1.35/1 | 1.45/1.2
> 350 1.15/1 1.25/1 | 1.35/1.1
8 <350 1.25/1.1 | 1.45/1.3 -/1.4
> 350 1.2/1.1 | 1.35/1.2 -/1.3

Comment. The numerator contains the value of Kr for gears with
straight teeth, and the denominator - for gears with oblique teeth.
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Table D.31. Basic technical characteristics of single-stage cylindrical gearboxes

Gearbox type
Technical characteristics
1CU-100|1CU-160| 1CU-200 | 1CU-250
Transmission 2; 2.5; 3.15; 4; 5; 6.3
Permissible radial | on a high-speed 630 1250 2800 4000
load on the shaft
bracket, N on a low-speed
P 2240 4500 6300 9000
shaft
Rated torque on low-speed shaft, Nm 315 1250 2500 5000
High-speed shaft speed (no more), min-1 1500
Efficiency 0.98
Weight, kg 27 78 135 250
L
L3 Aw L La
e NN
©- D e ="
&/\d =
- ¥—} O @
Lz | , dowd <| gi
L1 B
Fig. D.6. Single-stage cylindrical gear 1CU
Table D.32. Overall and connection dimensions of gearbox 1CU
Gearbox |Aw| A |A1| B |B1| H | Hi| h L |Li|Lx|L3s|Ls|Ls| d
1CU-100 [100|224| 95 (140|132|224|112| 22 |315|265| 85 |132|136|155| 15
1CU-160 [160|355(125|185|175(335|170| 28 |475|405|136|195(218|218| 24
1CU-200 [200|437|165|212|200({425|212| 36 |670|580|165|236(230|265| 24
1CU-250 [250|545(185|265|250(530|265| 40 |710(615|212|290{280|315| 28
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Table D.33. Cylindrical two-stage gearboxes

Gearbox type
Technical characteristics
1C2U-100|1C2U-125|1C2U-160{1C2U-200|1C2U-250
Transmission 8;10; 12.5; 16; 20; 25; 31.5; 40
Perm1551ble on a high-speed 500 750 1000 2240 3150
radial load on |shaft
the bracket, N on 2 low-speed
P 4500 6300 9000 12500 18000
shaft
Rated torque on low-speed 315 630 1250 2500 5000
shaft, Nm
ngh-spe(_ed_shaft speed (no 1500
more), min-1
Efficiency 0.97
Weight, kg 20 32 95 170 320
L L4 L5
L3 Awr_ _Aw
ﬁ/:\\_/L
17> 74 N7 ) ol = —
\%él & e —F
" T &
¢
L2 4otwd < B1
A B
L1
Fig. D.7. Cylindrical two-stage transmission1C2U
Table D.34. Overall and switching dimensions of gearbox 1C2U
Gearbox |Awr|Aws| A1 | B | Bt | H | Hi |h| L Li | Lz | L3 | L+ | Ls | d
1C2U-100 |100| 80 | 290|145 |109|225|112(20|386 |325| 85 |132|136|165| 15
1C2U-125 [125| 80 | 335|165 |125|270|132(22|440|375|106|155|145|206| 19
1C2U-160 [160|100|425|195|140 (335|170|24|545 (475 |135|195|170(224| 24
1C2U-200 [200|125|515|230|165 (420(212|30|670 [580 |165|236|212|280| 24
1C2U-250 (250|160 | 670|280 |218 [515|265|32|825|730|212|290|265|335|28
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Table D.35. Cylindrical two-stage gearboxes (with inter-axial distance of the low-
speed stage up to 500 mm)

Gear types
Technical characteristics
1C2U-315 [1C2U-355 [ 1C2U-400 | 1C2U-450 |1C2U-500
Transmission 8;10; 12.5; 16; 20; 25; 31.5; 40; 50
Permissible | O high-
. speed shaft 3500 4200 4800 8200 10000
radial load on
the bracket, N onalow-
30000 40000 45000 71000 10000
speed shaft
Rated torque on the low- 14000 | 20000 | 28000 | 40000 | 56000
speed shaft, Nm
High-speed sl'la-ft speed 1500
(no more), min-!
Efficiency 0.98 0.97
Weight, kg 510 700 930 1530 2090
L L4 L5
L3 Awr _ Aws B
LNyl N\l v = 4ESET:‘
NZANZS L =
Zh g E | & |
40 | O3 [\ & L]
L2 6otw _d < -ﬁf
L1 B2
Fig. D8. Cylindrical two-stage gearboxes 1C2Y, 1C2N
Table D.36. Overall and connection dimensions of gearbox 1C2U
Gearbox |Awr| Aws |A1| B| B:1 | H | Hi | h | L Li | Lz | L3 | L+ | Ls | d
1C2U-315 | 315 | 200 |395|260| 318 | 685 | 335 | 35 |1030| 370 | 215 | 360 | 300 | 420 | 28
1C2U-355 | 355 | 225 |435|280| 360 | 740 | 375 | 35 |1160| 425 | 250 | 400 | 320 | 440 | 28
1C2U-400 | 400 | 250 |475|330| 420 | 835 | 425 | 42 |1300| 475 | 280 | 450 | 380 | 500 | 35
1C2U-450 | 450 | 280 [630|515| 590 | 955 | 475 | 50 [1460| 530 | 310 | 500 | 500 | 650 | 35
1C2U-500 | 500 | 315 [700|580| 650 |1055| 530 | 60 [1650| 615 | 360 | 565 | 530 | 690 | 42

334




H

Awr L3
&/ [
JL_’T/[ N °
R\ 7\l
= 1 1 <=
 — -
otw _d
5 A L2
< L1

/

K

SR

Al

B

Fig. D.9. Two-stage bevel-cylinder gearboxes of type KC1

Table D.37. Two-stage bevel-cylinder gearboxes

Gear types
Technical characteristics | 1 500 |kc1-250 | KC1-300 | KC1-400 | KC1-500
Transmission 6.3; 10; 14; 20; 28
Permissible radial load on
the bracket, N 5100 7000 12000 18000 25000
Rated torque on a low- 520 1200 2100 5300 9000
speed shaft, N -m
Efficiency 0.94
Weight, kg 186 391 474 980 1740

Table D.38. Overall and connection dimensions of type KC1 gearboxes

Gearbox Awr | A Az B H Hi h hi L L1 L2 L3 Li | d | n
KC1-200 200 | 375 | 250 | 300 | 435 | 225 | 20 - 900 480 85 460 | 247 | 17 | 4
KC1-250 250 | 480 | 325 | 375 | 515 | 265 | 25 1170 | 600 | 120 | 625 | 320 | 22 | 4
KC1-300 300 | 545 | 350 | 450 | 607 | 315 | 25 - 1275 | 680 | 120 | 625 | 385 | 22 | 6
KC1-400 400 | 810 | 450 | 526 | 705 | 320 | 35 | 95 1705 | 930 | 212 | 848 | 452 | 26 | 8
KC1-500 500 | 990 | 550 | 630 | 877 | 400 | 40 | 100 | 2085 | 1160 | 250 | 1030 | 544 | 33 | 8
L4
& Y i

I.. _LJI]\@_%_

kg

e Al

= B

Fig. D.10. Conical-cylindrical three-stage gearboxes type KC2
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Table D.39. Tapered-cylinder three-stage gearboxes

Gear types
Technical characteristics 1) 50 |kc2-750 |KC2-1000| KC2-1300
Transmission 28;45;71;112; 180
Permissible radial load on the 11500 1150 28000 75000
bracket, N
Rated torque on low-speed 2300 6750 16500 37500
shaft, N-m
Efficiency 0.91
Weight, kg 490 1240 2658 5100

Table D.40. Overall and connection dimensions of conical-cylindrical three-stage

gearboxes
Gearbox Awr | Awp A A; B H H; h h; L Li L2 L3 L4 d n
KC2-500 300 200 705 300 | 350 600 315 | 25 - 1300 830 90 460 327 | 22 6
KC2-750 450 300 | 1120 | 470 | 550 765 335 | 35| 130 | 1883 | 1260 | 120 625 464 | 33 | 10
KC2-1000 | 600 | 400 | 1530 | 600 | 690 956 | 400 | 40 | 200 | 2482 | 1700 | 165 848 | 615 | 33 | 10
KC2-1300 | 800 500 | 2020 | 740 | 850 | 1282 | 530 | 50 | 240 | 3178 | 2200 | 220 | 1030 | 790 | 39 | 10

Table D.41. Mechanical characteristics of selected steels used for shaft production

Diameter
of semi- Rm Re Tpl R-1 ks
.. HB
finished Heat
Steel hardness, "
product 1o less treatment
mm MPa
no less
Any 200 560 280 150 250 150 N
45 120 240 800 550 300 350 210 N
80 270 900 650 390 380 230 N
Any 200 730 500 280 320 200 N
40H 200 240 800 650 390 360 210 N
120 270 900 750 450 410 240 N
40HN Any 240 820 650 390 360 210 N
200 270 920 750 450 420 250 N
20H 120 240 850 630 240 420 240 Cagl?\,l H,
12HN3A 120 260 950 700 490 420 210 | Carb, HLT

Comment. * accepted designations: N - normalizing; Carb - carburizing; H -

hardening;
LT - stress relieving
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Table D.42. Averaged allowable stress values for shafts and axles, MPa

Shaft material Rm kog kg
400 70 40

500 75 45

Carbon steel 600 95 5c
700 110 65

800 130 75

Alloy steel 1000 150 90

Table D.43. Basic dimensions of cylindrical shaft ends (ISO/R 775:1969), mm

Diameter d for row Length [ for execution
1st 2nd 1 2 nc
10, 11 - 23 20 0.6 0.4
12,14 - 30 25 1.0 0.6
16,18 19 40 28 1.0 0.6
20, 22 24 50 36 1.6 1.0
25,28 - 60 42 1.6 1.0
32,36 30, (35), 38 80 58 2.0 1.6
40, 45 42 48 110 82 2.0 1.6
50, 55 (52), (56) 110 82 2.5 2.0
60, 70 63, 65, (71),75 140 105 2.5 2.0
80,90 85,95 170 130 3.0 2.5
100,110,125 120 210 165 3.0 2.5
140 130, 150 250 200 4.0 3.0
160, 180 170 300 240 4.0 3.0
200,220 190 350 280 5.0 4.0
250 240, 260 410 330 5.0 4.0
280, 320 300 470 380 5.0 4.0
Comment. Non-recommended values are given in brackets
Table D.44. Values [p] and [pv ] for plain bearings
Insert , ) .
material | 2™/ h[/lpga MP[Z rr]l/ s Application
2 0.05 0.1
EN-GJL-HB200 0.2 9 1.8 For working with hardened and
EN-GJL-HB250 0.3;5 2(1) 22 normalised shafts
EN-GJL-HB300 0 3;5 Oél Zg For working with unhardened shafts
EN-GJS-400-15 5 0.5 2.5
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Insert [p] [pv] —
. vum/s ’ Application
material / MPa | MPa- m/s PP
1 12 12 For Worklng with hardened and
normalised shafts
Ductile cast 5 0.5 2.5
iron EN-G]JS- For working with unhardened shafts
1 12 12
500-7
CuSn10F1 10 15 15
CuAl9Fe 8 15 12 Metal cutting machines, pumps, rolling
CuSn6Zn6Sn3 g 4:6 4:6 equipment, gears
CuSn30 10 = 12 20 30 = 90 ngh. V:cmable loads, and imperfect
lubrication.
Cranes, railways, excavators, crushers,
CuSn16Cd3Pb3 2 12 10 slag carrier liners, cast iron carriers,
metal cutting machine spindles
Babbit B83, . Large loads. Steam turbines, electric
Babbit B89 60 25 200 - 100 machines, turbochargers, roller drives
Large loads. Centrifugal pumps,
Babbit B16 6 15 10 = 50 gearboxes: gear ra.cks of rolhlng mills,
metal cutting machines, electric motors
- 250 + 750 KW, compressors

Table D.45. Values of the safety factor K» depending on the nature of the load and
the application of the rolling bearings

overloads 200 %

Charakter of the load Kb Application
Precision gears.
Light run-out; short- Metal cutting machines (except planers, chisels
term overloads up to 10212 and grinders), hydroscopes. Crane lifting
125% of rated "~ 7" | mechanisms. Electric hoists and monorail trolleys.
(calculated) load Mechanically driven winches. Small and medium
power electric motors. Light fans and blowers.
Moderate run-out: Gears. Gears gfall types. Axle boxes for rolling
. . stock. Mechanisms for moving trolleys and cranes.
vibration loads; short- . . )
. Mechanisms for turning cranes and changing the
term overloads 150 % (1.2 + 1.5 . - : .
reach ofthe jib. Grinder spindles. Electric
of rated (calculated) . .
spindles. Wheels for cars, buses, motorbikes,
load : .
scooters. Agricultural machinery.
Centrifuges and separators. Axles and traction
motors of electric locomotives. Crane motion
The same, under .
. . ) mechanisms. Wheels of trucks, tractors, tractors,
conditions of increased [1.5 + 1.8 . . .
reliability locomotives, cranes and road machinery. High-
powered electrical machines. Electrical power
equipment.
Loads with significant Gear wheels. Crushers and gears. Crank
run-out and vibration; [1.8 + 2.5 | mechanisms. Ball and impact mills. Rolling mills.

Powerful fans and extractors.
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Charakter of the load Kb Application
of rated (calculated)
load
Loads with strong run-
out and short-term

overload 300 % 2.5+3.0
of rated (calculated)
load

Heavy forging machinery. Sawmill frames.
Refrigeration = equipment. =~ Working roller
conveyors for heavy sectional mills, blooming and
slabbing. Hammer mills, crushers.

Table D.46. Temperature coefficient values Kr

Operatmgbeai‘ggtemperature <100 | 125|150 | 175 | 200 | 225 | 250 | 350

Temperature coefficient Kr 1.0 [1.05/1.10|1.15|1.25]|1.35|1.40|1.45
Comment. At t> 120 °C, due to structural changes in the metal, it is necessary to
use special bearing materials

Table D.47. Recommended values of basic rolling bearing life Lioan for different
types of machinery

Type of machine and nature of work L1oan, h
Equipment and mechanisms used periodically, .

: . . 500 + 4000
agricultural machinery, household appliances
Mechanlsms used for short periods, assembly cranes, 4000 = 8000
construction machinery
Precision mechanisms that operate sporadically
(auxiliary mechanisms in power plants, conveyors for 8000 = 12000

flow production, lifts, infrequently used metalworking
machinery).

Part-load single-shift machines (stationary electric
motors, gearboxes, crushers)

Single-shift, full-load machines (metal-cutting
machines, woodworking machines, general technical
equipment, cranes, fans, separators, centrifuges,
printing equipment)

Machinery for round-the-clock use (compressors,
pumps, mine hoists, stationary electrical machinery, 40000 = 50000
ship drives, rolling mills, textile machinery)
Hydroelectric power plants, rotary kilns, marine

12000 + 20000

20000 = 30000

60000 + 100000

engines
Machines operating continuously with heavy loads
(paper machines, power plants, mine pumps, 100000

mushroom shafts of sea-going ships)
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Table D.48. X and Y values for bearings

Single- and double-row radial ball bearings
F,/VFe: < F./VFe:> e
Fa /CO X Yy X Y
0.014 2.30 0.19
0.028 1.99 0.22
0.056 1.71 0.26
0.084 1.55 0.28
0.11 1 0 0.56 1.45 0.30
0.17 1.31 0.34
0.28 1.15 0.38
0.42 1.04 0.42
0.56 1.00 0.44
Angular contact roller bearings. tapered roller bearings and self-aligning roller bearings
single row double row
F./VFe: < F./VFe:> F./VFe:> F./VFe: < e
X Y X Y X Y X Y
1 0 0.4 0.4ctga 1 0.45 ctg-a 0.67 |0.67ctg-ax|15tg-«x
Angular contact ball bearings
dF single row double row
P GZCO * | F/VF.<e F/VFy2>e F/VFy>e F/VF,<e e
X Y X Y X Y X Y
0.014 1.81 2.08 2.94 0.30
0.029 1.62 1.84 2.63 0.34
0.057 1.46 1.60 2.37 0.37
0.086 1.34 1.52 2.18 0.41
12 0.11 1 0 0.45 1.22 1 1.39 0.74 1.98 0.45
0.17 1.13 1.30 1.84 0.48
0.29 1.04 1.20 1.69 0.52
0.43 1.01 1.16 1.64 0.54
0.57 1.00 1.16 1.62 0.54
0.015 1.47 1.65 2.39 0.38
0.029 1.40 1.57 2.28 0.40
0.058 1.30 1.46 211 0.43
0.087 1.23 1.38 2.00 0.46
15 0.12 1 0 0.44 1.19 1 1.34 0.72 1.93 0.47
0.17 1.12 1.26 1.82 0.50
0.29 1.02 1.14 1.66 0.55
0.44 1.00 1.12 1.63 0.56
0.58 1.00 1.12 1.63 0.56
18 0.02
19 1 0 0.43 1.00 1 092 0.70 1.63 0.57
o | MaE | Y X Y X Y x | v e
/Co
24
25
26 0.41 0.87 0.67 1.44 0.68
30
35.36 0.39 0.76 0.78 0.63 1.24 0.80
40 0.37 0.66 0.66 0.60 1.07 0.95
0.35 0.57 0.55 0.57 0.93 1.14

Comment: i - number of rows of rolling bodies
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Table D.49. Selection recommendations for radial ball bearings

The axial
: Designatio | component
ratio .
F./ n and of the radial Attention
2 contact load Sin
Frmax .
angle |fractions from
Frmax
035 +0.8 36000, 0.3 Frmax
a=12° Light and super-light series are
0.81+1.2| 46000; 0.6 F allowed
6_000; e At very high speeds mostly light series
19 a=26 0.9 F For high speeds, abearing with the
> 1. 66000; -7 Urmax specified contact angle is unsuitable
a=36"°

Comment. At Fa/F rmax< 0.35 single row radial ball bearings are used

|

a

g8

I

b

Fig. D.11. Single row radial ball bearings:
a - 100-200-300-400 (ISO 5753:2009); b - 80100-80200 (ISO 5753:2009)

Table D.50. Single row radial ball bearings (ISO 5753:2009), mm

Load capacity, kN Niim,
Signs d D B r ) ) thousand

8 Dynamic, C | Static, Co -

min
Very lightweight series

105 25 47 12 1.0 11.2 5.6 10
106 30 55 13 1.5 13.3 6.8 10
107 35 62 14 1.5 15.9 8.5 8
108 80108 40 68 15 1.5 16.8 9.3 8
109 - 45 75 16 1.5 21.2 12.2 8
110 - 50 80 16 1.5 21.6 13.2 8
111 - 55 90 18 2 28.1 17 8
112 - 60 95 18 2 29.6 18.3 8
113 - 65 100 18 2 30.7 19.6 3.3
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Load capacity, kN Niim,
Signs d b B Dynamic, C | Static, Co thou_sa_rlld

min

114 - 70 | 110 | 20 2 37.7 24.5 6.3
115 - 75 | 115 | 20 2 39.7 26.0 5
116 - 80 | 125 | 22 2 47.7 31.5 5
117 - 85 | 130 | 22 2 49.4 33.5 5
118 - 90 | 140 | 24 | 2.5 57.2 39.0 4
119 - 95 | 145 | 24 | 2.5 60.5 41.5 4
120 - 100 | 150 | 24 | 2.5 60.5 41.5 4

Lightweight series

205 25 52 15 | 1.5 14.0 6.95 12.5

206 30 62 16 | 1.5 19.5 10.0 12.5
207 35 72 17 | 1.5 25.5 13.7 10
208 | 80208 | 40 80 18 2 32.0 17.8 10
209 | 80209 | 45 85 19 2 33.2 18.6 8
209A - 45 85 19 2 36.4 20.1 8
210 - 50 90 20 2 35.1 19.8 8
211 - 55 1100 | 21 |25 43.6 25.0 6.3
212 80212 | 60 | 110 | 22 | 2.5 52.0 31.0 6.3
213 80213 | 65 | 120 | 23 | 2.5 56.0 34.0 5
214 - 70 | 125 | 24 | 2.5 61.8 37.5 5
215 | 80215 | 75 | 130 | 25 |25 66.3 41.0 5
216 - 80 | 140 | 26 3 70.2 45.0 5
217 - 85 | 150 | 28 3 83.2 53.0 5
217A - 85 | 150 | 28 3 89.5 56.5 5
218 | 80218 | 90 | 160 | 30 3 95.6 62.0 4
219 - 95 | 170 | 32 | 3.5 108.0 69.5 4
219A - 95 | 170 | 32 | 3.5 115.0 74.0 4
220 | 80220 | 100 | 180 | 34 | 3.5 124.0 79.0 4

Medium series

305 25 62 15 2 22.5 11.4 10
306 30 72 17 2 28.1 14.6 8
307 35 80 19 2 33.2 18.0 8
308 40 90 23 | 25 41.0 22.4 8
309 45 | 100 | 25 | 2.5 52.7 30.0 6.3
310 50 | 110 | 27 3 65.8 36.0 6.3
311 55 120 29 3 71.5 41.5 6.3
312 60 | 130 | 31 | 3.5 81.9 48.0 5
313 65 | 140 | 33 | 3.5 92.3 56.0 5
314 70 | 150 | 35 | 3.5 104.0 63.0 5
315 75 | 160 | 37 | 3.5 112.0 72.5 4
316 80 | 170 | 39 | 3.5 124.0 80.0 4
316K5 80 | 170 | 39 | 3.5 130.0 89.0 4
317 85 | 180 | 41 4 133.0 90.0 4
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Load capacity, kN Niim,
Signs d b B Dynamic, C | Static, Co thou_sa_rlld
min
318 90 | 190 | 43 4 143.0 99.0 3.2
319 95 | 200 | 45 4 153.0 110 3.2
319K5 95 | 200 | 45 4 161.0 120.0 3.2
320 100 | 215 | 47 4 174.0 132.0 3.2
Heavy series
405 25 80 21 |25 36.4 20.4 8
406 30 90 23 |25 47.0 26.7 6.3
407 35 | 100 | 25 |25 55.3 31.6 6.3
408 40 | 110 | 27 3 63.7 36.5 6.3
409 45 | 120 | 29 3 76.1 45.5 6.3
410 50 | 130 | 31 |35 87.1 52.0 5
411 55 | 140 | 33 |35 100.0 63.0 5
412 60 | 150 | 35 | 3.5 108.0 70.0 4
413 65 | 160 | 37 | 3.5 119.0 78.1 4
414 70 | 180 | 42 4 143.0 105.0 4
415 75 | 190 | 45 4 155.0 115.0 4
416 80 | 200 | 48 4 163.0 125.0 4
417 85 | 210 | 52 5 174.0 135.0 4
4Ty

Fig. D.12. Radial spherical double-row ball bearings (ISO 15:1998)

Table D.51. Parameters of double-row spherical radial ball bearings (ISO 15:1998)

- Load

= capacity, kN

g Nlim,

& d D B r e Y* Yo [thousand.

'g C Co min-1

A

Lightweight narrow series

1208 | 40 | 80 | 18 | 2 19.0 | 855 | 0.22 | 2.87/4.44 | 3.01 10
1209 | 45 | 85 | 19 | 2 21.6 | 9.65 | 0.21 2.97/4.6 | 3.11 8
1210 | 50 | 90 | 20 | 2 229 ]10.8 | 0.21 | 3.13/4.85 | 3.28 8
1211 | 55 | 100 | 21 | 25| 26.5 | 13.3 0.2 3.23/5.0 | 3.39 6.3
1212 | 60 | 110 | 22 | 25| 30.2 | 155 | 0.19 | 3.41/5.27 | 3.57 6.3
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: and

2 capacity, kN

,,C_G. Nlim,

&b d D B r e Y* Yo [thousand.

% C Co min-!

a
1213 | 65 | 12023 | 25| 31.2 |17.2 | 0.17 | 3.71/5.73 | 3.68 5
1214 | 70 | 125 |24 | 25| 345 | 187 | 0.18 | 3.51/5.43 | 3.88 5
1215 | 75 | 130 | 25| 25| 39.0 | 21.5| 0.18 3.6/5.57 | 3.77 5
1216 | 80 | 140 | 26 | 3 39.7 | 235 | 0.16 | 3.94/6.11 | 4.13 5
1217 | 85 | 150 | 28 | 3 48.8 | 28,5 | 0.17 | 3.69/5.71 | 3.87 4
1218 | 90 | 160 | 30 | 3 57.2 |32.0| 0.17 | 3.76/5.82 | 3.94 4
1220 | 100 | 180 | 34 | 3.5 | 63.7 | 37.0 | 0.17 | 3.68/5.69 | 4.81 3.2

Medium narrow series
1305 | 25 | 62 | 17 | 2.0 | 17.8 6.0 0.28 | 2.26/3.49 | 3.36 8
1306 | 30 | 72 | 19 | 2.0 | 21.2 7.7 0.26 2.46/3.8 | 2.58 8
1307 | 35 | 80 | 21 | 25| 25.1 9.8 0.25 | 2.57/3.98 | 2.69 8
1308 | 40 | 90 | 23 | 25| 296 |12.2 | 0.24 | 2.61/4.05 | 2.74 8
1309 | 45 | 100 | 25| 25| 37.7 | 159 | 0.24 | 2.54/3.93 | 2.66 6.3
1310 | 50 | 110 | 27 | 3 43.6 | 17.5| 0.24 | 2.69/4.14 | 2.8 6.3
1311 | 55 | 120 | 29 | 3 50.7 | 23.5 | 0.23 2.7/4.17 | 2.82 5
1312 | 60 |130| 31 | 3.5 | 57.2 | 265 | 0.23 2.8/4.83 | 2.93 5
1313 | 65 | 140 |33 |35 | 61.8 | 29.5| 0.23 | 2.79/4.31 | 2.92 5
1314 | 70 | 150 | 35| 3.5 | 74.1 | 355 | 0.22 | 2.81/4.35 | 2.95 4
1315 | 75 | 160 | 35| 3.5 | 79.3 | 385 | 0.22 | 2.84/4.39 | 297 4
1316 | 80 | 170 | 37 | 3.5 | 884 | 42.0 | 0.22 | 292/4.52 | 3.06 4
1317 | 85 | 180 | 41 | 4 97.5 | 48,5 | 0.22 | 2.90/4.49 | 3.04 4
Medium wide series

1608 | 40 | 90 | 33 | 25 | 449 | 15.7 | 043 | 1.46/2.25 | 1.52 6.3
1609 | 45 | 100 | 36 | 25 | 54.0 | 194 | 042 | 1.51/2.33 | 1.58 6.3
1610 | 50 | 110 | 40 3 67.7 | 23.6 | 0.43 | 1.48/2.29 | 1.55 5
1611 | 55 | 120 | 43 3 76.1 | 28.0| 041 | 1.53/2.36 | 1.6 5
1612 | 60 | 130 | 46 | 3.5 | 87.1 | 33.0 0.4 1.56/2.41 | 1.63 4
1613 | 65 | 140 | 48 | 3.5 | 95.6 | 385 | 0.38 | 1.65/2.55 | 1.73 4
1614 | 70 | 150 | 51 | 3.5 | 111.1 | 445 | 0.38 | 1.68/2.59 | 1.76 4
1616 | 80 | 170 | 58 | 3.5 | 135.0 | 58.0 | 0.37 | 1.68/2.61 | 1.76 3.2

L]

Fig. D.12. Single row radial thrust ball bearings
(ISO 492:2014)
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Table D.52. Parameters of single row radial thrust ball bearings (ISO 492:2014)

Load capacity, Nlim,
Designation | d D |B| T | r|n kN thousand
C ‘ Co min-1
Light series narrow o =12 °
36208 40 | 80 |18 | 18 | 2 1 | 38.0 | 23.2 10
36209 45 | 85 19|19 | 2 1 | 31.2 | 251 8
36210 50 | 90 |20 20 | 2 1 | 43D | 27.0 8
36211 55 [100 |21 |21 |25 | 12| 584 | 34.2 8
36212 60 [110]22| 22 |25]1.2]| 615 | 393 6.3
36214 70 1252424 |25 |12 | 80.2 | 548 5
36216 80 | 1402626 | 3 |15]| 93.6 | 65.0 5
36217 85 1502828 | 3 |[15]|101.0| 70.8 4
36218 90 | 1603030 | 3 |15)118.0| 83.0 4
36219 95 11703232 |35] 2 | 134.0| 95.0 4
Medium narrow series o =26 °
46308 40 | 90 | 23| - |25]12| 508 | 311 6.3
46309 45 |100 25| - | 25|12 614 | 37.0 5
46310 50 [110]27 | - 3 |[15] 718 | 44.0 5
46312 60 [130|31| - |35] 2 |100.0 | 653 5
46313 65 [140 (33| - |35] 2 | 113.0| 75.0 4
46314 70 [150 35| - |35] 2 |127.0] 853 3.2
46316 80 |17039| - [35] 2 |136.0| 99.0 3.2
46318 90 | 190 |43 | - 4 | 2 ]1165.0 | 122.0 2.5
46320 100 | 215 | 47 | - 4 | 2 ]213.0 | 177.0 2.5
Heavy narrow series a =36 °
66408 40 | 110 |27 | - 3 | 1.5] 722 | 423 5
66409 45 12029 | - 3 [1.5] 816 | 473 5
66410 50 [130|31] - |35] 2 | 989 | 60.1 3.2
66412 60 [150 35| - |35] 2 | 125.0] 795 2.5
66414 70 | 180 |42 | - 4 2 | 152.0 | 109.0 1.6
66418 90 |225|54| - 5 [25]208.0] 162.0 1.25
Table D.53. Corrective reliability coefficient a1
Reliability S % 90 95 96 97 98 99
Resource designation | Lioa | Lsa | Lsa | L3a | L2a | L1a
ai 1 0.62 | 0.53 | 0.44 | 0.33 | 0.21
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Table D.54. Correcting material and lubricant coefficient az23 (average value)

: Working conditions
Bearing type
1 2 3

Ball (except spherical) 0.75 | 1.0 | 1.3
Tapered roller 0.65 | 0.9 1.2
Cyllndrlcal.roller bearings and spherical 055 | 08 | 11
roller bearings
Spherical roller 0.35 | 0.6 0.9

conditions and use of high-quality steel (electro-slagging or vacuum melting).

Table D.55. Tapered single-row roller bearings (ISO 355:2019)

Comment. 1 - normal operating conditions (hydrodynamic lubrication
mode not guaranteed, conventional bearing component material, with
conventional production technology, slight ring distortion), 2 - hydrodynamic
lubrication and slight ring distortion guaranteed, 3 -

same lubrication

- Load

o capacity, kN Nlim,

=

2}

SEld |D| T |B|c r|n e | v |y |thous

B and

4 ¢ Co min-1

=

Light series o =12°+18°
7208 | 40 | 80 [ 1925 | 19 [ 16| 2.0 [ 08 | 465 32.5 038 [ 156086 ] 5
7209 | 45 | 85 [ 2075 | 20 [ 16| 2.0 [ 0.8 | 50.0 33.0 041 | 145 08 5
7210 | 50 | 90 [ 2175 | 21 [17 | 2.0 [ 08 | 56.0 40.0 037 | 16 [088] 5
7211 | 55 | 100 [ 22.75 | 21 [ 18| 25 [ 08 | 65.0 46.0 041 | 146 | 08 4
7212 | 60 | 110 [ 2375 | 23 [ 19| 25 [ 08 | 780 58.0 035 | 171 [ 094 ] 4
7214 | 70 | 125 [ 2525 | 26 [ 21| 25 [ 08 | 96.0 82.0 037 | 162089 | 32
7215 | 75 | 130 | 27.25 | 26 [ 22| 25 | 08 | 107.0 [ 84.0 039 | 155085 | 3.2
7216 | 80 | 140 [ 2825 | 26 [ 22| 3.0 [ 08 | 112.0 [ 952 042 | 143078 | 32
7217 | 85 | 150 | 30.50 | 28 [ 24| 3.0 | 1.0 [ 1300 [ 109 043 [138]076 | 25
7218 | 90 | 160 | 3250 | 31 [ 26| 3.0 | 1.0 [ 1580 | 125 038 | 1.56 | 0.86 | 2.5
7219 | 95 | 170 [ 3450 | 32 [ 27| 35 | 1.0 [ 1680 | 131 041 | 148081 | 25
7220 | 100 | 180 [ 37.00 | 34 [29 ]| 35 [ 1.2 [ 1850 [ 146 041 | 149082 25
Series average o =10°+14°
7308 | 40 | 90 [ 2525 ] 23 [20] 25 [ 08 | 66 47,5 028 [216]1,18] 4
7309 | 45 | 100 | 2725 | 26 [22 | 25 | 08 | 83 60 028 | 216|119 ] 4
7310 | 50 | 110 [ 29.25 | 29 [ 23| 3.0 | 1.0 [ 100 75 031 | 194 ] 1.06 ] 4
7311 | 55 | 120 | 315 | 29 [25] 3.0 | 1.0 [ 107 815 033 | 1.8 [ 099 | 32
7312 | 60 | 130 | 335 | 31 [ 27| 35 | 1.2 | 128 96.5 03 [197]108] 32
7313 | 65 | 140 | 360 | 33 [ 28] 35 [ 1.2 | 146 112 03 [197]108] 32
7314 | 70 | 150 | 380 | 37 [30 | 35 | 1.2 | 170 137 031 [ 194 ] 1.08 | 32
7315 | 75 | 160 | 400 | 37 [31] 35 | 1.2 [ 180 148 033 [193]1.06 | 25
7317 | 85 | 180 | 445 | 41 [35]| 40 | 1.5 [ 230 196 031 [191]105] 2
7318 | 90 | 190 | 465 | 43 [36 ]| 40 | 1.5 [ 250 201 032 | 1.88]1.03 [ 2
Medium series wide ¢=11°+16°

7608 | 40 | 90 [ 3525 | 33 [29] 25 [ 08 90 67.5 03 [203]111] 4
7609 | 45 | 100 [ 3825 | 36 [ 31| 25 [ 08 | 114 905 | 029 [ 206 113 | 4
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- Load

o capacity, kN Nlim,

=

3]

Sld |D| T |B|clr|n e | v | v |thous

= and

3 ¢ Co min-1

a
7611 | 55 | 120 | 455 | 44 [ 37| 3.0 | 1.0 [ 160 140 [ 032 | 1.85[ 1.02 [ 32
7612 | 60 | 130 | 485 | 47 [39]| 35 [ 1.2 | 186 157 03 [197]1.08] 32
7613 | 65 | 140 | 51.0 | 48 [41| 35 | 1.2 [ 210 168 | 033 | 1.83 [ 1.01 | 32
7614 | 70 | 150 | 540 | 51 |43 | 35 | 1.2 | 240 186 | 035 | 1.71 | 094 | 25
7615 | 75 | 160 | 580 | 55 [ 47| 35 | 1.2 [ 280 235 03 [199 120 25
7616 | 85 | 170 | 615 | 59 [ 49| 35 | 1.2 [ 310 290 | 032 [ 189 1.04 ] 2
7618 | 90 | 180 | 675 | 67 |54 | 40 | 1.5 [ 370 365 03 [199] 12 2
7620 | 100 | 215 [ 775 | 73. [ 61| 40 | 1.5 [ 460 460 | 031 [ 191165 16

Light serieswide ¢ =12°+16°
7508 | 40 | 80 [ 2475 [ 24 [20] 2.0 [ 08 [ 56.0 440 | 038 [ 157087 4
7509 | 45 | 85 [ 2475 | 24 [20]| 2.0 [ 08 [ 60.0 460 | 042 | 144|079 | 4
7510 | 50 | 90 [ 2475 | 24 [20]| 2.0 | 08 | 62.0 540 | 042 | 143078 4
7511 | 55 | 100 [ 26.75 | 25 [ 21| 25 | 0.8 | 80.0 610 | 036 | 1.67 [ 092 | 3.2
7512 | 60 | 110 [ 29.75 | 28 [ 24 | 25 | 08 | 94.0 750 | 039 | 153084 | 32
7513 | 65 | 120 | 3275 | 31 [ 27| 25 | 0.8 | 110 980 | 037 | 162089 | 32
7514 | 70 | 125 [ 3325 | 31 [ 27| 25 | 0.8 | 125 101 [ 039 | 1.55[ 085 | 3.2
7515 | 75 | 130 [ 3325 | 31 [ 27| 25 | 0.8 | 130 108 | 041 | 148 [ 081 | 25
7516 | 80 | 140 [ 3525 | 33 [ 28| 3.0 | 1.0 | 143 126 | 040 | 149 [ 082 | 25
7517 | 85 | 150 [ 3850 | 36 [ 30| 3.0 | 1.0 | 162 141 [ 039 | 158085 2
7518 | 90 | 160 | 425 | 40 [34 | 3.0 | 1.0 [ 190 171 | 039 | 155[085 | 2
7519 | 95 | 170 | 455 | 46 [ 37| 35 | 1.2 | 230 225 | 038 | 156|085 | 2
7520 | 100 | 180 | 49.0 | 46 [39] 35 | 1.2 | 250 236 | 041 | 149082 1.6
Light serieswide ¢ =12°+16°

7511A | 55 | 100 | 2675 | 25 [ 21 | 25 | 08 | 99.0 80.0 04 | 15 | 08 | 32
7512A | 60 | 110 | 2975 | 28 | 24 | 25 | 08 | 120.0 100 04 | 15 | 08 | 32
7513A | 65 | 120 | 3275 | 31 | 27 | 25 | 08 | 1420 120 04 | 15 | 08 | 32
7515A | 75 | 130 | 3325 | 31 |27 | 25 | 08 157 130 043 | 14 | 08 3.2
7516A | 80 | 140 | 3525 | 33 | 28 | 30 | 1.0 176 155 043 | 14 | 08 | 25
7517A | 85 | 150 | 385 | 36 | 30 | 30 | 1.0 201 180 041 | 14 | 08 2
7520A | 100 | 180 | 490 | 46 |39 | 35 | 12 297 280 035 | 1.7 | 09 16

Comment: Xo = 0.5.

Fig. D.13. Sleeve-finger spring coupling (ISO-R775)
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Table D.56. Parameters of bushing-finger spring couplings (ISO-R775)

Dimensions, mm
T n'."“f d Do L no larger | : l
N-m min-! more execution
Row 1 Row 2 1 2 3 4 1 2 3 4
9 43 43 - 20 - 13 -
6,3 8800 10.11 71 49 43 49 - 23 20 16 -
16 7600 12.14 75 63 53 63 - 30 25 20
16 83 59 83 59 40 28 30 18
31,5 6350 16.18 90 84 60 84 60
63 5770 20.22 100 104 | 76 | 104 | 76 50 36 38 24
125 | 89 | 125 | 89 60 42 44 38
125 4600 25.28 30 120
3736 3538 165 | 121 | 165 | 121 | 80 58 60 38
250 3800 40'45 4'2 140
500 3600 40.45 42 170 225 | 169 | 225 | 169
45.50 110 | 82 85 56
710 3000 6 48,55 190 226 | 170 | 226 | 170
50.56 55
1000 | 2850 63 60,65,70 220 286 | 216 | 286 | 216 140 | 105 | 107 | 72
2000 | 2300 63.71 65,70,75 250 288 | 218 | 288 | 218
80.90 85 348 | 268 | 348 | 268 170 | 130 | 135 | o5
4000 | 1580 80.90 85,95 320 350 | 270 | 350 | 270
100.110
8000 | 1450 125 120 400 432 | 352 | 432 | 352 210 | 170 | 170 | 125
125 120 435 | 355 | 432 | 352
16000 | 1150 140 130,150 500 515 | 415 | 515 | 415 | 250 | 200 | 205 | 155
160 - 615 | 495 | 615 | 495 | 300 | 240 | 245 | 185

Comment. Half couplings can be made: 1, 2 - with cylindrical holes for the long and
short ends of the shafts; 3, 4 - with tapered holes for the long and short ends of the shafts.
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Fig. D.14. Gear couplings (ISO-R773)
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Table D.57. Basic parameters of gear couplings (ISO-R773)

mm —
= - g | E
= 5 Nm d de | di | D | D1 [ | Ik o »
© PB | PP < £
1 710 40 38 60 170 | 110 | 115|115 | 55 55 49 6300
2 1400 40+50 55 70 185 | 125 | 145|145 | 70 80 75 5000
3 3150 40+60 55 90 | 220 | 150 | 170|175 | 85 80 95 4000
4 5600 45+75 75 100 | 250 | 175 | 215 | 215|105 | 105 | 125 | 3350
5 8000 50+90 95 120 | 290 | 200 | 265 | 240 | 115 | 130 | 145 | 2800
6 11800 | 60+105 - 130 | 320 | 230 | 255 | 260 | 125 - 160 | 2500
7 19000 | 65+120 | 120 | 150 | 350 | 260 | 285|290 | 140 | 165 | 185 | 2120
8 23600 | 80+140 | 150 | 170 | 380 | 290 | 325 | 330 | 160 | 200 | 210 | 1900
9 30000 | 80+160 - 190 | 430 | 330 | 335 | 340 | 165 - 220 | 1700
10 | 50000 | 80+180 - 210 | 490 | 390 | 365|370 | 180 - 245 | 1400

Comment 1. Coupling type PB - for direct connection of shafts; PP - for connection
of shafts using an intermediate shaft;

Comment 2. Design of half couplings: H - without shaft-end fixing; T - with shaft-end
fixing; K - with tapered hole;

Comment 3. The shaft diameter d of the intermediate ranges is taken in accordance
with D.21 or D.43.

Y = Symbols designation

2z h - pr.oflle height
b - width of shelf

d d - wall thickness
t - average thickness of the shelf
F - cross-sectional area
Z J - moment of inertia
W - strength index
i - radius of inertia
y! S - static moment of half-section
Zo - distance from the y-axis to the outer
wall

NN

N_NTNS N N N\

Fig. D.15. Hot-rolled steel section (ISO-657-11-1980)

Table D.58. Basic parameters of hot-rolled steel channels (ISO-657-11-1980)

Profile | Basic dimensions, mm F Jx Wk Ix Sx Iy Wy iy Z0
no. h b d t cm? cm* cm3 cm cm3 | cm* | cm3 cm cm
5 50 32 4.4 7.0 | 6.16 | 22.8 9.1 | 192 | 559 | 5.61 | 2.75 | 0.954 | 1.16

6.5 65 36 | 44 | 72 | 751 | 48.6 | 15.0 | 254 | 9.0 8.7 | 3.68 | 1.08 | 1.24
8 80 40 | 45 | 74 | 898 | 894 | 224|316 (133|128 | 475 | 119 | 131
10 100 | 46 | 45 | 76 | 109 174 | 348 | 399 | 204 | 204 | 646 | 137 | 1.44
12 120 | 52 | 48 | 7.8 | 133 304 | 506 | 478 | 29.6 | 31.2 | 852 | 1.53 | 1.54
14 140 | 58 | 49 | 81 | 156 | 491 70.2 | 5.6 | 408 | 454 | 11.0 | 1.70 | 1.67
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Profile | Basic dimensions, mm F Jx Wi ix Sx I Wy iy Zo
no. h b d t cm? cm* cm3 cm cm3 | cm* | cm3 cm cm

14a 140 | 62 | 49 | 8.7 | 17.0 545 778 | 5.66 | 45.1 | 575 | 133 | 184 | 1.87

16 160 | 64 | 50 | 84 | 181 747 1934 | 642 | 541 | 63.6 | 13.8 | 1.87 | 1.80

16a 160 | 68 | 5.0 | 9.0 | 195 823 103 | 649 | 594 | 788 | 164 | 2.01 | 2.00

18 180 | 70 | 51 | 87 [ 20.7 | 1090 | 121 | 724 | 698 | 86 | 17.0 | 2.04 | 1.94

18a 180 | 74 | 51 | 93 | 222 | 1190 | 132 | 732 | 76.1 | 105 | 20.0 | 2.18 | 2.13

20 200 | 76 | 52 | 9.0 | 234 | 1520 | 152 | 8.07 | 87.8 | 113 | 20.5 | 2.20 | 2.07

20a 200 | 80 | 5.2 | 9.7 | 252 | 1670 | 167 | 8.15 | 959 | 139 | 242 | 2.35 | 2.28

22 220 | 82 | 54 | 95 | 26.7 | 2110 | 192 | 889 | 110 | 151 | 241 | 2.37 | 2.21

22a 220 | 87 | 54 |10.2 | 288 | 2330 | 212 | 899 | 121 | 187 | 30.0 | 2.55 | 2.46

24 240 | 90 | 5.6 | 10.0 | 30.6 | 2900 | 242 | 9.73 | 139 | 208 | 31.6 | 2.60 | 2.42

24a 240 | 95 | 5.6 | 10.7 | 329 | 3180 | 265 | 9.84 | 151 | 254 | 37.2 | 2.78 | 2.67

27 270 | 95 | 6.0 | 10.5 | 352 | 4160 | 308 | 109 | 178 | 262 | 373 | 2.73 | 247

30 300 | 100 | 6.5 11 | 40.5 | 5810 | 387 | 12.0 | 224 | 327 | 43.6 | 2.84 | 2.52

33 330 | 105 | 7.0 | 11.7 | 46,5 | 7980 | 484 | 13.1 | 281 | 410 | 51.8 | 297 | 2.59

36 360 | 110 | 75 | 12.6 | 53.4 | 10820 | 601 | 14.2 | 350 | 513 | 61.7 | 3.10 | 2.68

40 400 | 115 | 8.0 | 13.5 | 61.5 | 15220 | 761 | 15.7 | 444 | 642 | 734 | 3.23 | 2.75

Y Symbols designation

144(/%4” h - profile height
{ b - width of shelf

d d - wall thickness
i t - average thickness of the shelf
= ' F - cross-sectional area
‘ J - moment of inertia
W - strength index
i - radius of inertia
S - static moment of half-section
Zy - distance from the y-axis to the outer
wall

Fig. D.16. Hot-rolled I-section (ISO 657/13)

Table D.59. Hot-rolled I-beam (ISO 657/13)

Basic dimensions,
mm
h b d t

Profile
no.

F ]x Wi Ix Sx ]y Wy iy
cm? cm# cm3 | cm | cm3 | cm? | cm3 | cm

10 10 | 55 [ 45| 7.2 |12.0| 198 | 39.7 | 4.06| 23.0 | 179 | 6.49[1.22

12 120 | 64 48| 73 | 147 | 350 | 584 |4.88| 33.7 | 27.9 | 8.72]1.38

14 140 73 |49 75 |174 | 572 | 81.7 | 573 ] 468 | 41.9 | 11.5[1.55

16 160 | 81 |5.0| 7.8 |20.2| 873 109 | 6.57 | 62.3 | 58.6 | 14.5 | 1.70

18 180 90 | 5.1 81 | 234 | 1290 | 143 | 742 | 81.4 | 82.6 | 18.4|1.88

18a | 180100 |5.1| 83 | 254 | 1430 | 159 |7.51| 89.8 | 114 | 22.8|2.12

20 200|100 |5.2| 84 | 268 | 1840 | 184 |8.28| 104 | 115 | 23.1 | 2.07

20a | 200|110 (52| 86 [289| 2030 | 203 | 837 | 114 | 155 | 28.2 | 2.32

22 220 1110 |54 | 8.7 | 30.6 | 2550 | 232 |9.13| 131 | 157 | 28.6 | 2.27

22a | 220]120 |54 | 89 |[32.8]| 0790 | 254 | 9.22| 143 | 206 | 34.3|2.50
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Profile Basic dimensions, F Jx Wi ix Sx Iy wy Iy
no. mm cm? | cm* cm3 | cm | cm3 | cm? | cm3 | cm
h b d |t
24 240 | 115 |56 | 9.5 | 34.8 | 3460 | 289 [9.97 | 163 | 198 | 34.5 | 2.37
24a | 240|125|56| 9.8 |37.5| 3800 | 317 |10.1| 178 | 260 | 41.6 | 2.63
27 270 1125 |6.0 | 9.8 | 40.2 | 5010 | 371 | 11.2 | 210 | 250 | 41.5| 2.54
27a | 270|135|6.0|10.2|43.2| 5500 | 407 | 11.3| 229 | 337 | 50.0 | 2.80
30 300|135 |6.5|10.2 | 46.5| 7080 | 472 | 12.3 | 268 | 337 | 49.9 | 2.69
30a |300|145|6.5|10.7|499 | 7780 | 518 | 12.5| 292 | 436 | 60.1 | 2.95
33 330 {140 | 7.0 | 11.2 | 43.8 | 9840 | 597 | 13.5| 339 | 419 | 59.9 | 2.79
36 360 | 145 | 75| 123 |61.9 | 13380 | 743 | 14.7 | 423 | 516 | 71.1 | 2.89
40 400 | 155 (8.3 | 13.0 | 72.6 | 19062 | 953 | 16.2 | 545 | 667 | 86.1 | 3.03
45 450|160 | 9 | 14.2 |84.7 | 27696 | 1231 |18.1 | 708 | 808 | 101 | 3.09
50 500|170 | 10 | 15.2 | 100 | 39727 | 1589 | 19.9 | 919 | 1043 | 123 | 3.23
55 550 {180 | 11 | 16.5| 118 | 55962 | 2035 | 21.8 | 1181 | 1356 | 151 | 3.39
60 600 | 190 | 12 | 17.8 | 138 | 76806 | 2560 | 23.6 | 1491 | 1725 | 182 | 3.54
Symbols designation

b - width of shelf

d - wall thickness
J - moment of inertia
i - radius of inertia

Zo - distance from the centre of gravity to

the outer limits of the shelves

Fig. D.16. Hot-rolled steel angle bar (ISO 657-1:1989)

Table D.60. Basic parameters of hot-rolled steel angles (ISO 657-1:1989)

o5 b d | section Additional values for the axes =
= 2 X-X X0-X0 Yo-yo X1-X1 o =
S E area . - — T Zo, T = A
a é mm cm? ]x4 Ix ]xOmZX Ix0max ]yOmi}n 1y0 min ]xl cm* cm 3
cm cm cm cm cm cm
2 20 3 1.13 0.40 0.59 0.53 0.75 0.17 0.39 0.81 0.60 0.89
4 1.46 0.50 0.58 0.78 0.73 0.22 0.38 1.09 0.64 1.15
25 25 3 1.43 0.81 0.75 1.29 0.95 0.34 0.49 1.57 0.73 1.12
' 4 1.86 1.03 0.74 1.62 0.93 0.44 0.48 2.11 0.76 1.46
2.8 28 3 1.62 1.16 0.85 1.84 1.07 0.48 0.55 2.2 0.80 1.27
3 30 3 1.74 1.45 0.91 2.30 1.15 0.60 0.59 _ 0.85 1.36
4 2.27 1.84 0.90 2.92 1.13 0.77 0.58 0.89 1.78
39 32 3 1.86 1.77 0.97 2.80 1.23 0.74 0.63 3.26 0.89 1.46
4 2.4. 2.26 0.96 3.58 1.21 0.94 0.62 4.39 0.94 1.91
3 2.04 2.35 1.07 3.72 1.35 0.97 0.69 0.97 1.60
3.5 35 4 2.67 3.01 1.06 4.76 1.33 1.25 0.68 - 1.01 2.10
5 3.28 3.61 1.05 5.71 1.32 1.52 0.68 1.05 2.58
3 2.35 3.55 1.23 5.63 1.55 1.47 0.79 6.35 1.09 1.85
4 40 4 3.08 4.58 1.22 7.26 1.53 1.90 0.78 8.53 1.13 2.42
5 3.79 5.53 1.20 8.75 1.54 2.30 0.79 10.73 1.17 2.97
3 2.65 5.13 1.39 8.13 1.75 2.12 0.89 9.04 1.21 2.08
4.5 45 4 3.48 6.63 1.38 10.50 1.74 2.74 0.89 12.10 1.26 2.73
5 4.29 8.03 1.37 12.70 1.72 3.33 0.88 15.30 1.30 3.37
5 50 3 2.96 7.11 1.55 11.30 1.95 2.95 1.00 12.40 1.33 2.32
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o5 b d | section Additional values for the axes =
= X-X X0-X0 yo-yo X1-X1 b g
S E area ] ; ] ; Toomin |bom Zo, D o A
a g mm cm? X . X x0mix xOmax yOmil-n ly0 min ]xl cm# cm 3
cm cm cm cm cm cm
4 3.89 9.21 154 | 1460 | 194 | 380 | 099 | 16.60 138 | 3.05
5 4.80 1120 | 1.53 | 17.80 | 1.92 | 4.63 | 098 | 20.90 1.42 3.77
6 5.69 13.07 | 1.52 | 2072 | 191 | 543 | 0.98 _ 146 | 4.47
ce | se | 4 438 1310 | 173 | 2080 | 218 541 | 111 | 2330 1.52 3.44
' 5 5.41 1600 | 1.72 | 2540 | 216 | 659 | 1.10 | 29.20 157 | 4.25
4 496 1890 | 195 | 2990 | 245 781 | 125 33.10 1.69 3.90
63 | 63 | 5 6.13 23.10 | 1.94 | 36,60 | 244 | 952 | 1.25| 4150 1.74 | 481
6 7.28 27.10 | 1.93 | 4290 | 243 | 1120 | 1.24 | 50.00 1.78 | 5.72
‘;' 6.20 290 | 216| 460 | 272 | 120 | 139 51.0 1.88 | 4.87
- 6.86 319 | 216 | 507 | 272 | 132 | 139 56.7 1.90 5.38
7 70 | . 8.15 376 | 215| 596 | 271| 155 | 1.38| 684 194 | 639
; 9.42 430 | 214| 682 269 | 178 | 137 | 80.1 1.99 7.39
8 10.70 482 2.13 764 | 268 | 200 | 137 | 919 202 | 837
5 7.39 39.5 231 | 626 | 291 164 | 149 69.6 2.02 5.80
6 8.78 466 |230| 739 |290| 193 | 148 | 839 206 | 6.89
75 | 75 | 7 10.10 53.3 229 | 846 | 289 | 221 | 148 | 983 2.10 7.96
8 11.50 598 | 228 | 949 | 287 | 248 | 147 | 113.0 215 | 9.02
9 12.80 66.1 227 | 1050 | 286 | 275 | 146 | 127.0 2.18 | 10.10
5 8.63 527 | 247 ] 836 |311] 218 [ 159 932 217 | 6.78
8 g0 | © 9.38 570 | 247 | 940 |311| 235 | 158 | 102.0 2.19 7.36
7 10.80 65.3 245 | 1040 | 3.09| 270 | 1.58| 119.0 223 | 851
8 12.30 734 | 244 | 1160 | 3.08| 303 | 1.57 | 137.0 227 | 9.65
6 | 10.60 82.1 278 | 1300 | 350 340 | 1.79 | 145.0 243 | 833
9 90 | 7 12.30 943 277 | 1500 | 349 | 389 | 1.78 | 169.0 247 | 9.64
8 13.90 1060 | 2.76 | 168.0 | 3.48 | 438 | 1.77 | 194.0 251 | 10.90
9 15.60 1180 | 2.75| 1860 | 3.46 | 486 | 1.77 | 219.0 255 | 12.20
5 | 12.80 122.0 | 3.09 | 1930 |388]| 507 | 199 | 2140 | 2.68 | 10.10
7 13.80 131.0 | 3.08| 207.0 | 388 | 542 | 198 | 231.0 2.71 | 10.80
8 15.60 1470 | 3.07 | 2330 |387| 609 | 198 | 2650 | 2.75 | 12.20
10 | 100 | 10 | 19.20 179.0 | 3.05| 2840 |384| 741 | 196 | 333.0 | 2.83 | 15.10
12 | 22.80 209.0 | 3.03| 3310 |381| 869 | 195| 4020 | 291 | 17.90
14 26.30 237.0 3.00 375.0 3.78 99.3 1.94 472.0 2.99 20.60
16 | 29.70 2640 | 298 | 4160 |3.74 | 1120 | 1.94 | 5420 | 396 | 23.30
1 10| 7 15.20 1760 | 340 | 2790 | 429 | 727 | 219 | 3080 | 2.96 | 11.90
8 17.20 198.0 | 339 | 3150 | 428 | 818 | 218 | 353.0 | 3.00 | 13.50
8 19.7 204 | 387 | 469 |487| 122 |249| 516 336 | 155
9 22.0 327 3.86 520 486 | 135 | 248 582 340 | 173
125 | 105 | 10| 243 360 3.85 571 484 | 149 | 2.47 649 3.45 | 19.1
' 12 28.9 422 3.82 670 482 | 174 | 2.46 782 353 | 22.7
14 33.4 482 3.80 764 4.78 200 2.45 916 3.61 26.2
16 | 37.8 539 3.78 853 475 | 224 | 244 | 1051 368 | 296
9 24.7 466 434 739 547 | 192 | 2.79 818 3.78 | 19.4
14 | 140 | 10 | 273 512 433 814 546 | 211 | 2.78 911 3.82 | 215
12 325 602 431 957 543 | 248 | 276 | 1097 3.90 | 255
10 | 313 774 496 | 1229 | 625| 319 |3.19] 1356 430 | 247
11 34.4 844 495 | 1341 | 6.24 | 348 | 3.18 | 1494 435 | 27.0
12 37.4 93 494 | 1450 | 623 | 376 | 3.17 | 1633 439 | 294
16 | 160 | 14 | 433 1046 | 492 | 1662 | 620 | 431 | 316 | 1911 447 | 340
16 | 49.1 1175 | 489 | 1866 | 6.17 | 485 | 3.14 | 2191 4.55 38.5
18 | 548 1299 | 487 | 2061 | 613 | 537 | 313 | 2472 463 | 43.0
20| 604 1419 | 485 | 2248 | 610 | 589 | 3.12| 2756 470 | 47.4
18 | 180 | 1 38.8 1216 | 560 | 1933 | 7.06 | 500 | 359 | 2128 485 | 305
12 | 422 1317 | 559 | 2093 | 7.04 | 540 | 358 | 2324 489 | 331
12 | 471 1823 | 622 | 2896 | 784 | 749 | 399 | 3182 537 | 37.0
20 | 200 | 13 50.9 1961 | 621 | 3116 | 7.83 | 805 | 3.98 | 3452 5.42 39.9
14 | 546 2097 | 620 | 3333 | 781| 961 | 397 | 3722 546 | 42.8
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o5 b d | section Additional values for the axes =
= Q X0-X0 Yyo-yo X1-X1 o0 g
E g area ; ] ; ] i ) Zo, D o A
a g mm cm? X x0m(1x xOmax yOmil-n ly0 min ]xl cm# cm 3
cm cm cm | cm cm
16 62.0 6.17 3755 7.78 970 3.96 4264 5.54 48.7
20 76.5 6.12 4560 7.72 | 1182 | 3.93 5355 5.70 60.1
25 94.3 6.06 5494 7.63 | 1438 | 391 6733 5.89 74.0
30 111.5 6.00 6351 7.55 | 1688 | 3.89 8130 6.07 87.6
22 220 14 60.4 6.83 4470 8.60 | 1159 | 4.38 4941 5.93 47.4
16 68.6 6.81 5045 8.58 | 1306 | 4.36 5661 6.02 53.8
16 78.4 7.76 7492 9.78 | 1942 | 4.98 8286 6.75 61.5
18 87.7 7.73 8337 9.75 | 2158 | 4.96 9342 6.83 68.9
20 97.0 7.71 9160 9.72 | 2370 | 4.94 10401 6.91 76.1
25 250 | 22 106.1 7.69 9961 9.69 | 2579 | 4.93 11464 7.00 83.3
25 119.7 7.65 11125 9.64 | 2887 | 491 13064 7.11 94.0
28 133.1 7.61 12244 | 9.59 | 3190 | 4.89 14674 7.23 104.5
30 142.0 7.59 12965 9.56 | 3389 | 4.89 15753 7.31 111.4
Symbols designation
E B - width of the larger arm
b - width of the smaller arm
i d - wall thickness

J - moment of inertia

i - radius of inertia
X0, yo - distance from the centre of gravity

to the outer limits of the shelves

Fig. D.17. Hot-rolled unequal-area steel angle bar

Table D.61. Basic parameters of hot-rolled unequal steel angles (ISO/R 657-2:1968)

Dimensions o
S mm £ Til )
= 3] . . . t Weight
@ 8 Jx ix Jy iy Jumin | fumin | angle Ju I Xo Yo 1m
S v O cm* | cm | cm* | cm | cm* | cm* u cm* | cm* | cm cm
e B b | d| g kg
-9 e tga
o
25/1.6 | 25 16 3 1.16 07 | 078 | 022 | 0.44 | 013 | 0.3 0.392 - - 042 | 0.86 0.91
32/2 32 20 3 1.49 1.52 | 1.01 | 046 | 055 | 0.28 | 0.43 | 0.382 _ _ 0.49 | 1.08 1.17
: 4 1.94 1.93 | 1.00 | 057 | 0.54 | 035 | 0.43 | 0.374 053 | 1.12 1.52
3 1.89 3.06 | 127 | 093 | 0.7 | 056 | 0.54 | 0.385 059 | 1.32 1.48
4/2.5 40 | 25 4 2.47 393 | 126 | 1.18 | 0.69 | 0.71 | 0.54 | 0.381 - - 0.63 | 137 1.94
5 3.03 473 | 125 | 141 | 068 | 0.86 | 0.53 | 0.374 0.66 | 1.41 237
5/3.2 50 | 32 3 242 618 | 1.6 | 1.99 | 091 | 1.18 | 0.7 0.403 - - 072 | 1.6 1.9
56/3.6 | 56 | 36 4 3.58 114 | 178 | 37 | 1.02 | 219 | 0.78 | 0.406 | 232 | 625 | 0.84 | 1.82 2.81
o 5 441 138 | 1.77 | 448 | 1.01 | 266 | 078 | 0.404 | 292 | 791 | 0.88 | 1.86 3.46
4 404 | 163 | 201 | 516 | 1.13 | 3.07 | 087 | 0397 | 330 | 851 | 091 | 2.03 3.17
63/4 63 | a0 5 498 199 | 200 | 6.26 | 1.12 | 3.72 | 086 | 0.396 | 41.4 | 10.8 | 0.95 | 2.08 3.91
" 6 5.90 233 | 199 | 728 | 1.11 | 436 | 086 | 0393 | 499 | 13.1 | 099 | 212 4.63
8 7.68 29.6 | 1.96 | 9.15 | 1.09 | 558 | 085 | 0386 | 669 | 17.9 | 1.07 | 2.20 6.03
7/4.5 70 | 45 5 5.59 278 | 223 | 9.05 | 1.27 | 534 | 098 | 0406 | 56.7 | 152 | 1.05 | 2.28 4.39
755 75 | 5o 6 7.25 409 | 238 | 146 | 1.42 | 848 | 1.08 | 0435 | 839 | 252 | 1.21 | 244 5.69
>/ 8 9.47 524 | 235 | 185 | 1.40 | 109 | 1.07 | 0.430 112 | 342 | 1.29 | 252 7.43
8/5 80 | so 5 6.36 416 | 256 | 127 | 1.41 | 758 | 1.09 | 0387 | 846 | 208 | 1.13 | 2.60 499
6 7.55 490 | 255 | 14.8 | 1.40 | 888 | 1.08 | 0.386 102 | 252 | 117 | 265 5.92
5.5 7.86 653 | 288 | 19.7 | 1.58 | 11.8 | 1.22 | 0.384 132 322 | 126 | 292 6.17
9/5.6 9 | 56 6 8.54 706 | 2.88 | 21.2 | 1.58 | 12.7 | 1.22 | 0.384 145 | 352 | 1.28 | 295 6.70
8 11.18 | 909 | 285 | 27.1 | 1.56 | 163 | 1.21 | 0.380 194 | 487 | 1.36 | 3.04 8.77
6 959 | 983 | 3.20 | 30.6 | 1.79 | 18.2 | 1.38 | 0.393 198 | 499 | 142 | 3.23 7.53
10/63 | 100 | 63 7 11.1 113 | 3.19 | 350 | 1.78 | 20.8 | 1.37 | 0.392 232 | 587 | 1.46 | 3.28 8.70
- 8 12.6 127 | 318 | 39.2 | 1.77 | 234 | 136 | 0.391 266 | 67.6 | 1.50 | 3.32 9.87
10 15.5 154 | 3.15 | 471 | 1.75 | 283 | 1.35 | 0.387 333 | 875 | 1.58 | 3.40 12.1
11/7 110 | 70 | 65 | 114 142 | 3.53 | 456 | 2.00 | 269 | 1.53 | 0.402 286 | 743 | 158 | 3.55 8.98
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8 | 139 | 172 | 351 | 546 | 198 | 323 | 152 | 0400 | 353 | 923 | 1.64 | 361 | 109
7 14.1 227 | 401 | 73.7 | 229 | 434 | 176 | 0407 | 452 | 119 | 1.80 | 4.01 11.0
12578 | 125 | 8o | B | 160 | 256 | 400 | 83 | 228 | 488 | 175 | 0406 | 518 | 137 | 184 | 405 | 125
12 | 24 | 365 | 395 | 117 | 224 | 695 | 172 | os00 | 781 | z10 | 200 | 422 | 1n3
8 | 180 | 364 | 449 | 120 | 258 | 703 | 198 | 0411 | 727 | 104 | 203 | 449 | 144
1479 | 1401 90 | 4o | 222 | 444 | 447 | 146 | 256 | 855 | 196 | 0409 | 011 | 245 | 212 | 458 | 175
9 229 606 | 515 | 186 | 2.85 | 110 | 2.20 | 0391 | 1221 | 300 | 2.23 | 5.19 18.0
toto | 10 oo [ 10| 23 | g7 | 513 | e | 2er |2 a0 oo || g\ ae | 5 | oo
14| 347 | 897 | 508 | 272 | 280 | 162 | 216 | 0385 | 1910 | 477 | 243 | 540 | 573
18/11 | 180 | 100 | 10 | 283 | 952 | 580 | 276 | 312 | 165 | 242 | 0375 | 1933 | 444 | 244 | 588 | 22.2
12 | 337 | 1123 | 577 | 324 | 3.10 | 194 | 240 | 0374 | 2324 | 537 | 252 | 597 | 264
11 | 349 | 1449 | 645 | 446 | 3.58 | 264 | 275 | 0392 | 2920 | 718 | 2.79 | 6.50 274
sopas | | v | 12| 310|150 | od3 | w2 | 357 s | 2o | an | | g | 3 | o3t | 207
16 | 498 | 2026 | 638 | 617 | 352 | 367 | 272 | 0388 | 4264 | 1061 | 299 | 671 | 391
Table D.62. Hot-rolled round steel sections (EN 10060:2003)

Weight Weight

. Cross- of 1m : Cross- of 1m

Diameter . Diameter .

sectional length sectional length

d, mm . d, mm :
area, cm? of wire area, cm? of wire
rod, kg rod, kg

5.0 0.196 0.154 29.0 6.605 5.185
5.5 0.238 0.187 30.0 7.069 5.549
6.0 0.283 0.222 31.0 7.548 5.925
6.3 0.312 0.245 32.0 8.043 6.313
6.5 0.332 0.261 33.0 8.553 6.714
7.0 0.385 0.302 34.0 9.079 7.127
8.0 0.503 0.395 35.0 9.621 7.553
9.0 0.636 0.499 36.0 10.179 7.990
10.0 0.785 0.617 37.0 10.752 8.440
11.0 0.950 0.746 38.0 11.341 8.903
12.0 1.131 0.888 39.0 11.946 9.378
13.0 1.327 1.042 40.0 12.566 9.865
14.0 1.539 1.208 41.0 13.203 10.364
15.0 1.767 1.387 42.0 13.854 10.876
16.0 2.011 1.578 43.0 14.522 11.400
17.0 2.270 1.782 44.0 15.205 11.936
18.0 2.545 1.998 45.0 15.904 12.485
19.0 2.835 2.226 46.0 16.619 13.046
20.0 3.142 2.466 47.0 17.349 13.619
21.0 3.464 2.719 48.0 18.096 14.205
22.0 3.801 2.984 50.0 19.635 15.413
23.0 4.155 3.262 52.0 21.237 16.671
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Weight Weight
. Cross- of 1m . Cross- of 1m
Diameter ) Diameter )
d. mm sectlonai leng_th d. mm sectional leng.th
area, cm of wire area, cm? of wire
rod, kg rod, kg
24.0 4524 3.551 53.0 22.062 17.319
25.0 4909 3.853 54.0 22.902 17.978
26.0 5.309 4.168 55.0 23.758 18.650
27.0 5.726 4.495 56.0 24.630 19.335
28.0 6.158 4.834 58.0 26.421 20.740
60.0 28.274 22.195 140.0 153.938 120.841
62.0 30.191 23.700 145.0 165.130 129.627
63.0 31.173 24.470 150.0 176.715 138.721
65.0 33.183 26.049 155.0 188.692 148.123
67.0 35.257 27.676 160.0 201.062 157.834
68.0 36.317 28.509 165.0 213.825 167.852
70.0 38.485 30.210 170.0 226.980 178.179
72.0 40.715 31.961 175.0 240.528 188.815
73.0 41.854 32.855 180.0 254.469 199.758
75.0 44,179 34.680 185.0 268.803 211.010
78.0 47.784 37.510 190.0 283.529 222.570
80.0 50.266 39.458 195.0 298.648 234.438
82.0 52.810 41.456 200.0 314.159 246.615
85.0 56.745 44.545 210.0 346.361 271.893
87.0 59.447 46.666 220.0 380.133 298.404
90.0 63.617 49.940 230.0 415.476 326.148
92.0 66.476 52.184 240.0 452.389 355.126
95.0 70.882 55.643 250.0 490.874 385.336
97.0 73.898 58.010 260.0 530.929 416.779
100.0 78.540 61.654 270.0 572.555 449,456
105.0 86.590 67.973 - - -
110.0 95.033 74.601 - - -
115.0 103.869 81.537 - - -
120.0 113.097 88.781 - - -
125.0 122.719 96.334 - - -
130.0 132.732 104.195 - - -
135.0 143.139 112.364 - - -
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15'= 30°

Fig. D.18. Hexagon head screw

D~ 0,958

Table D.63. Hexagon head bolts, accuracy class A, for reaming holes (ISO 898-1)

2‘1‘;‘;321;2”""" 6| 81012 |(14)16|(18) 20 |(22)| 24 |(27) 30| 36 |42 | 48
Thread | ordimary | 1 [L25/15[175 2 2.5 3 35| 4 (45| 5
pitch  finelywound | - | 1 | 1.25 1.5 2 3

Bar diameter di 7| 9 [11]13]15|17| 19 |21|23 |25/ 28 |32|38|44 |50
Keyway dimension S | 10|12 | 14| 17 | 19 [22| 24 | 27|30 |32 36 | 41|50|60 |70

Comment. Screw dimensions in brackets are not recommended for use.
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