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This handbook is intended to present basic practical issues in theoretical 

mechanics (statics), as well as the strength of materials and machine parts. 

Each chapter contains a concise theoretical introduction, basic calculation 

formulas, examples of typical calculations and tasks for individual work. 

Finally, there are reference tables and a list of used and recommended 

literature. 

 

The handbook was created in cooperation between the Jan Długosz 

University in Czestochowa (Poland) and Kryvyi Rih State University 

of Economics and Technology  (Ukraine). It is intended for engineering 

students, including those majoring in safety engineering, innovative 

technologies and modern materials or any related fields.  
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PREFACE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Applied mechanics consists mainly of three interrelated departments: 

theoretical mechanics, strength of materials and machine parts. The main 

purpose of this course is to provide engineering students with knowledge 

and skills that will enable them to solve engineering problems concerning 

individual parts of structures and machines in practice, taking into account 

their reliability and efficiency. The computational examples presented in the 

handbook make it possible to optimize the design of both the entire machine 

and its specific parts, enabling to minimize the occasional contradictions 

between reliability and efficiency that may arise during designing process. 

The script sequentially presents the basic theoretical issues for each 

section and then shows several examples of solutions to typical problems 

in mechanics, strength of materials and machine design. After each topic, the 

student is given the opportunity to choose and solve practical tasks. Tasks 

are constructed in a manner to present multiple choices, which promotes 

understanding and consolidating knowledge of previously learned topics. 

The tasks, due to the formulated solution schemes, can be used for individual 

practical computational work of the student both in and out of class.  

The handbook deals with static systems, which are based mainly on the laws 

of solid mechanics. 
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CHAPTER І 
THEORETICAL MECHANICS 

 

1.1. Flat covering force system 
 

General information 

A convergent force system - is a system of forces whose lines 

of action intersect at a single point, called the point of convergence. There is 

a planar convergent force system when the lines of action of all these forces 

lie in the same plane, and a spatial convergent force system when the lines 

of action of the forces lie in different planes.  

A system of forces whose lines of action lie in the same plane and 

intersect at a single point is called a planar convergent force system.  
 

Basic calculation formulae 

Equally acting convergent force system in the geometric method 

of determination  

𝑅⃗ = 𝐹 1 + 𝐹 2+. . . +𝐹 𝑛 =∑𝐹 𝑖

𝑛

𝑖=1

 

 Analytical (computational) method for determining the equivalent 

force in a converging force system    

{
 
 

 
 𝑅⃗ 𝑥 = 𝐹 1𝑥 + 𝐹 2𝑥 + 𝐹 3𝑥; in general form 𝑅⃗ 𝑥 =∑𝐹 𝑖𝑥

𝑛

𝑖=1

𝑅⃗ 𝑦 = 𝐹 1𝑦 + 𝐹 2𝑦 + 𝐹 3𝑦; in general form 𝑅⃗ 𝑦 =∑𝐹 𝑖𝑦

𝑛

𝑖=1

 

 

or 

{
𝑅 𝑐𝑜𝑠 𝛼 = 𝐹1 𝑐𝑜𝑠 𝛼1 + 𝐹2 𝑐𝑜𝑠 𝛼2 + 𝐹3 𝑐𝑜𝑠 𝛼3
𝑅 𝑐𝑜𝑠 𝛽 = 𝐹1 𝑐𝑜𝑠 𝛽1 + 𝐹2 𝑐𝑜𝑠 𝛽2 + 𝐹3 𝑐𝑜𝑠 𝛽3

 

 

The value of the modulus (absolute value) of the resultant force vector 

is determined by Pythagoras' theorem: 

𝑅 = √𝑅𝑥
2 + 𝑅𝑦

2 

The direction of the resultant force vector 𝑅⃗  is determined by its so-

called directional cosines (cosines of the angles of this vector 𝑅⃗  with 

the coordinate axes): 
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𝑐𝑜𝑠 𝛼 =
𝑅𝑥
𝑅
; 𝑐𝑜𝑠 𝛽 =

𝑅𝑦

𝑅
 

 

Equilibrium conditions of a converging force system 

 

Geometric condition for the equilibrium of a converging force system 

𝑅⃗ = 𝐹 1 + 𝐹 2 +⋯+ 𝐹 𝑖 = 0  or 𝑅⃗ =∑𝐹 𝑖

𝑛

𝑖=1

= 0 

The equivalent of such a force system will be zero when the force 

polygon is closed, i.e. the origin of the first force vector coincides with the end 

of the last force vector (Fig. 1.1). 

 
Fig. 1.1. Force balance 

 

The geometric equilibrium condition can be used to solve some statics 

problems using a graphical method.  

The way to proceed in such a case is as follows: 

1. select the body whose equilibrium will be considered; 

2. discard the bilges, replacing them with reactions; 

3. using the equilibrium condition, create a closed polygon of forces, 

determining unknown quantities (in most cases the reactions of the ties).  

 

Analytical equilibrium condition for a converging force system 

 

{
 
 

 
 𝑅⃗ 𝑥 =∑𝐹 𝑖𝑥 = 0

𝑛

𝑖=1

𝑅⃗ 𝑦 =∑𝐹 𝑖𝑦 = 0

𝑛

𝑖=1

 

In an abbreviated form, the equilibrium conditions of a convergent 

force system in the plane are written as follows: 
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{
∑𝑋 = 0

∑𝑌 = 0
 

A system of such forces in space has three equations in equilibrium: 

{
 
 

 
 ∑𝑋 = 0

∑𝑌 = 0

∑𝑍 = 0

 

 

When solving static problems using the analytical method, the following 

sequence of steps should be followed: 

1. select the body (point) whose equilibrium we are considering; 

2. discard the bilges, turning them into reactions; 

3. introduce the coordinate system and arrange the equilibrium equations; 

4. using the equilibrium condition, determine the unknown quantities 

(in most cases the reactions of the nodes); 

5. perform a verification of the results using an equation that was not used 

in the solution, for example by creating an equilibrium equation along 

a different coordinate axis or using a geometric method.  

 

When choosing the position of the axes of the coordinate system, it is 

advisable to arrange them in such a way that as many unknowns as possible 

are perpendicular to their axes.  
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Examples of calculations 

 

Example 1.1. Determine the reactions in the bars (Fig. 1.2) at F = 50 kN. 

 

 
Fig. 1.2. Reactions forces in 

bars 

Solution 

 

1. We get rid of the nodes by replacing them 

with reactions (Fig. 1.2). Reactions in bars occur 

along the bar and their direction is chosen 

according to the deformation. The rod BC under 

force F is in tension, so the reaction N1 will be 

towards the support in the direction opposite 

to the deformation, the rod AC under force F 

is in compression, so the reaction N2 will be 

towards the direction away from the support. 

2. We introduce the coordinate system and 

decompose the forces acting on it (Fig. 1.3). 

Fig. 1.3. Force distribution in 

the implemented coordinate 

system 

3. Write down the equilibrium conditions for the 

given system of forces. 

∑𝐹𝑦 = 0 ; 

𝑁1 𝑐𝑜𝑠 60° − 𝐹 = 0 

𝑁1 =
𝐹

𝑐𝑜𝑠 60°
=
50 ⋅ 103

0,5
= 100 𝑘𝑁; 

∑𝐹𝑥 = 0; 

−𝑁1 𝑐𝑜𝑠 30° + 𝑁2 = 0; 

𝑁2 = 𝑁1 𝑐𝑜𝑠 30° = 100 ⋅ 10
3 ⋅ 0,87 = 87𝑘𝑁. 

Verification 

 

Examples of ways to verify calculations: 

Data:  

F = 50 kN 

Searched for: 

N1, N2 - ? 
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Fig. 1.4. Force projections on 

the x' axis 

Option 1 

 

We determine the projections of forces 

on another axis, for example, х (Fig. 1.4) 
 

∑𝐹𝑥′ = 0 

−𝑁1 + 𝑁2 𝑐𝑜𝑠 30° + 𝐹 𝑐𝑜𝑠 60° = 0 

−100 + 87 ⋅ 0.87 + 50 ⋅ 0.5 = 0 

0 = 0 

The reactions were calculated correctly. 

 

 

 
Fig. 1.5. Force triangle 

 

 

 

 

 

 

 

Option 2 

 

We draw a force triangle (Fig. 1.5) and, using 

the ratio of the sides of the triangle, 

determine the reactions in the bars.  

𝑐𝑜𝑠 60° =
𝐹

𝑁1
 

𝑁1 =
𝐹

𝑐𝑜𝑠 60°
=
50 ⋅ 103

0.5
= 100 𝑘𝑁 

𝑠𝑖𝑛 60° =
𝑁2
𝑁1

 

𝑁2 = 𝑁1 𝑠𝑖𝑛 60° = 100 ⋅ 10
3 ∙ 0.87 = 87 kN 

The reactions were calculated correctly. 
 

We will apply the sine theorem (Snellius 

theorem) - the sides of a triangle are 

proportional to the sines of the opposite 

angles, so: 
𝑁1

𝑠𝑖𝑛 90°
=

𝑁2
𝑠𝑖𝑛 60°

=
𝐹

𝑠𝑖𝑛 30°
 

𝑁1 =
𝐹 𝑠𝑖𝑛 90°

𝑠𝑖𝑛 30°
=
50 ⋅ 103 ⋅ 1

0.5
= 100 kN 

𝑁2 =
𝐹 𝑠𝑖𝑛 60°

𝑠𝑖𝑛 30°
=
50 ⋅ 103 ⋅ 0.87

0.5
= 87 kN 

Reactions were determined correctly. 

 

Answer: N1 = 100 kN; N2 = 87 kN. 
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Example 1.2. Determine the reactions in the cantilever bars (Fig. 1.6, a) 

when: 

 F = 3 kN; α = 30 ;  = 65 . 

 

Data:          Searched for: 

F = 3 kN        N1, N2-? 

α = 30   

 = 65  

 

a b 

Fig. 1.6. Bracket: a - distribution of forces in the bracket; b - force triangle 

 

Solution 

1. Graphical method 

Plot the force vector 𝐹  on a scale of 

𝜇𝐹 =
𝐹

𝐹
= 0.1

kN

mm
 

 So 

𝐹 =
𝐹

𝜇𝐹
=

3 kN

0.1
N
mm

= 30 mm 

Bar reactions are always directed along the bars. After analysing 

the deformation of the bars (tension or compression), choose the direction 

of the reactions. We then create a force triangle (Fig. 1.6, b). We measure 

the vectors 𝑁⃗⃗ 1 i 𝑁⃗⃗ 2  and, taking into account the scale factor, calculate 

the reaction values N1 and N2 : 

𝑁1 = 4.73 kN, 𝑁2 = 2.62 kN. 

For greater accuracy, the use of graphic software is recommended. 
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2. Analytical method 

Choose the X and Y axes. For convenience, we orient the X-axis along 

the N2 force  (Fig. 1.6, a) 

We set up two equilibrium equations and determined the unknown 

reactions: 

∑𝐹𝑦 = 0,   𝑁1 cos 55° − 𝐹 cos25° = 0, 

𝑁1 =
𝐹 cos 25°

cos 55°
= 4.74 kN, 

∑𝐹𝑥 = 0,−𝑁2 +𝑁1 cos 35° − 𝐹 cos 65° = 0, 

𝑁2 = 4.74 cos35° − 3 cos 65° = 2.62 kN. 

 

Answer: N1 = 4.74 kN, N2 = 2.62 kN. 

 

Example 1.3. a weight of G = 60 kN is suspended by a rope, thrown over 

block a and leading to winch D. Determine the reactions in bars AC and BA 

of the crane (Fig. 1.7). 

 

Data:  

G = 60 kN 

Searched for: 

S1 -? S2 - ? 

 
 

Fig. 1.7. Force distribution in 

the calculated system 

 

 

Solution 

1. The reactions of bars AB and AC are 

directed along the bar. 

It is clear from the bar load analysis that bar 

AB is in tension, so the reaction S1 is directed 

from point a to point B.  

The rod AC is compressed, so the reaction S2 

is directed from point C to point A.  

The rod AC is compressed, so the reaction S2 

is directed from point C to point A.  

The force in the rope T is directed along the 

rope from point a to point D as the rope is 

stretched by the load G.  It is obvious that T = G. 

2. We choose to arrange the X and Y axes in such a way that one of the 

reactions (for example S1) is directed along one of the axes.  

Two equilibrium systems can be arranged for such a system:   
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∑𝐹𝑦 = 0 

𝑆2 cos 30° − 𝐺 − 𝑇 cos30° = 0 

𝑆2 =
𝐺 + 𝑇 cos 30°

cos 30°
=
60 ⋅ 103 + 60 ⋅ 103 ⋅ 0.87

0,87
= 129 kN 

∑𝐹𝑥 = 0 

−𝑆1 + 𝑆2 cos60° + 𝑇 cos 60° = 0 

 

𝑆1 = 𝑆2 cos 60° + 𝑇 cos 60° = 129 ⋅ 10
3 ⋅ 0.5 + 60 ⋅ 103 ⋅ 0.5 = 94.5 kN 

 

Answer: S1 = 129 kN, S2 = 94.5 kN. 
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Individual tasks 

(calculation) 

 

Task 1.1. Determine the reactions in the cantilever rods under force 𝐹 . 

The data for the task is shown in Table 1.1. 

 
Table 1.1. Initial data for Task 1.1 

V
ar

. n
o

 

Sc
h

em
e 

α 

° 

β  

° 

F 

kN 
V

ar
ia

n
t 

Sc
h

em
e 

α 

° 

 

β 

° 

 

F 

kN 

W
ar

ia
n

t 

Sc
h

em
at

 

α 

° 

 

β 

° 

 

F 

kN 

1 

1 

10 20 20 17 

5 

45 40 95 33 

9 

70 30 42 

2 20 15 30 18 60 10 100 34 60 40 44 

3 30 50 40 19 65 15 15 35 65 25 46 

4 40 25 50 20 40 30 18 36 50 45 48 

5 

2 

15 80 60 21 

6 

60 20 16 37 

10 

30 35 52 

6 25 70 70 22 70 25 14 38 40 45 54 

7 55 45 80 23 80 30 12 39 50 50 56 

8 20 75 90 24 65 35 10 40 35 40 58 

9 

3 

5 80 100 25 

7 

30 45 22 41 

11 

30 95 62 

10 10 70 25 26 40 35 24 42 20 110 64 

11 45 50 35 27 45 40 26 43 02 120 66 

12 30 60 45 28 50 30 28 44 15 115 68 

13 

4 

30 40 55 29 

8 

10 100 32 45 

12 

30 45 72 

14 20 30 65 30 15 95 34 46 20 60 74 

15 15 20 75 31 20 110 36 47 30 50 76 

16 25 25 85 32 25 105 38 48 40 45 78 
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Schemes to Task 1.1

 
  



17 
 

Task 1.2. Determine the values and direction of the node reactions 

for the schemes shown below. The data for the task is shown in Table 1.2. 

 
Table 1.2. Initial data for Task 1.2 

Var. no Scheme 

 

α 
° 

 

β 

° 
Q 

kN 
Var. no Scheme 

α, 
° 

β 

° 
Q 

kN 

1 

1 

30 50 20 17 

5 

30 50 20 

2 40 45 22 18 35 50 25 

3 25 60 30 19 25 60 10 

4 45 30 25 20 10 70 40 

5 

2 

15 60 40 21 

6 

5 30 28 

6 20 50 50 22 10 35 16 

7 25 55 48 23 15 40 2 

8 30 45 30 24 10 45 40 

9 

3 

50 20 32 25 

7 

10 60 32 

10 55 20 46 26 15 55 40 

11 40 30 28 27 20 50 50 

12 45 25 30 28 5 65 40 

13 

4 

10 70 60 29 

8 

45 40 15 

14 15 70 30 30 50 35 12 

15 35 40 10 31 55 30 40 

16 20 45 15 32 60 20 45 
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Schemes to Task 1.2 
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1.2. Force pairs and moment of a force about a point 

 

General information 

Pair of forces - two equal and parallel forces directed in opposite 

directions that do not lie in a straight line (Fig. 1.8).  

 

 

a b 

 Fig. 1.8. Pair of forces: 

a - determining the arm; b - determining the sign of the moment of the force pair 

 

Moment of force with about a point 

A force that does not pass through the point of attachment of the body 

causes the body to rotate around that point and the effect of such a force on 

the body is assessed by a moment.  

The moment of force about a point (pole) is called the vector 𝑀⃗⃗ 0 

multiplied by the distance between the direction of this vector and the point 

at which we want to calculate this moment (Fig. 1.9, a). 

𝑀⃗⃗ 0 = 𝑟 ∙ 𝐹  

 

 

 

a b 

Fig. 1.9. Moment of force relative to a point: 

a - arm; b - determining the sign of the moment 

 

A perpendicular line drawn from a point to the line of action 

of the force is called the force arm h. 
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Basic calculation formulae 
Power couple moment  

М(𝐹, 𝐹′) = 𝐹ℎ 

The arm h of a force pair is the shortest distance between the lines 

of action of the force pair. 

The moment is considered positive if the force pair rotates the body 

in a counterclockwise direction (Fig. 1.9, b). The unit of measure 

of the moment of a force pair M(F, Fʹ) is Nm. The moment of a force pair 

is equal to the algebraic sum of the moments of the pairs forming the system: 

𝑀 =∑𝑀𝑖

𝑛

𝑖=1

 

For pair equilibrium it is necessary and sufficient that the algebraic 

sum of the moments of the pairs of the system is equal to zero (pair 

equilibrium condition): 

𝑀 =∑𝑀𝑖

𝑛

𝑖=1

= 0 

To balance a force pair system, it is necessary to apply a pair of forces 

of equal modulus and directed in opposite directions. Such a pair of forces 

is called balanced.  

Several pairs of forces can be applied to a body. Two pairs of forces are 

equivalent if, given other equivalent conditions, their action on the body 

is the same. Since a pair of forces is characterised by a pair moment, pairs 

of forces lying in the same plane will be equivalent if they have the same 

moment (same magnitude and direction). 

The moment of force F relative to point 0 is denoted М0 (F): 
М0(F) = Fh 

The unit of measure М0(F) is Nm. 

The sign principle of moments. a moment is considered positive 

if the force attempts to rotate the body relative to a given point 

in a counterclockwise direction and negative if it is clockwise (Fig. 1.9, b). 

Varignon's theorem. The moment concerning any point O 

of the resultant of two forces is equal to the sum of the moments of these forces 

concerning point O.   

𝑀0(𝑅) =∑𝑀0(𝐹𝑖)

𝑛

𝑖=1
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Examples of calculations 

 

Example 1.4. Determine the pair of equivalent forces given (Fig. 1.10). 

 

 
 

Answer choices 
 

 
a b c d 

 

Fig. 1.10. Variants for defining a pair of equivalent forces 

 

Solution 

Since a pair of forces is characterised by a moment of force, pairs of forces 

lying in the same plane will be equivalent if they have the same moment 

(same magnitude and direction).  

The moment of a given pair is: 
𝑀(𝐹) = 𝐹 ∙ ℎ = 15 ∙ 0.2 = 3 kNm 

so the c variant is correct. For this pair, the direction and moment coincide 

with the given 
𝑀(𝐹) = 𝐹 ∙ ℎ = 15 ∙ 0.2 = 3 kNm 

 

Answer: c. 
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Example 1.5. Determine the moments of forces acting on bar AC (Fig. 1.11) 

relative to points А, В, С, if: F1 = 10 N; F2 = 20 N; F3 = 30 N; lАВ = 1 m; lВС = 2 m. 

 

Data: 

F1 = 10 N 

F2 = 20 N 

F3 = 30 N 

lAB = 1 m 

lBC = 2 m 

Searched for: 

MA - ? MB - ? 

MC - ? 

 
Fig. 1.11. Force distribution in the bar 

Solution 

 

Write down the equations of moments 

relative to points А, В, С: 

 

∑𝑀𝐴 = −𝐹2 ∙ 𝑙𝐴𝐵 + 𝐹3 ∙ sin 60° ∙ 𝑙𝐴𝐶 = 

= −20 ∙ 1 + 30 ∙ 0.866 ∙ 3 = 57.9 Nm,  

 
∑𝑀𝐵 = −𝐹1 ∙ sin 30° ∙ 𝑙𝐴𝐵 + 𝐹3 ∙ sin 60° ∙ 𝑙𝐵𝐶 =

−10 ∙ 0.5 ∙ 1 + 30 ∙ 0.866 ∙ 2 = 46.96 Nm,  
 

∑𝑀𝐶 = −𝐹1 ∙ sin 30° ∙ 𝑙𝐴𝐶 + 𝐹2 ∙ 𝑙𝐵𝐶 = −10 ∙ 0.5 ∙ 3 + 20 ∙ 2 = 25 Nm. 

 

Answer: МA = 57.9 Nm, МВ = 46.96 Nm, МС = 25 Nm. 
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Individual tasks 

(calculation) 

 

Task 1.3. Determine the values of moments of forces acting on bars АВСD  

concerning points А, В, С, D. Data for the task is shown in Table 1.3. 

 
Table 1.3. Initial data for Task 1.3 

 

Var. 

no 

F1 

N 

F2 

N 

F3 

N 

F4 

N 

F5 

N 

α 

° 

 

° 

AB 

m 

BC 

m 

CD 

m 

Calculation scheme 

 

1 5 1 2 8 4 30 60 1 1 2 

2 10 2 4 6 5 45 30 2 1 2 

3 15 3 6 12 6 60 45 1 2 1 

4 8 4 8 20 7 30 30 1 1 2 

5 6 5 10 15 8 45 60 2 1 2 

6 12 6 12 4 10 60 50 1 2 1 

7 20 7 15 2 12 30 45 1 1 2 

8 15 8 18 1 5 45 30 2 1 2 

9 4 10 14 2 10 60 50 1 2 1 

10 2 12 20 3 15 50 60 1 1 2 

11 1 5 1 4 8 30 60 1 1 2 

 

12 2 10 2 5 6 45 30 2 1 2 

13 3 15 3 6 12 60 45 1 2 1 

14 4 8 4 7 20 30 30 1 1 2 

15 5 6 5 8 15 45 60 2 1 2 

16 6 12 6 10 4 60 50 1 2 1 

17 7 20 7 12 2 30 45 1 1 2 

18 8 15 8 20 7 45 30 2 1 2 

19 10 4 10 15 8 60 50 1 2 1 

20 12 2 12 4 10 50 60 1 1 2 

21 20 7 15 8 4 30 45 1 1 2 

 

22 15 8 18 6 5 45 30 2 1 2 

23 4 10 14 12 6 60 50 1 2 1 

24 2 12 20 20 7 50 60 1 1 2 

25 1 5 1 15 8 30 60 1 1 2 

26 2 10 2 4 10 45 30 2 1 2 

27 3 15 3 2 12 60 45 1 2 1 

28 4 8 4 1 5 30 30 1 1 2 

29 5 6 5 2 10 45 60 2 1 2 

30 6 12 6 3 15 60 50 1 2 1 
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1.3. Flat arbitrary force system. Determination of reactions at the supports 

 

General information 

Flat arbitrary force system - is a system of forces applied to a body 

whose lines of action are arbitrarily distributed in the same plane (they 

do not intersect at a single point). 

Parallel force transfer theorem. The equilibrium of a solid body will 

not be disturbed if a force acting on the body is transferred parallel to itself 

to any point of the body, or by adding a pair of forces whose moment is equal 

to the moment of that force relative to the point to which the force 

is transferred.  

The parallel force-displacement theorem is a fundamental statistical 

theorem for the reduction of any system of forces acting on a solid body 

to a force and force pair. 

 

Reduction of a plane system of arbitrarily distributed forces  

Reducing a force system involves replacing it with another system that 

is equivalent to the first, but simpler.  

Theorem. a system of forces can be reduced to an equivalent system 

consisting of one force applied at an arbitrary pole of reduction O and a pair 

of forces of torque M. a flat system of arbitrary forces is equivalent to one 

force, the principal vector of the system, which is added at the centre 

of the system, and one pair of forces, the principal moment of the system 

(Fig. 1.13).   

  
Fig. 1.12. The main torque of the system 
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Basic calculation formulae 

Principal vector of an arbitrary plane force system 

The geometric sum of the forces of the system is called the principal 

vector of the system. 

𝐹 𝑚𝑎𝑖𝑛 = 𝐹1⃗⃗  ⃗ + 𝐹2⃗⃗⃗⃗ + 𝐹3⃗⃗⃗⃗ +. . . =∑𝐹𝑖⃗⃗ 

𝑛

𝑖=1

 

Principal vector modulus of a plane system of arbitrary forces 

𝐹𝑚𝑎𝑖𝑛 = 𝐹1х + 𝐹2х + 𝐹3х +⋯ =∑𝐹𝑖х

𝑛

𝑖=1

  

 

𝐹𝑚𝑎𝑖𝑛 = 𝐹1𝑦 + 𝐹2𝑦 + 𝐹3𝑦+. . . =∑𝐹𝑖𝑦

𝑛

𝑖=1

 

then 𝐹𝑚𝑎𝑖𝑛 = √𝐹𝑚𝑎𝑖𝑛𝑋
2 + 𝐹𝑚𝑎𝑖𝑛𝑦

2  

Direction of the principal vector modulus of a plane system 

of arbitrary forces  

cos(𝐹𝑚𝑎𝑖𝑛, 𝑥) =
𝐹𝑚𝑎𝑖𝑛𝑥
𝐹𝑚𝑎𝑖𝑛

  

Main moment of a plane system of arbitrary forces   

𝑀𝑚𝑎𝑖𝑛 = 𝑀1 +𝑀2 +𝑀3+. . . =∑𝑀𝑖 =

𝑛

𝑖=1

∑𝑀О(𝐹𝑖)

𝑛

𝑖=1

 

 

Conditions of equilibrium of a plane system of arbitrary forces 

Geometrical equilibrium conditions 

𝐹𝑚𝑎𝑖𝑛 = 0,𝑀𝑚𝑎𝑖𝑛 = 0. 

 

Analytical equilibrium conditions 

The first form of the equilibrium condition for a plane system 

of arbitrary forces   

∑𝐹𝑖𝑥

𝑛

𝑖=1

= 0;∑𝐹𝑖𝑦

𝑛

𝑖=1

= 0; 

∑𝑀𝑖 =

𝑛

𝑖=1

∑𝑀О(𝐹𝑖) = 0

𝑛

𝑖=1

 

In short, it can be written down: 

∑𝐹𝑖𝑥 = 0,∑𝐹𝑖𝑦 = 0,∑𝑀О = 0 

Other variants of the notation of the equilibrium condition can 

be found in the literature, for example: 



26 
 

∑𝑋 = 0,∑𝑌 = 0,∑𝑀𝐴 = 0, 

where ∑Х and ∑𝑌 – the sum of the projections of the active and reactive 

forces of the system on the coordinate axes (i.e. all the external forces); 

 MA – the sum of the moments of all the external forces of the system 

(active and reactive) relative to any point A.   

 

The second form of the equilibrium condition for a plane system  

of arbitrary forces 
 

∑𝑀𝐴 = 0,∑𝑀𝐵 = 0,∑𝑀𝐶 = 0 

where А, В, С – arbitrary reference points of the system's moments of force;  

 

The third form of the equilibrium condition for a plane system 

of arbitrary forces 
 

∑𝑀𝐴 = 0,∑𝑀𝐵 = 0,∑𝐹𝑖х = 0 

 

Conditions of equilibrium of a plane system of parallel forces 

 

The first form of the equilibrium condition  
 

∑𝐹𝑖𝑦 = 0,∑𝑀𝑂 = 0 

 

The second and third form of the equilibrium condition 

∑𝑀𝐴 = 0,∑𝑀𝐵 = 0 

 

Recommended sequence of operations when solving a planar system 

of arbitrarily distributed forces 

1. Determine which body's equilibrium should be taken into account 

in this task. 

2. Treating this body as free, apply to it all the forces and reactions 

of the bonds acting on the body.  

3. Arrange the equilibrium conditions using the form of the conditions 

that lead to the simplest solution and determine the unknowns. 

4. Check calculations using equilibrium conditions not used in this task.  

 



27 
 

For simpler equations it is worthwhile: 

1. When determining the equation of projection, draw a coordinate 

axis perpendicular to one of the unknown forces. 

2. When determining the equation of moments, choose the point where 

the most forces intersect.     

 

Determination of reactions in the support 

The basic three types of support:  

Sliding articulated support (Fig. 1.13, a). This support gives only one 

reaction - RАу , which is directed along the normal to the resistance surface; 

Non-sliding articulated support (Fig. 1.13, b). The support allows 

rotation about the joint and can be replaced by two-component forces acting 

along the coordinate axis; 

 
                                a                          b                                                c 

Fig. 1.13. Determination of reactions in supports: 

a - articulated sliding; b - articulated non-sliding; c - in the support 

 

 

Bracket (Fig. 1.13, c). No displacements are possible. Under 

the influence of external forces, two reactions RАх, RАу and a reaction moment 

МА occur at the restraint point, preventing rotation. 
 

Conditions of equilibrium 

 

∑𝐹𝑖𝑥 = 0,∑𝐹𝑖𝑦 = 0,∑𝑀𝐴 = 0 

Each equation has one unknown and is solved without substitution. 

To check the correctness of the solution, an additional equation 

of moments is used concerning an arbitrary point on the beam, for example, В: 

∑𝑀𝐵 = 0 

∑𝑀𝐴 = 0,∑𝑀𝐵 = 0,∑𝐹𝑖х = 0 
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The equations of moments are defined by the anchor points 

of the beam. Since the moment of the force passing through the anchor point 

is 0, one unknown force remains in the equation. 

From the equation ∑𝑀𝐴 = 0 the reaction RВу is determined. 

From the equation ∑𝑀𝐵 = 0 the reaction RАу is determined. 

From the equation ∑𝐹𝑖х = 0 the reaction RВх is determined. 

 

To check the correctness of the solution, an additional equation is used 

∑𝐹𝑖𝑦 = 0 

In solid equilibrium, where three points can be chosen that do not lie 

on the same line, it is convenient to use a system of equations of the second 

form. 

∑𝑀𝐴 = 0,∑𝑀𝐵 = 0,∑𝑀𝐶 = 0
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Examples of equations 

  

Example 1.6. Determine the principal vector of the force system 

and the principal moment of the system concerning point B (Fig. 1.14), if:  

F1 = 10 kN; F2 = 16 kN; F3 = 12 kN; М = 60 kNm. 

 

Data: 

F1 = 10 kN 

F2 = 16 kN 

F3 = 12 kN 

M = 60 kNm 

Searched for: 

Fmain - ?  

Mmain - ? 

 
Fig. 1.14. The system of forces and 

moments 

Solution 

1. Determine the principal vector 

of the force system. 

The principal vector is equal to 

the geometric sum of the vectors of the 

force system: 

𝐹 𝑚𝑎𝑖𝑛х = 𝐹
 
1х + 𝐹

 
2х + 𝐹

 
3х+. . . =∑𝐹 𝑖х

𝑛

𝑖=1

 

  
𝐹𝑚𝑎𝑖𝑛х = 𝐹1х 𝑐𝑜𝑠 45° − 𝐹2х = 10 ⋅ 0,71 − 16 = −8.9 kN; 

𝐹𝑚𝑎𝑖𝑛𝑦 = 𝐹1𝑦 + 𝐹2𝑦 + 𝐹3𝑦+. . . = ∑ 𝐹𝑖𝑦
𝑛
𝑖=1 ; 

𝐹𝑚𝑎𝑖𝑛𝑦 = −𝐹1𝑦 𝑐𝑜𝑠 45° + 𝐹3𝑦 = −10 ⋅ 0,71 + 12 = 4.9 kN; 

𝐹𝑚𝑎𝑖𝑛 = √𝐹𝑚𝑎𝑖𝑛𝑋
2 + 𝐹𝑚𝑎𝑖𝑛𝑦

2 = √(−8,9)2 + 4,92 ≈ 10 kN. 

2. Determine the principal moment of the system of forces about point B. 

The principal moment of a force system is equal to the algebraic sum 

of the moments of all the forces of the system concerning the reference 

point:  

𝑀𝑚𝑎𝑖𝑛 =∑𝑀𝐵(𝐹𝑖)

𝑛

𝑖=1

 

∑𝑀𝐵 = −𝐹1 𝑐𝑜𝑠 45° ⋅ 2 + 𝐹2 ⋅ 2 + 𝐹3 ⋅ 4 − 𝑀 

∑𝑀𝐵 = −10 ⋅ 0.71 ⋅ 2 + 16 ⋅ 2 + 12 ⋅ 4 − 60 = 5.8 kNm. 

 

Answer: Fmain = 10 kN; Мmain = 5.8 kNm. 
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Example 1.7. Determine the reactions in the supports (Fig. 1.15), if:  

F1 = 10 kN; F2 = 30 kN, M = 5 kNm, a = 2 m, b = 4 m, α = 30 °, β = 45 ° 

 

Data: 

F1 = 10 kN 

F2 = 30 kN 

M = 5 kNm 

a = 2 m 

b = 4 m 

α = 30 ° 

β = 45 ° 

 
Fig. 1.15. The system of forces and moments 

Searched for: 

RAx - ? RAy - ? 

RBy - ? 

Solution 

1. Introduce the coordinate system and mark it on the scheme 

(Fig. 1.15). 

2. Convert the supports into the corresponding reactions and mark 

them on the scheme (Fig. 1.15). We choose the direction of the reactions 

arbitrarily. 

3. Determine the reactions in the supports. 

To determine the reactions in the supports, we use the third form 

of the equilibrium condition for a plane system of arbitrary forces.  

∑𝑀𝐴 = 0,∑𝑀𝐵 = 0,∑𝐹𝑖х = 0 

To check the correctness of the solution, we use the following 

additional equation  

∑𝐹𝑖𝑦 = 0 

Adopt the sign principle, counterclockwise torque is positive. 

∑𝑀𝐴 = 0; 

𝐹1 sin𝛼 ⋅ 𝑎 −𝑀 + 𝐹2 sin𝛽 ∙ (𝑎 + 𝑏) + 𝑅𝐵𝑦(2𝑎 + 𝑏) = 0; 

𝑅𝐵𝑦 =
−𝐹1 sin𝛼 ⋅ 𝑎 + 𝑀 − 𝐹2 sin𝛽 ∙ (𝑎 + 𝑏)

2𝑎 + 𝑏
=
−10 ⋅ 𝑠𝑖𝑛 30° ⋅ 2 + 5 − 30 ⋅ sin45° ⋅ (2 + 4)

2 ⋅ 2 + 4
=  −16.6 kN. 

A minus sign indicates that the reaction is in the opposite direction. 

∑𝑀𝐵 = 0; 

𝐹1 sin 𝛼 ∙ (3𝑎 + 𝑏) −𝑀 − 𝐹2 sin𝛽 ∙ а − 𝑅А𝑦(2𝑎 + 𝑏) = 0; 

 

𝑅А𝑦 =
𝐹1 sin𝛼 ∙ (3𝑎 + 𝑏) −𝑀 − 𝐹2 sin𝛽 ∙ а

2𝑎 + 𝑏
=
10 ⋅ sin 30° ⋅ (3 ⋅ 2 + 4) − 5 − 30 ⋅ sin45° ⋅ 2

2 ⋅ 2 + 4
= 0,3 kN. 
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∑𝐹𝑖х = 0; 

 𝐹1 cos 𝛼 − 𝑅𝐴𝑥 + 𝐹2 cos𝛽 = 0; 

𝑅𝐴𝑥 = 𝐹1 cos 𝛼 + 𝐹2 cos𝛽 = 10 ⋅ cos 30° + 30 ⋅ cos 45° = 30 kN. 
 

Verification 

∑𝐹𝑖𝑦 = 0; 

−𝐹1 sin 𝛼 + 𝑅𝐴𝑦 + 𝐹2 sin𝛽 + 𝑅𝐵𝑦 = 0; 

−10 ⋅ 0.5 + 0.3 + 30 ⋅ 0.71 − 16.6 = 0; 

0 = 0. 
Reactions were determined correctly. 

 

Answer: RAx = 30 kN; RAy = 0.3 kN; RBy = –16.6 kN. 

 

Example 1.8. Determine the reactions in the supports (Fig. 1.16), if: 

F1 = 10 kN, q = 15 kN/m, М = 20 kNm. 

 

Data: 

F1 = 10 kN 

q = 15 kN/m 

М = 20 kNm 

 

Searched for: 

RAx - ? RAy - ? 

RBy - ? 

 

Fig. 1.16. The system of forces and moments 

 

Solution 

1. Enter the coordinate system and mark it on the diagram (Figure 1.16). 

2. Convert the supports into the corresponding reactions and mark them 

on the diagram (Fig. 1.16). Choose the direction of the reactions arbitrarily. 

3. Substitute the distributed load for the equivalent force that is applied 

at the centre of the diagram (Fig. 1.16): 
𝑄 = 𝑞 ∙ 𝑙 = 15 ⋅ 1 = 15 kN 

4. Determine the reactions in the supports. 

To determine the reactions in the supports we use the third form 

of the equilibrium condition for a plane system of arbitrary forces  

∑𝑀𝐴 = 0,∑𝑀𝐵 = 0,∑𝐹𝑖х = 0 

To check the correctness of the solution, we use the following additional 

equation 
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∑𝐹𝑖𝑦 = 0 

Adopt the sign principle. The counterclockwise torque is positive. 

∑𝑀𝐴 = 0; 

−𝐹1 sin30° ∙ 3 − 𝑀 − 𝑄 ∙ 5.5 + 𝑅𝐵𝑦 ∙ 6.5 = 0; 

 

𝑅𝐵𝑦 =
𝐹1 sin30° ⋅ 3 + 𝑀 + 𝑄 ∙ 5.5

6.5
=
10 ⋅ 0.5 ⋅ 3 + 20 + 15 ⋅ 5.5

6.5
= 18 kN; 

∑𝑀𝐵 = 0; 

−𝑅А𝑦 ∙ 6.5 + 𝐹1 sin30° ⋅ 3.5 − 𝑀 + 𝑄1 = 0; 

 

𝑅𝐴𝑦 =
𝐹1 sin30° ⋅ 3.5 − 𝑀 + 𝑄1

6.5
=
10 ⋅ 0.5 ⋅ 3.5 − 20 + 15 ⋅ 1

6.5
≈ 2 kN; 

∑𝐹𝑖х = 0; 

𝐹1 cos 30° + 𝑅𝐴𝑥 = 0; 

𝑅𝐴𝑥 = −𝐹1 cos 30° − 𝐹1 cos 30° = −10 ⋅ 0.87 = −8.7 kN. 

A minus sign indicates that the reaction is in the opposite direction. 

 

Verification 
∑𝐹𝑖𝑦 = 0; −𝐹1 sin30° + 𝑅𝐴𝑦 − 𝑄 + 𝑅𝐵𝑦 = 0; 

−10 ⋅ 0,5 + 2 − 15 + 18 = 0;  

0 = 0. 

Reactions were determined correctly. 

 

Answer: RAx = –8.7 kN; RAy = 2 kN; RBy = 18 kN. 
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Individual tasks 

(calculation) 

 

Task 1.4. Determine the reactions in the supports is shown in Table 1.4 

 
Table 1.4. Initial data for Task 1.4 

Var. 

no 
F1, 

kN 

F2, 

kN 

М, 

kNm 

α, 

° 

, 

° 

a, 

m 

b, 

m 

c, 

m 

Calculation scheme 

 

1 5 1 2 30 60 1 1 2 

2 10 2 4 45 30 2 1 2 

3 15 3 6 60 45 1 2 1 

4 8 4 8 30 30 1 1 2 

5 6 5 10 45 60 2 1 2 

6 12 6 12 60 50 1 2 1 

7 20 7 15 30 45 1 1 2 

8 15 8 18 45 30 2 1 2 

9 4 10 14 60 50 1 2 1 

10 2 12 20 50 60 1 1 2 

11 1 5 1 30 60 1 1 2 

 

12 2 10 2 45 30 2 1 2 

13 3 15 3 60 45 1 2 1 

14 4 8 4 30 30 1 1 2 

15 5 6 5 45 60 2 1 2 

16 6 12 6 60 50 1 2 1 

17 7 20 7 30 45 1 1 2 

18 8 15 8 45 30 2 1 2 

19 10 4 10 60 50 1 2 1 

20 12 2 12 50 60 1 1 2 

21 20 7 15 30 45 1 1 2 

 

22 15 8 18 45 30 2 1 2 

23 4 10 14 60 50 1 2 1 

24 2 12 20 50 60 1 1 2 

25 1 5 1 30 60 1 1 2 

26 2 10 2 45 30 2 1 2 

27 3 15 3 60 45 1 2 1 

28 4 8 4 30 30 1 1 2 

29 5 6 5 45 60 2 1 2 

30 6 12 6 60 50 1 2 1 
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Task 1.5. Determine the reactions in the supports. Initial data is shown in 

Table 1.5. 

 
Table 1.5. Initial data for Task 1.5 

Var.  

No 

F1, 

kN 

F2, 

kN 

М, 

kNm 

q, 

kN/m 

α, 

° 

a, 

m 

b, 

m 

c, 

m 

Calculation scheme 

 

1 5 1 2 1 30 1 1 2 

2 10 2 4 2 45 2 1 2 

3 15 3 6 3 60 1 2 1 

4 8 4 8 4 30 1 1 2 

5 6 5 10 5 45 2 1 2 

6 12 6 12 6 60 1 2 1 

7 20 7 15 7 30 1 1 2 

8 15 8 18 8 45 2 1 2 

9 4 10 14 10 60 1 2 1 

10 2 12 20 12 50 1 1 2 

11 1 5 1 5 30 1 1 2 

 

12 2 10 2 10 45 2 1 2 

13 3 15 3 15 60 1 2 1 

14 4 8 4 8 30 1 1 2 

15 5 6 5 6 45 2 1 2 

16 6 12 6 12 60 1 2 1 

17 7 20 7 20 30 1 1 2 

18 8 15 8 15 45 2 1 2 

19 10 4 10 4 60 1 2 1 

20 12 2 12 2 50 1 1 2 

21 20 7 15 1 30 1 1 2 

 

22 15 8 18 2 45 2 1 2 

23 4 10 14 3 60 1 2 1 

24 2 12 20 4 50 1 1 2 

25 1 5 1 5 30 1 1 2 

26 2 10 2 6 45 2 1 2 

27 3 15 3 7 60 1 2 1 

28 4 8 4 8 30 1 1 2 

29 5 6 5 10 45 2 1 2 

30 6 12 6 12 60 1 2 1 
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1.4. Determination of the centre of gravity of flat shapes 
 

General information 

Material bodies consist of elementary particles whose position 

in space is determined by their coordinates. The gravitational forces of each 

particle concerning the Earth can be considered as a system of parallel 

forces, and the equivalent of these forces is called the gravity of the body 

or the weight of the body. 

The centre of gravity of a body is the centre of parallel forces 

of attraction of all elementary particles of the body. The centre of gravity 

is the geometric point of application of the force of gravity, which may be 

outside the body (e.g. a disc with a hole, a torus, an angle, a hollow sphere, etc.).  

 

Basic calculation formulae 

Centre of gravity of plane bodies and geometrical plane figures  

 

𝑥𝑐 =
∑ 𝐴𝑖𝑥𝑖
𝑛
𝑖=1

∑ 𝐴𝑖
𝑛
𝑖=1

=
𝐴1𝑥1 + 𝐴2𝑥2 +⋯+ 𝐴𝑛𝑥𝑛

𝐴1 + 𝐴2 +⋯+ 𝐴𝑛
 

 

𝑦
𝑐
=
∑ 𝐴𝑖𝑦𝑖
𝑛
𝑖=1

∑ 𝐴𝑖
𝑛
𝑖=1

=
𝐴1𝑦1 + 𝐴2𝑦2 + ⋯+ 𝐴𝑛𝑦𝑛

𝐴1 + 𝐴2 + ⋯+ 𝐴𝑛
 

where Ai – area of the part of the figure, mm2;  

xi, yi – coordinates of the centre of gravity of the part of the figure, mm.  

 

Formulae 𝑥С = ∑ 𝐴𝑖𝑥𝑖
𝑛
𝑖=1  is called the static moment (Sy) of a plane 

cross-section (figure). The static moment of the area of a plane body 

concerning an axis in the plane of the body is a geometrical characteristic 

that is equal to the product of the area of the body and the distance from its 

centre of gravity to that axis. Then the coordinates of the centre of gravity 

of the section can be expressed in terms of the static moment: 

∑𝐴𝑖𝑥𝑖

𝑛

𝑖=1

= 𝑆𝑦;  𝑥𝐶 =
𝑆𝑦

𝐴
 

 

∑𝐴𝑖𝑦𝑖

𝑛

𝑖=1

= 𝑆𝑦𝑥; 𝑦𝐶 =
𝑆𝑥
𝐴

 

The axes that intersect the centre of gravity are called central axes. 

The static moment about the central axis is zero.  
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Center of gravity some simple figures  

The position of the centres of gravity of simple geometric shapes can 

be calculated using the relevant formulae (Fig. 1.17). 
 

 

 

 

 

a b c d 

Fig. 1.17. Position of the centres of gravity of the figures: 
a - circle; b - square, rectangle; c - triangle; d - semicircle 

 

Methods for determining the position of the centre of gravity 
 

Analytical methods 

Symmetry method. If a homogeneous body has a plane, axis or centre 

of symmetry, the centre of gravity lies either on the plane of symmetry, the axis 

of symmetry or the centre of symmetry, respectively. This property reduces the 

number of coordinates of the centre of gravity that need to be determined. 

Given this property, the number of the centre of gravity coordinates to be 

determined is reduced. 

 

 

 

 

a   b c d 

Fig. 1.18. The centre of gravity of:  

a - a segment of length l; b - a circle; c - a parallelogram, rhombus or parallelogram;  

d - a regular polygon 

 

 

The centre of gravity of a segment of length l is at its midpoint 

(Fig. 1.18, a). The centre of gravity of a circle or a circle of radius R is at its 

centre, i.e. at the point of intersection of the diameters (Fig. 1.18, b). 

The centre of gravity of a parallelogram, rhombus or parallelepiped 

is at the point of intersection of the diagonals (Fig. 1.18, c). The centre 

of gravity of a regular polygon is at the centre of the inscribed 

or circumscribed circle (Fig. 1.18, d). 
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Method of division (subdivision). A composite figure is divided into 

a series of simple figures for which the position of the centre of gravity 

is known or easy to determine (Fig. 1.19, a). 

 

 

a b 

Fig. 1.19. Determination of the centre of gravity of figures: 

a - by the method of division (subdivision); b - by the method of negative areas 

 

Then the position of the centre of gravity of the whole figure is 

determined according to the formulae 

𝑥𝑐 =
∑(𝐴𝑖𝑥𝑖)

∑𝐴𝑖
 

𝑦𝑐 =
∑(𝐴𝑖𝑦)

∑𝐴𝑖
 

A for the figure shown in Fig. 1.20, a the centre of gravity 

𝑥𝑐 =
𝐴1 ∙ 𝑥1 + 𝐴2 ∙ 𝑥2

𝐴1 + 𝐴2
 

𝑦𝑐 =
𝐴1 ∙ 𝑦1 + 𝐴2 ∙ 𝑦2

𝐴1 + 𝐴2
 

Here xi, yi – coordinates of the simple figure, Ai – its area. 

 

The negative (positive) area method – is a special case of the 

division method. As in the subdivision method, a complex shape is 

subdivided into a set of simple shapes for which the position of the centre 

of gravity is known or easy to determine, but where holes or voids exist, it is 

convenient to represent in terms of a “negative” cross-sectional area. For 

example, the figure in (Fig. 1.19, b) can be represented as two rectangles, one 

of which has a negative cross-sectional area. The centre of gravity is then 

determined as follows 

𝑥𝑐 =
𝐴1 ∙ 𝑥1 − 𝐴2 ∙ 𝑥2

𝐴1 − 𝐴2
 

𝑦𝑐 =
𝐴1 ∙ 𝑦1 − 𝐴2 ∙ 𝑦2

𝐴1 − 𝐴2
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The integration method. It is used in cases where the first three 

methods cannot be used to determine the centre of gravity. If the figure has 

a fairly simple contour described by a well-known equation (circle, parabola, 

etc.), an elementary place or band is selected and analytical integration is 

performed. If analytical integration is difficult, numerical integration 

methods are used.  

 

Experimental methods 

Experimental methods are used when bodies have a complex shape, 

configuration, large size and mass for which other methods are not suitable 

due to complexity and cumbersomeness. For example, various machines 

or their parts (aircraft, cars, etc.).  

Suspension method. It consists of the fact that when a body or figure is 

suspended at any point, the centre of gravity is at the same vertical as the point 

of suspension. To determine the position of the centre of gravity of a plane 

figure, it is sufficient to suspend it alternately at any two points and draw 

the corresponding verticals, for example, by lines, and the point of intersection 

of these lines corresponds to the position of the figure's centre of gravity 

(Fig. 1.20, a). 

 

 

a b 

Fig. 1.20. Determination of the centre of gravity: 

a - suspension method; b - weighing method 

 

Weighting method. Requires measuring the weight of the whole body 

as well as the separate parts of the body. If the mass is known (for example, 

of an aeroplane), the rear wheels are placed on a scale (Fig. 1.20, b) 

and the reaction NB is determined using the weight readings. Then one 

of the equations of equilibrium is laid out; the most convenient 

is to determine the sum of moments concerning point A:  
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∑𝑀𝐴(𝐹𝑖) = 0

𝑛

𝑖=1

 

𝑚 ∙ 𝑔 ∙ 𝑎 − 𝑁𝐵 ∙ 𝑙 = 0 

From here, the unknown value of a, the position of the aircraft's centre 

of gravity, is determined:  

𝑎 =
𝑁𝐵𝑙

𝑚𝑔
 

 In this way, the experimental method is faster and more convenient, 

especially when it is necessary to determine the centre of gravity of a plane 

figure that is difficult to divide into simpler elements. However, this method 

is less accurate than the analytical method, which is more accurate but more 

difficult and time-consuming. 
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Examples of calculation 

 

Example 1.9. Determine the positions of the figure's centre of gravity 

(Fig. 1.21). 

 
Fig. 1.21. Section to Example 1.9 

Solution 

1.  To determine the centre 

of gravity of a figure we will use 

the analytical method of division and 

negative areas. We divide 

the complex figure into simple 

components: a rectangle, a triangle 

and a circle. We give them numbers 

and place them on the shape 

of the figure (Fig. 1.21). 

2. Create an XY coordinate system and determine the centres of gravity 

of the components of the composed figure:  

1 – a rectangle – a symmetrical figure whose centre of gravity 

is at the point of intersection of the diagonals, its coordinates are:  

𝑥1 =
200

2
= 100 mm; 𝑦1 =

100

2
= 50 mm; С1(100; 50) 

2 – a triangle – the centre of gravity is either at the point of intersection 

of its midlines or at the point of intersection of the lines, located 

at a distance of 1/3 from the perpendiculars, its coordinates are: 

𝑥2 = 200 +
350 − 200

3
= 250 mm; 𝑦2 =

100

3
= 33 mm; С2(250; 33) 

3 – a circle – a symmetrical figure, the centre of gravity of which is at its 

centre, its coordinates are:  

𝑥3 =
200

2
= 100 mm; 𝑦3 =

100

2
= 50 mm; С3(100; 50) 

The specified coordinates and points of the centres of gravity 

of the components of the plane figure are plotted in Fig. 1.21.  

3. Determine the cross-sectional area of the components of the plane 

figure: 

 1 – rectangle  
𝐴1 = 100 ⋅ 200 = 20000  mm2 

 

 2 – triangle  
𝐴 = 0.5(100 ⋅ (350 − 200)) = 7500 mm2 
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 3 – circle 

𝐴3 =
𝜋𝑑2

4
= 3.14 ⋅

302

4
= 707 mm2 

4. Determine the coordinates of the figure's centre of gravity. 

As the circle represents the negative part of a plane figure, it takes 

the value of the area with a minus.  

𝑥𝑐 =
𝐴1𝑥1 + 𝐴2𝑥2 − 𝐴3𝑥3

𝐴1 + 𝐴2 − 𝐴3
=
20000 ⋅ 100 + 7500 ⋅ 250 − 707 ⋅ 100

20000 + 7500 − 707
= 142 mm 

𝑦𝑐 =
𝐴1𝑦1 + 𝐴2𝑦2 − 𝐴3𝑦3

𝐴1 + 𝐴2 − 𝐴3
=
20000 ⋅ 50 + 7500 ⋅ 33 − 707 ⋅ 50

20000 + 7500 − 707
= 45 mm 

The coordinates of the centre of gravity 𝐶(142; 45), let us mark them 

on the figure (Fig. 1.21). 

 

Example 1.10. Determine the centre of gravity of the composite 

section (Fig. 1.22), which contains: a 5×100 mm plate and rolled products: C-

bar C10 and I-section I16. 

 

Comment. Often frames are welded 

from different profiles to form the 

required profile. This reduces material 

consumption and results in a high-

strength structure. For standard rolled 

profiles, the geometrical characteristics 

are known and are regulated by the 

relevant standards. 

 

 

 
Fig. 1.22. Section for Example 1.10 

Data: 

5 × 100 mm sheet 

C-bar C10 

I-beam I16 

Searched for: 

C - ? 

Solution 

1. Define the XY coordinate system, label the figures with numbers and 

take all the data from tables D.58 and D.59: 

1 – channel section (C-bar) C10; height h1 = 100 mm; width b1 = 46 mm; 

z0 = 14.4 mm; 

2 – I-beam I16; height h2 = 160 mm; width b2 = 81 mm; 

 ХС–?; YC–? 
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3 – metal sheet: heigth h3 = 5 mm; width b3 = 100 mm. 

2. Determine the coordinates of the centres of gravity of each figure:  

1 – C-bar C10:  

𝑥1 = 0 mm; 𝑦1 = а + ℎ2 + 𝑧0 = 5 + 160 + 14.4 = 179.4 mm;  
С1(0; 179.4) 

2 – I-beam I16: 

𝑥2 = 0 mm; 𝑦2 = 𝑎 +
ℎ2
2
= 5 +

160

2
= 85 mm 

С2(0; 85) 

3 – metal sheet: 

𝑥3 = 0 mm; 𝑦3 =
𝑎

2
=

5

2
= 2.5 mm  

С3(0; 2.5) 

Specified coordinates and centres of gravity points of each part 

of the plane figure are marked in Fig. 1.22. 

3. Determine the areas of each figure: 

From the tables  D.58 and D.59: 

1 – C-bar C10: 
𝐴1 = 1090 mm

2; 
2 – I-beam I16: 

𝐴2 = 2020 mm
2; 

3 – metal sheet: 
𝐴3 = 𝑎 ⋅ 𝑏3 = 5 ⋅ 100 = 500 mm

2. 

4. Determine the coordinates of the figure's centre of gravity: 

𝑥𝑐 = 0 mm, 

𝑦𝑐 =
𝐴1𝑦1 + 𝐴2𝑦2 + 𝐴3𝑦3

𝐴1 + 𝐴2 + 𝐴3
=
1090 ⋅ 179.4 + 2020 ⋅ 85 + 500 ⋅ 2.5

1090 + 2020 + 500
= 102 mm. 

The coordinates of the figure's centre of gravity 𝐶(0; 102) are marked 

on the figure in Fig. 1.22.  

 

Example 1.11. Determine the centre of gravity of a plane figure (Fig. 1.23) 

using an experimental method. 
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Solution 

We put holes А, В and D on the flat figure at 

arbitrary points (preferably at the greatest 

distance from each other). The flat Figure 1 

is suspended on needle 2 first at point А 

and then at points, В and D. With the help 

of weight 3, fixed at point 2, a vertical line is 

marked on the figure, which repeats the position 

of the thread. The centre of gravity of Figure 1 

will lie at the point of intersection of the vertical 

lines drawn when the figure is suspended 

at points А, В and D (Fig. 1.23). 

 
Fig. 1.23. Section to 

Example 1.11 

As a result of the experiment, we have obtained three lines that do not 

intersect at a single point, but form a triangle. To draw the centre of gravity Ce 

of the flat figure, determined by the experimental method, we will draw three 

centre lines and at the point of their intersection, we will mark the point Ce, 

and then use a ruler to determine its coordinates: xce =78 mm; yce = 45 mm, 

then Ce (78;45). 
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Individual tasks 

(calculation) 

 

Task 1.6. Determine the centre of gravity of the composite section 

shown in Table 1.6. 

 
Table 1.6. Initial data for Task 1.6 

Var. 

no 

Rolled product range Sections 

No. 1 No. 2 

 

1 10 18 

2 12 16 

3 14 14 

4 16 12 

5 18 10 

6 20 10 

 

7 18 12 

8 16 14 

9 14 16 

10 12 18 

11 10 30 

 

12 12 16 

13 14 14 

14 16 22 

15 18 18 

16 10 22 

 

17 22 10 

18 12 14 

19 18 16 

20 20 10 

21 10 30 

 

22 12 16 

23 14 14 

24 16 22 

25 18 18 

26 20  

 

27 16  

28 18  

29 22  

30 24  
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CHAPTER ІІ 
STRENGTH of MATERIALS 

 

2.1. Tension and compression 
 

Tension and compression are among the simplest and most common 

deformations of a solid body. They can occur in elements of almost all 

engineering and construction structures. Cables, screws, axial turbine blades, 

and compressors are subjected to tension while building columns are 

subjected to compression. 

A rod is subjected to tension or compression by balanced external 

forces acting along its axis. Under the action of these forces, the cross-section 

of the rod experiences only one internal force, the longitudinal (normal) 

force (N). Its value is equal to the algebraic sum of all axial external forces 

acting on one side of the cross-section. Forces directed away from the cross-

section are considered positive, while those directed towards the cross-

section are considered negative. a positive force (N) corresponds to tension, 

while a negative force (N) corresponds to compression. 

 

Calculation of normal stresses in the cross-section of the rod 

 

Normal stresses at all points in the cross-

section of the rod are the same and are 

determined by the formula: 

𝜎 =
𝑁

𝐴
, 

where N – is the longitudinal force in the cross-section;  

А – is the cross-sectional area of the rod (Fig. 2.1). The sign 

of corresponds to the sign of N (positive for tension and negative 

for compression). The unit of stress is Pascal (Pa).  

1 Pa = 1 N/m2; 1 MPa = 1106 N/m2. 

 

Formulas for calculating deformations and displacements  

in the cross-section of a rod 

 Absolute deformation – elongation in tension (Fig. 2.2a) and shortening 

in compression (Fig. 2.2b) – in the elastic deformation range is calculated 

according to Hooke's law:  

 

Fig. 2.1.  Normal stress in the 

rod 
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∆𝑙 =
𝑁 ∙ 𝑙

𝐸 ∙ 𝐴
, 

where  l – is the length of the deformed region (Fig. 2.2, a, b);  

Е – is the longitudinal modulus of elasticity (Young's modulus), which 

is one of the elastic properties of the material.  

 

The product  EA  is called the stiffness of the cross-section in tension 

(compression).  

The deformation area is the part of the rod where the values of N, 

a and E  are constant or change according to the same laws. The boundaries 

of the regions are the end sections and sections where at least one of these 

values changes.  

If the rod has n sections, its absolute deformation is equal to the algebraic 

sum of the deformations of all sections: 

∆𝑙 =∑
𝑁𝑖 ∙ 𝑙𝑖
𝐸𝑖 ∙ 𝐴𝑖

𝑛

𝑖=1

 

The displacement δ of one region relative to another is equal 

to the deformation of the rod section between these cross-sections.  

The relative longitudinal deformation of the section is given by: 

𝜀 =
∆𝑙

𝑙
 

 In the elastic deformation range, there is a relationship between stress 

and relative deformation: 
𝜎 = 𝜀 ∙ 𝐸 

 The relative transverse deformation (narrowing or widening) is given by: 

𝜀′ = −
∆𝑎

𝑎
, 

where   is the change in the cross-sectional area (Fig. 2.2). 

 
A b 

Fig. 2.2. Deformation in uniaxial state of stress: 

a - elongation with contraction; b - shortening with widening 

 

 

aaa 
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The relationship between relative transverse and longitudinal 

deformations is given by: 
𝜀′ = −𝜈 ∙ 𝜀 

where ν- is Poisson's ratio, an elastic property of the material.  

For isotropic materials 0  ν  0.5. 

 

Strength calculations 

 Strength conditions: 

𝜎𝑚𝑎𝑥 =
𝑁

𝐴
≤ 𝑘 

where N  axial force in the region of highest normal stresses; 

А  cross-sectional area of the rod in this region; 

 k  allowable stress of the material. 

  

For a deformable material, the allowable tensile k+ and compressive k-  

stresses are the same: k+  = k-  = k 

𝑘 =
𝑅𝑒
[𝑛]

 

where Re– yield strength of the material; n  safety factor. For deformable 

materials n = 1.4 ÷ 1.6. 

For a brittle material, k+    and k-   are different. Therefore, the strength 

conditions for tension and compression are written separately:  

𝜎𝑟𝑚𝑎𝑥 =
𝑁

𝐴
≤ 𝑘𝑟 

𝜎𝑐𝑚𝑎𝑥 =
𝑁

𝐴
≤ 𝑘𝑐 

𝑘𝑟 =
𝑅𝑚
[𝑛]

 

𝑘𝑐 =
𝑅𝑐
[𝑛]

 

where kr and kc – ultimate strength limits of the material for tension 

and compression, respectively; 

n  safety factor.  

For brittle materials, n =2.5 ÷ 3.0. 

 

Three types of problems were addressed  

using strength of materials conditions 

Strength verification. We calculate σmax and compare it with k: 
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𝜎𝑚𝑎𝑥 =
𝑁

𝐴
↔ 𝑘 

If σmax  k, the strength of the component is ensured. 

 Determination of the rod's load-bearing capacity.  

 (а) calculate the permissible axial force: 

[𝑁] ≤ 𝐴 ∙ 𝑘 

 (b) establish the relationship between axial forces and external forces, 

and based on this relationship, determine their permissible values (F or q). 

Selection of cross-section. Required cross-sectional dimension: 

𝐴 ≥
𝑁

𝑘
 

When determining the dimensions of a geometrically constant cross-

section, the area a should be expressed in terms of one of its dimensions. 

Rolled sections are selected according to standard tables of profiles. 

 

Stiffness calculation 

 The calculation uses the stiffness condition: 

∆= [∆], 

where  Δ the actual deformation of the rod or displacement in the structure;  

Δ  the permissible value of deformation, which is accepted based 

on the conditions of normal operation of the structure.  
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Examples of calculations 

 

Example 2.1. For the rod shown in the drawing (Fig. 2.3, a), plot 

the normal forces and, based on the strength condition, determine 

the dimensions of the cross-sections in all areas. It is given that the cross-

sections are circular, the rod is made from greycast iron EN GJL-150, 

with a safety factor  n = 3. The internal forces and lengths are as follows: 

Р1 = 50 kN, Р2 = 80 kN, Р3 = 40 kN, a = 0.5 m, b = 1.0 m, c = 1 m. Draw a sketch 

of the rod and the force and displacement diagrams for the rod's cross-

sections. 

 

Procedure: 

1. Determine the permissible stresses: calculate the allowable stress 

based on the material properties and safety factor. 

2. Determine the axial Force (N) in each segment: use the section 

method to calculate the axial forces in the different segments of the rod. 

3. Plot the axial force diagram: draw the axial force diagram to scale. 

4. Select the cross-section: choose the cross-sectional dimensions 

for  these results. 

5. Draw the displacement diagram: to plot the displacement diagram, 

first determine the absolute deformation in each segment according 

to Hooke’s Law. 

6. Determine the displacement of key sections: calculate 

the displacement for the significant cross-sections of the rod and plot 

the displacement diagram based on the obtained data. 
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Fig. 2.3. Diagram of the bar to Example 2.1: 

a - system of forces in the bar; b - force diagram; c - cross-section of the bar in its 

individual compartments; d - displacement diagram of the bar cross-sections 

 

 Solution 

1. Determine the allowable stresses: 

From Appendix D, select the values for the grey cast iron EN-GJL-150, 

necessary for the calculation: Rm= 150 MPa, Rc = 650 MPa, Е=1.2105 MPa.  

𝑘𝑟 =
𝑅𝑚
𝑛
=
150

3
= 50 MPa; 

𝑘𝑐 =
𝑅𝑐
𝑛
=
650

3
= 217 MPa. 

2. Determine the Axial : 

Force N in the Rod's Cross-Sections Based on the Section Method: We 

do not need to determine the support reactions since the rod is fixed only 

at the leftmost cross-section. Consequently, the forces will be determined 

based on the known forces on the right side: 𝑁 = ∑𝑃𝑟. 

Define the segments: segment І – АВ, segment ІІ – ВС, segment ІІІ – СD. 

 Determine the axial forces N for each segment: 

Segment I 0 ≤ 𝑥1 ≤ 𝑎   
    𝑁1 = 𝑃1 = 50 kN  

Segment II 𝑎 ≤ 𝑥2 ≤ 𝑎 + 𝑏 
   𝑁2 = 𝑃1 − 𝑃2 = 50 − 80 =  −30 kN  
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Segment III  𝑎 + 𝑏 ≤ 𝑥2 ≤ 𝑎 + 𝑏 + 𝑐  
𝑁3 = 𝑃1 − 𝑃2 + 𝑃3 = 50 − 80 + 40 =  10 kN 

The calculations indicate that in segments I and III, the rod is subjected 

to tensile forces, while in segment II, it is subjected to compressive forces. 

It is important to note that the mass of the rod was not considered 

in the calculations due to its negligible value compared to the external loads.  

3. We make a graph of N at any scale (Fig. 2.3, b).  

4. Using the strength conditions, we calculate the diameter of the bar 

at each segment: 

𝜎𝑚𝑎𝑥 =
𝑁

𝐴
≤ 𝑘, so 𝐴 ≥

𝑁

𝑘
and 𝑑 = √

4𝐴

𝜋
≈ 1.13√𝐴 

𝐴1 =
𝑁1
𝑘𝑟
=
50 ∙ 103

50 ∙ 106
= 1 ∙ 10−3 m2 = 10 cm2;  𝑑1 = 3.57 cm 

𝐴2 =
𝑁2
𝑘𝑟
=
30 ∙ 103

217 ∙ 106
= 0.138 ∙ 10−3 m2 = 1.38 cm2;  𝑑1 = 1.33 cm 

𝐴3 =
𝑁3
𝑘𝑟
=
10 ∙ 103

50 ∙ 106
= 0,2 ∙ 10−3 m2 = 2 cm2;  𝑑1 = 1.6 cm 

Draw a diagram of the forces acting in the rod (Fig. 2.3, c). 

5. To draw a displacement diagram, using Hooke's law, you need 

to determine the absolute strain in each area: 

∆𝑙𝑖 =
𝑁𝑖 ∙ 𝑙𝑖
𝐸 ∙ 𝐴𝑖

 

Extension of the Іt segment 

∆𝑙1 =
𝑁1 ∙ 𝑎

𝐸 ∙ 𝐴1
=

50 ∙ 103 ∙ 0,5

1.2 ∙ 1011 ∙ 1.0 ∙ 10−3
= 0.0208 ∙ 10−2 m = 0.0208 cm 

Compression of the ІІ segment 

∆𝑙2 =
𝑁2 ∙ 𝑏

𝐸 ∙ 𝐴2
=

−30 ∙ 103 ∙ 1,0

1.2 ∙ 1011 ∙ 0.138 ∙ 10−3
= −0.181 ∙ 10−2 m = −0.181 cm. 

Extension of the ІII segment 

∆𝑙3 =
𝑁3 ∙ 𝑐

𝐸 ∙ 𝐴3
=

10 ∙ 103 ∙ 1.5

1.2 ∙ 1011 ∙ 0.2 ∙ 10−3
= 0.0625 ∙ 10−2 m = 0.0625 cm. 

6. Determine the displacements of individual sections and from the data 

obtained, we draw displacement diagrams.  

The vertical displacement of any section is equal to the change 

in the length of the part of the rod that is between the given section 

and the inelastic support (starting point). Determine the displacements 

of individual areas of the rod:  
𝛿𝐷 = 0  
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𝛿𝐶 = ∆𝑙3 = 0.0625 cm 

𝛿𝐵 = ∆𝑙3 − ∆𝑙2 = 0.0625 − 0,181 = 0.1185 cm 

𝛿𝐴 = ∆𝑙3 − ∆𝑙2 + ∆𝑙1 = 0.0625 − 0.181 + 0.208 = −0.0977 cm 
From the results, we draw a displacement diagram (Fig. 2.3, d). 

The displacement of the section А is equal to the absolute deformation 

of the whole rod  
𝛿𝐴 = ∆𝑙 = −0.977 mm 

 

Example 2.2. Select the dimensions of the AB beam on which there 

is a continuous load (Fig. 2.4). Material – steel S215. 

 
Fig. 2.4. Forces acting on the beam to Example 2.2 

Procedure: 

1. Determine the reaction of the support.  

2. Determine the required cross-sectional area of the bar from the strength 

conditions.  

3. Determine the required profile from the cross-sectional area.  

4. Check the strength of the adopted cross-section.   

Solution 

1. Convert the continuous load to a concentrated force N. 

2. Establish the equilibrium equation 

∑𝑀𝐵 = 0; 

−𝑁 ∙ sin75° ∙ 7 + 𝑞 ∙ 7 ∙ 3.5 − 𝑞 ∙ 1 ∙ 0.5 − 𝐹 ∙ 1 = 0 

𝑁 =
60 ∙ 7 ∙ 3.5 − 60 ∙ 1 ∙ 0.5 − 30 ∙ 1

sin75° ∙ 7
= 208.6 kN 

3. Determine the required cross-section of the rod from the formula: 

𝐴 ≥
𝑁

𝑘
 

𝐴 ≥
208,6 ∙ 103

160 ∙ 106
= 1.3 ∙ 10−9 m2 = 13 cm2 
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For S215 k = 160 MPa (table D.2). 

4. Knowing the cross-sectional area, we determine the required shape 

of the profile. Two angle bars should have a cross-sectional area of 13 cm2, 

therefore one А1 = 6.5 cm2. From Table D.60, we take 2 angle bars 70 × 5 with 

cross-sectional area А1 = 6.86 cm2 each. 
𝐴 = 2 ∙ 6.86 = 13.72 cm2 

5. Check the strength of the adopted section: 

𝜎 ≥
𝑁

𝐴
 

𝐴 ≥
208.6 ∙ 103

13.72 ∙ 10−4
≈ 152 ∙ 106

N

m2
= 150 MPa < 160 

The strength condition has been met. 

 

Answer: For the rod, a cross-section of two 70 × 5 angles was adopted. 

 

In the case of a circular rod section, we use the formula:  

𝐴 =
𝜋𝑑2

4
⇒ 𝑑 = √

4𝐴

𝜋
= 1,13√𝐴 = 1,13√9.93 = 3,56 cm 

Round the calculated value to the standard value from Table D.63 

d = 36 mm = 3.6 cm. 

Verification:  

1)  𝐴 = 𝜋𝑑2

4
= 3.14 ∙

3,62

4
= 10.17 cm2. 

2) 𝑁
𝐴
=

208.6∙103

10.17∙10−4
= 205.1 MPa < 210 MPa. 

Durability has been assured.   
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Individual tasks 

(calculation) 

 

Task 2.1. Carry out strength calculations and determine tensile and 

compressive deformations (schemes for the task),  the rod was made of grey 

cast iron EN-GJL-150 for which kr = 150 MPa, kc = 650 MPa, Е = 1.2105 MPa. 

Ignore the mass of the rod. The data for the calculations are shown 

in Table 2.1 
 

Table 2.1. Initial data for Task 2.1 

Var. no 
Р1 Р2 Р3 a b c d е 

kN m 

1 2.5 4 2 1 2 1 2 1 

2 1 6 4 2 1 2 2 1 

3 2 5 8 2 1 3 2 1 

4 10 24 15 2 4 1 2 2 

5 7 2 4 1 2 2 2 1 

6 11 6 8.5 1 2 1 1 1 

7 34 11 6 2 1 2 1 1 

8 2 6 5 1 3 1 2 1 

9 1 2.5 1.5 3 1 1 3 1 

10 8 5 7 1 2 2 1 1 
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Schemes for Task 2.1 
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Task 2.2. Select the cross-section of the rod holding the crossbar (see 

the schemes for the calculation). Material - steel S215.  

Schemes for Task 2.2 
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2.2. Statically non-determinable structures 
 

General information 

There are many structures in which the internal forces cannot 

be determined using the equations of statics alone because the number 

of unknown forces in these structures is greater than the number 

of equilibrium equations. These tasks are called statically indeterminate. 

The difference between the number of unknowns and the number 

of equations of statics determines the number of redundant unknowns 

or the degree of static uncertainty. When there is one redundant unknown 

the element is called statically indeterminate once, when there are two, it is 

called statically indeterminate twice, and so on. 

General methods for solving statically non-equivocal systems have 

been developed: the static equilibrium equations are supplemented with 

additional displacement equations based on the commonality 

of deformations reflecting the specificity of the structure's action and with 

relations expressing the dependence of the displacements of structural 

elements on forces. It is convenient to follow the following sequence: 

Static aspect of the problem. Arrange the equilibrium equations 

for a single structural element, taking one of the forces as statically 

indeterminate.  

Geometric aspect of the issue. Determine the relationship between 

the deformation of individual structural elements based on the total 

deformation. The equations obtained are the equations of total deformation.  

Physical aspect of the issue. Based on Hooke's law, we express 

the deformation of structural elements by statically indeterminate forces 

acting on them. 

Synthesis. By solving the static, geometric and physical equations 

together, we determine the unknown forces. 
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Examples of calculations 

 

Example 2.3. For a statically indeterminate rods system (Fig. 2.5), 

determine the dimensions of the cross-sections of the rods from the strength 

condition, if it is known that the ratio of their cross-sections А1 : А2 = β, 

the bars are made of steel S215; the factor of safety n = 1.6. The horizontal 

beam АD is completely rigid, the external forces and geometric dimensions 

are: 

𝐹 = 10 kN;  𝑞 = 20 
kN

m
;  𝛼 = 30 °; 𝑎 = 2 m;  𝑏 = 0,5 m;  𝛽 = 0,5; 𝑙1 = 2 m; 𝑙2 = 3,4 m  

 
Fig. 2.5. Diagram of a statically indeterminate bar system to Example 2.3 

 

Solution 

1. For steel S215 in Table D.1 we find the values of the mechanical 

properties of the material, necessary for calculations: E = 2105 MPa 

and Re = 240 MPa. 

The allowable stresses will be:  

𝑘 =
𝑅𝑒
𝑛
=
240

1.5
= 1.5 MPa 

2. Using the section method, we determine the unknown N1 and N2 forces 

in the rods, aligning their direction with an arbitrary deformation character 

of the rod system (for example, as shown by the dashed line in Fig. 2.5, 

the first rod will be in compression and the second in tension). To determine 

the forces N1 and N2, we will consider the equilibrium of the system with 

the interaction of internal forces and reactions in the supports: 

∑𝑀𝐵 = 0  

𝑁1 ∙ 𝑙 + 𝑁2 ∙ 𝑎 ∙ sin𝛼 − 𝑞 ∙ 2 ∙ 𝑎
2 − 𝐹 ∙ 2 ∙ 𝑎 = 0 (2.1) 

𝑁1 ∙ 0.5 + 𝑁2 ∙ 2 ∙ 0.5 − 20 ∙ 4 ∙ 2 − 10 ∙ 4 = 0  
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0.5 ∙ 𝑁1 +𝑁2 = 200 (2.2) 

The use of two other equilibrium equations (∑X = 0 and ∑Y) makes no 

sense since they contain unknown reactions НВ and VB, which need not be 

determined. Thus, the system is one time statically indeterminate, because 

using the equations of statics, three equilibrium equations can be 

determined, and four quantities are unknown: N1, N2, HB and  VB. 

3. Write an auxiliary equation for the deformed state of the system 

(Fig. 2.6).  

 
Fig. 2.6. Deformed state of the system 

 

From the similarity  and  we have 
∆𝑙1

𝐶𝐶1
=

𝑏

𝑎
 , from where СС1 

id determined from   

𝐶𝐶1 =
∆𝑙

sin𝛼
 

 The compatibility equation will then be of the form: 
∆𝑙1

∆𝑙2/ sin 𝛼
=
𝑎

𝑏
 (2.3) 

According to Hooke's law, we express deformations by unknown forces: 

∆𝑙1 =
𝑁1 ∙ 𝑙1
𝐸 ∙ 𝐴1

 

∆𝑙2 =
𝑁2 ∙ 𝑙2
𝐸 ∙ 𝐴2

 

After transformations, we get:  
𝑁1 ∙ 𝑙1 ∙ sin𝛼 ∙ −𝑁2 ∙ 𝑙2 ∙ 𝛽 ∙ 𝑏 = 0 

𝑁1 ∙ 2 ∙ 0.5 ∙ 2 − 𝑁2 ∙ 3.4 ∙ 0.5 ∙ 0.5 = 0 

                                             2𝑁1 − 0,85𝑁2 = 0                                  (2.4) 

BAA1 BCC1

21CCC
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4. Solving the equilibrium equations (2.2) and the deformation equations 

(2.4), we obtain the normal forces in the rods: 
𝑁1 = 70 kN;  𝑁2 = 165 kN 

5. According to the strength conditions, we determine the required cross-

sectional areas of the two rods:  

 

𝐴1 ≥
𝑁1
𝑘
=
70 ∙ 103

160 ∙ 106
= 0.438 ∙ 10−3 m2 (2.5) 

𝐴2 ≥
𝑁2
𝑘
=
165 ∙ 103

160 ∙ 106
= 1.03 ∙ 10−3 m2 

                

(2.6) 

 

According to the task, the ratio of the cross-sectional areas should be:   
𝛽 = 𝐴1: 𝐴2 = 0.5 

According to the condition (2.5) А1 = 0.43810-3 m2 and knowing the value 

β, we calculate  

𝐴2 =
𝐴1
𝛽
= 0.876 ∙ 10−3m2, 

which does not satisfy condition (2.6). Therefore, to satisfy both 

conditions, we will take A2 = 1.03 · 10-3 m2 from (2.6).  

Then 𝐴1 = 𝛽 ∙ 𝐴2 = 0.525 ∙ 10−3m2 instead of 0.43810-3 m2. 

In this case, the stresses acting in the two bars will equal:  

𝜎1 =
𝑁1
𝐴1
=

70 ∙ 103

0.515 ∙ 10−3
= 136 MPa < 𝑘 = 160 MPa 

𝜎2 =
𝑁2
𝐴2
=

165 ∙ 103

1.03 ∙ 10−3
= 160 MPa = 𝑘 = 160 MPa 
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Individual tasks 

(calculation) 

 

Task 2.3. A rigid beam is supported by an articulated fixed support 

and attached to two elastic rods (see diagrams for the task). 

From the strength calculations, determine the value of the load P. The data 

for the calculations can be found in Table 2.2.  

 

Procedure: 

1. Using the section method, determine the forces acting in the sections. 

2. To determine the forces, consider the equilibrium of the system taking 

into account the loads applied to the beam and the reactions in the supports. 

3. Arrange the auxiliary deformation compatibility equation by considering 

the deformed state system of the system and the ratio of forces. 

4. From the strength condition, determine the maximum value of the load P.
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Table 2.2. Initial data for Task 2.3 

Var. 
no 

Scheme 
no 

А,  
cm2 

a,  
m 

b,  
m 

с,  
m 

α,  

° 

k, 
 MPa 

Е105, 
MPa 

1 1 16 10 8 2.5 30 160 2 

2 7 14 7 2 2 45 180 2 

3 13 15 5 4 1.5 45 160 2 

4 11 16 12 6 4 45 180 2 

5 12 15 7 2 2 45 160 2 

6 14 16 3 4 2 45 160 2 

7 15 16 10 5 3 45 180 2 

8 9 15 8 2 4 45 180 2 

9 4 16 10 8 4 45 180 2 

10 3 16 4 2 3 45 180 2 

11 2 17 7 3 2.5 30 150 2 

12 5 14 7 2 4 45 140 2 

13 16 18 5 8 2 45 160 2 

14 17 15 10 6 4 45 140 2 

15 8 12 5.5 2 2 30 120 2 

16 18 16 9 6 2 45 150 2 

17 10 14 8 2 4 45 160 2 

18 6 15 7 2.5 4 45 140 2 

19 7 18 10 3 2.5 45 150 2 

20 14 16 2.8 2.8 1.8 45 120 2 

21 1 13 10 7 2 30 140 2 

22 5 16 8 3.5 5 45 150 2 

23 13 14 3 5 2 45 160 2 

24 17 16 5 3 2 45 180 2 

25 12 15 8 2 3 45 160 2 

26 18 16 6 2.3 1.3 45 180 2 

27 3 15 7 2 3 45 160 2 

28 9 16 7 2 3 45 160 2 

29 4 16 6 3 2.5 45 180 2 

30 3 16.5 3 4 4 45 140 2 

31 15 16 5 2.5 1.5 45 150 2 

32 6 16 8 2 4 45 160 2 

33 8 18 7.4 3 2.5 30 160 2 

34 16 20 2.5 7.5 1.5 45 140 2 

35 10 15 7 1 3 45 160 2 

36 11 12 9 4 2 45 150 2 

37 17 16 6 4 2 45 170 2 

38 14 14 3 4 2 45 180 2 

39 9 18 9 2 3 30 140 2 

40 7 16 9 2 3 45 150 2 
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Schemes to Task 2.3 
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2.3. Geometric characteristics of cross-sections 
 

General information 

For uniaxial tension, compression and shear, the geometrical 

characteristic of the cross-section of a member was the cross-sectional area, 

which fully determined the member's resistance to deformation. However, 

for bending, torsion and complex deformations, this characteristic is not 

sufficient. 

The strength and stiffness of a beam for a given material and length 

depend on the dimensions and shapes of the cross-section. The geometrical 

characteristics of the cross-sections are used to quantify this relationship.  

The ability to determine the required geometrical characteristics 

is essential for calculating the strength and stiffness of beams under different 

types of deformation. 

 

Geometrical characteristics of flat sections 

 

Moments of interia 

The static moment of inertia of a planar section concerning any 

axis that lies with it in one section is the sum of the products 

of the elementary areas dA of the whole section and their distances to this 

axis (Fig. 2.7), i.e.: 
𝑆𝑥 = ∫ 𝑦 ∙ 𝑑𝐴,

𝐴
                    𝑆𝑦 = ∫ 𝑥 ∙ 𝑑𝐴

𝐴
 

 

Static moment unit - [m3]. 

Applying the theorem on the sum 

of moments of systems of forces: 

𝑆𝑥 = ∫𝑦 ∙ 𝑑𝐴

𝐴

= 𝐴 ∙ 𝑦𝑐 

𝑆𝑦 = ∫𝑥 ∙ 𝑑𝐴

𝐴

= 𝐴 ∙ 𝑥𝑐 , 

where a – is the area of the entire section;  

xc, yc – coordinates of the centre 

of gravity of the section. 

 

Fig. 2.7.  Cross-section of a bar 

with an xy system 

 

 

 х 

у 
A 

dA 

c 

x 

xc 

y yc  

0 
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The static moment can take on positive or negative values. If the axis 

concerning which the static moment is determined passes through the centre 

of gravity of the section xс = 0 and yс= 0, then its static moment is zero: 

𝑆𝑥 = 𝐴 ∙ 0 = 0 

 𝑆𝑦 = 𝐴 ∙ 0 = 0 

The static moments of the composite section are expressed 

by the formulae: 

𝑆𝑥 =∑𝐴𝑖 ∙ 𝑦𝑖  

𝑆𝑦 =∑𝐴𝑖 ∙ 𝑦𝑖 

where Ai – areas of the components of the composite section;  

хі, уі – coordinates of the centre of gravity of the components 

of the section relative to the х and у axes. 

 

The determination of the coordinates of the centre of gravity 

of the composite section is carried out using the formulae:  

𝑥𝑐 =
∑𝐴𝑖𝑥𝑖
∑𝐴𝑖

 

 

𝑦𝑐 =
∑𝐴𝑖𝑦𝑖
∑𝐴𝑖

 

If a section has two axes of symmetry, then the centre of gravity 

is located at their intersection. If the section has one axis of symmetry, then 

the centre of gravity lies on this axis and only one coordinate is required 

to determine its position.  

The axial moment of inertia of a planar section concerning any axis that 

lies in the same plane is the sum of the products of the elementary surfaces 

dA by the square of their distances from the axis (Fig. 2.7). It is calculated 

from the formula:  

𝐽𝑥 = ∫𝑦2

𝐴

𝑑𝐴  

𝐽𝑦 = ∫𝑥2

𝐴

𝑑𝐴, 

where х, у  distance from the axes relative to which the moment of inertia 

is determined. Unit of moment of inertia – [m4]. 

 

Axial moments of inertia are always positive and cannot be zero.  
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The polar moment of inertia of a planar cross-section Jo relative to any 

pole ‘0’ that lies in the plane of the cross-section is the sum of the products 

of the elemental areas dA by the square of their distances from the pole, i.e.:  

𝐽𝑜 = ∫𝜌2

𝐴

𝑑𝐴 

where ρ - is the distance of the elementary surface dA from the pole (Fig. 2.7). 

If the pole coincides with the origin of the coordinate system, then 

the relation is satisfied:  

𝐽𝑜 = 𝐽𝑥 + 𝐽𝑦 

Unit of polar moment of inertia  [m4]. 

The polar moment of inertia is always positive and cannot be zero.  

The centrifugal moment of inertia of a cross-section is the sum 

of the products of the elemental areas dA and their distances from the axes х 

and у. It is calculated from the formula: 

𝐽𝑥𝑦 = ∫𝑥 ∙ 𝑦 𝑑𝐴

𝐴

 

 The centrifugal moment can be positive, negative or zero. If at least 

one of the two mutually perpendicular axes is an axis of symmetry, then 

the centrifugal moment of inertia of the section about such axes is zero.   

Table 2.3 may be used to calculate the geometrical characteristics 

of simple shapes concerning their central axes and, for sections, these are 

taken from the tables in Appendix.  
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Table 2.3. Moments of inertia of selected plane figures 

Rectangle 

 𝐴 = ℎ ∙ 𝑏 

𝐽𝑥 =
𝑏ℎ3

12
; 𝐽𝑦 =

ℎ𝑏3

12
 

 

Square 𝐴 = 𝑎2 

𝐽𝑥 = 𝐽𝑦 =
𝑎4

12
 

 

Circle 
𝐴 =

𝜋𝑑2

4
 

𝐽𝑥 = 𝐽𝑦 =
𝜋𝑑4

64
= 0.05𝑑4 

Ring 

 

𝐴 =
𝜋𝐷2

4
−
𝜋𝑑2

4
 

𝐽𝑥 = 𝐽𝑦 =
𝜋𝐷4

64
−
𝜋𝑑4

64
=
𝜋

64
(𝐷4 − 𝑑4) = (𝐷4 − 𝑑4) 

Semicircle 

 

𝐴 =
𝜋𝑑2

8
 

 𝑦𝑐 = 0.424𝑟 

𝐽𝑥 = 𝐽𝑦 

𝐽𝑥𝑐 = 0.00686𝑑
4, 𝐽𝑦𝑐 = 0.025𝑑

4 

y

x

y

xd

c
y

c
x

y

x

a

a

y

x

y

x

b

h
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Moments of inertia with displacement of the coordinate system 

 

The axes passing through the centre 

of gravity of the section are called the central 

axes (хс, ус) and the moments of inertia 

concerning them are called the central 

moments of inertia.  

If the moments of inertia Jxc,  Jyc, Jxcyc 

concerning the central axes хс, ус (Fig. 2.8) are 

known, the moments of inertia concerning 

the axes х and у, which are displaced parallel 

to the central axes, are determined according 

to the formulae (Steiner's theorem): 
𝐽𝑥 = 𝐽𝑥𝑐 + 𝑎

2 ∙ 𝐴 𝐽𝑦 = 𝐽𝑦 + 𝑏
2 ∙ 𝐴 𝐽𝑥𝑦 = 𝐽𝑥𝑐𝑦𝑐 + 𝑎 ∙ 𝑏 ∙ 𝐴 

where a, b – coordinates of the centre of gravity (х, у). 

 

The centrifugal moment of inertia should take into account the signs 

of the a and b coordinates of the centre of gravity.  

 

Calculation of moments of inertia of compound sections 

The moments of inertia of a composite section are calculated as the sum 

of the moments of its parts:  

𝐽𝑥 =∑𝐽𝑥𝑐
𝑖  𝐽𝑦 =∑𝐽𝑦𝑐

𝑖  𝐽𝑥𝑦 =∑𝐽𝑥𝑐𝑦𝑐
𝑖  

If the cross-section has an opening, it is convenient to consider it as part 

of a figure with a “negative” area. 

 

Moments of inertia under rotation of the coordinate system   

 
Fig. 2.9. Cross-section of a bar in a rotated coordinate system 

 

Fig. 2.8. Cross-section of a bar 

with an xy system 

 

 x 

xc 
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A 
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The moments of inertia of the section concerning the xʹ, yʹ axes rotated 

by an angle α from the Input х, у axes (Fig. 2.9) are calculated using 

the formulae: 
𝐽𝑥ʹ = 𝐽𝑥 cos

2 𝛼 + 𝐽𝑥 sin
2 𝛼 − 𝐽𝑥𝑦 sin 𝛼 

𝐽𝑦ʹ = 𝐽𝑦 sin
2 𝛼 + 𝐽𝑦 cos

2 𝛼 − 𝐽𝑥𝑦 sin 𝛼 

𝐽𝑥ʹyʹ =
𝐽𝑥 − 𝐽𝑦

2
∙ sin 2𝛼 + 𝐽𝑥𝑦 ∙ cos 2𝛼 

The positive reference direction of the angle is clockwise. 

The centrifugal moment of inertia of angles concerning parallel offset 

axes: 

 

Isosceles angle 

 

𝐽𝑥𝑦 = ±
𝐽𝑥0 − 𝐽𝑦0

2
 

 

Non-armed angle  

 

𝐽𝑥𝑦 = ±√(𝐽𝑥 − 𝐽𝑢)(𝐽𝑦 − 𝐽𝑢) 

 

The “+” and “-“ signs depend on the position of the angle section 

in the coordinate system. 

The geometrical characteristics of the sections for rolled sections 

are taken from the catalogue tables. 

 

Principal axes and principal moments of inertia  

Principal axes are axes for which the centrifugal moment of inertia 

is zero and the axial moments of inertia reach extreme values. 

The angle α, which determines the position of the principal axes, 

is calculated according to the formula:  

𝑡𝑔2𝛼 =
2𝐽𝑥𝑦
𝐽𝑥 − 𝐽𝑦

 

The moments of inertia about the principal axes are called principal 

moments of inertia and are calculated according to the formula:  



79 
 

𝐽𝑚𝑎𝑥
𝑚𝑖𝑛

=
𝐽𝑥 + 𝐽𝑦

2
± √(

𝐽𝑥 − 𝐽𝑦

2
)
2

+ 𝐽𝑥𝑦
2  

One of the principal axes is rotated by an angle α to the х-axis, 

and the other is perpendicular to it.  

Principal axes passing through the centre of gravity of a section 

are of practical importance. They are called the central principal axes. 

The moments of inertia concerning these axes are called principal central 

moments of inertia. They are used in calculations.  

 

Section strength indices 

The bending strength indices of sections are calculated about 

the principal central axes according to the formula:  

𝑊𝑥 =
𝐽𝑥

𝑦𝑚𝑎𝑥
, 𝑊𝑦 =

𝐽𝑦

𝑥𝑚𝑎𝑥
,  

where Wx, Wy – indices of section bending strength; 

 xmax, уmax – distance of the furthest point of the cross-section from its 

major central axis. 

Unit of strength index - [cm3]. The indices are not additive! 

 

Formulas for flexural strength indices for simple sections:  

 

rectangle: 𝑊𝑥 =
𝑏ℎ2

2
, 𝑊𝑦 =

ℎ𝑏2

2
 

square: 𝑊𝑥 = 𝑊𝑦 =
𝑎3

6
 

circle: 𝑊𝜌 =
𝜋𝑑3

16
, 𝑊𝑥 = 𝑊𝑦 =

𝜋𝑑3

32
= 0,1𝑑3 

ring: 
𝑊𝜌 =

𝜋𝐷𝑧
3

16
(1 − 𝛼4) = 0,2𝐷𝑧

3(1 − 𝛼4), 𝛼 =
𝑑𝑤
𝐷𝑧

 

Dz – outer diameter, dw  inner diameter. 
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Examples of calculation 
 

Example 2.5. Determine the principal moments of inertia 

and the strength indices of the section, which consists of two angles 

of dimension 56  56  4 and C-bar C18 (Fig. 2.10). 

 

 

Fig. 2.10. Calculation scheme to Example 2.5 

Solution 

1. Divide the section into rolling profiles (Fig. 2.10). It consists of two 

angles 56  56  4 and C-bar C18, we label them 1, 2, 3. 

2. Determine the centres of gravity C1, C2, C3, using data from the table 

corresponding to each profile.  

3. Enter the coordinate system. The y-axis coincides with the axis 

of symmetry, and we will take the x-axis through the centre of gravity 

of the angles.  

4. Determine the coordinates of the centre of gravity of the entire section.  

Since the y-axis coincides with the axis of symmetry it passes through 

the centres of gravity of the section, therefore xс = 0. 

Determine the yс coordinate using the formula: 

𝑦𝑐 =
∑𝐴𝑖 ∙ 𝑦𝑖
∑𝐴𝑖

=
𝐴1 ∙ 𝑦1 + 𝐴2 ∙ 𝑦2 + 𝐴3 ∙ 𝑦3

𝐴1 + 𝐴2 + 𝐴3
 

Using the tables in the appendix, we determine the area of each profile 

and their coordinates of the centre of gravity. 

A1 = 4.38 cm2,  y1 = 0; 

A2 = 4.38 cm2,  y2 = 0; 

A3 = 20.7 cm2,  y3 = z0 (angle) + z0 (C-bar) = 1.52 + 1.94 = 3.46 cm. 

The coordinates of у1 and у2 are equal to zero because the х axis passes 

through the centres of gravity of the angles.  
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Substitute the values obtained into the formula for calculating ус: 

𝑦𝑐 =
2 ∙ 4.38 ∙ 0 + 20.7 ∙ 3.46

2 ∙ 4.38 + 20.7
= 2.43 cm 

Denote the centre of gravity by the letter c in Fig. 2.10.  

Draw the main central axes. Connect the ус axis to the axis of symmetry, 

and take the хс axis through the centre of the с section perpendicular 

to the ус axis. The axes ус and у3 coincide. 

From tables D.58 and D.60: 

C-bar C18: a = 20.7 cm2,  z0 = 1.94 cm,  Jx = 86 cm4,  Jy= 1090 cm4. 

Angle bar 56  56  4:  a = 4.38 cm2,  z0 = 1.52 cm, Jx = Jy = 13.1 cm4,  

𝐽𝑥0 = 20.8 cm
4, 𝐽𝑦0 = 5.41 cm

4 

Determine the principal moment of inertia about the xc axis of the whole 

section (using Steiner's theorem) 

𝐽𝑥𝑐 =∑𝐽𝑥𝑐
𝑖 = 𝐽𝑥𝑐

1 + 𝐽𝑥𝑐
2 + 𝐽𝑥𝑐

3  

𝐽𝑥𝑐
1 = 𝐽𝑥𝑐1 + 𝑎1

2𝐴1 = 13,1 + 2,43
2 ∙ 4.38 = 38.96cm4 

where  а1 = ус = 2.43 cm. 

 

From Fig. 2.10, it follows that A1 = A2 =4.38 cm and а1 = а2 = уc = 2.43 cm, 

so 𝐽𝑥𝑐
1 = 𝐽𝑥𝑐

2 = 38.96 cm4 
𝐽𝑥𝑐
3 = 𝐽𝑥𝑐3 + 𝑎3

2 ∙ 𝐴3 = 86 + 1.03
2 ∙ 20.7 = 107.76cm4, 

where 

𝑎3 = 𝑧0𝐶−𝑏𝑎𝑟 + 𝑧0𝑎𝑛𝑔𝑙𝑒 − 𝑦0 = 1.94 + 1.52 − 2,43 = 1.03 cm 

there  
𝐽𝑥𝑐 = 2 ∙ 38.96 + 23.48 = 185.88cm

4 

Determine the principal moment of inertia about the ус axis of the entire 

section: 

𝐽𝑦𝑐 =∑𝐽𝑦𝑐
𝑖 = 𝐽𝑦𝑐

1 + 𝐽𝑦𝑐
2 + 𝐽𝑦𝑐

3  

𝐽𝑦𝑐
1 = 𝐽𝑦𝑐1 + 𝑏1

2𝐴1 = 13,1 + (−1.52)
2 ∙ 4.38 = 23.22 cm4 

where 𝑏1 = −𝑧0𝑎𝑛𝑔𝑙𝑒 = −1.52 cm 

𝐽𝑦𝑐
2 = 𝐽𝑦𝑐2 + 𝑏2

2𝐹2 = 13.1 + 1.52
2 ∙ 4.38 = 23.22 cm4 

where 𝑏2 = 𝑧0𝑎𝑛𝑔𝑙𝑒 = 1,52 cm 

𝐽𝑦𝑐
3 = 𝐽𝑦𝑐3 + 𝑏3

2𝐹3 = 1090 + 0
2 ∙ 20.7 = 1090cm4 

where b3 = 0 (yc C-beam is coincident with yс). 

Then:  
𝐽𝑦𝑐 = 2 ∙ 23.22 + 1090 = 1136.44 cm

4 

Determine the strength index relative to the xc axis of the entire section: 
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𝑊𝑥 =
𝐽𝑥
𝑦𝑚𝑎𝑥

 

𝑊𝑥𝑐 =
𝐽𝑥𝑐
𝑦𝑚𝑎𝑥

=
185.88

6.51
= 28.55 cm3 

𝑊𝑥𝑐 =
𝐽𝑥𝑐
𝑦𝑚𝑖𝑛

=
185.88

6.09
= 30.52 cm4 

where 
𝑦𝑚𝑎𝑥 = 5.6 − 𝑧0𝑎𝑛𝑔𝑙𝑒 + 𝑦𝑐 = 5.6 − 1.52 + 2.43 = 6.51 cm 

𝑦𝑚𝑖𝑛 = 7 + 5.6 − 6.51 = 6.09 cm 

Determine the strength index relative to the ус axis of the entire section: 

𝑊𝑦 =
𝐽𝑦

𝑥𝑚𝑎𝑥
=
1136.44

9
= 126.27cm3 

 

where xmax = 18/2 = 9 cm. 

 

Example 2.6. For a given cross-section, determine the position 

of the principal central axes and the values of the principal central moments 

of inertia (Fig. 2.11).  

 

Data:  

strip 240  10 

isosceles angle 110  110  8  

C-bar C20 

Solution 

1. Draw the cross-section to any scale and enter the coordinate systems 

passing through the centre of gravity of each of its components х1, у1; х2, у2; 

х3, у3 (Fig. 2.11). 

2. Calculate and extract the geometrical characteristics of the components 

from the assortment tables.  

Strip: area А1 = 24  1 = 24 cm2; 

moments of inertia:  

𝐽𝑥1 =
24⋅13

12
= 2 cm4, 𝐽𝑦1 =

243⋅1

12
= 1152 cm4 

Angle 110  110  8 from table D.60: area А2= 17.2 cm2,  

moments of inertia: 
𝐽𝑥2 = 𝐽𝑦2 =  98 cm

4, 
𝐽𝑚𝑎𝑥 =  315 cm

4, 
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𝐽𝑚𝑖𝑛 =  81.8 cm
4 

𝐽𝑥2𝑦2 =
𝐽𝑚𝑎𝑥 − 𝐽𝑚𝑖𝑛

2
sin2(−45°) =

315 − 81,8

2
= −116.6 cm4 

C-bar C20 from table D.58: area А3= 23.4 cm2;  

moments of inertia: 

𝐽𝑥3 = 1520 cm
4, 𝐽𝑦3 =  113 cm

4, 𝐽𝑥3𝑦3 = 0 

3. Introduce an additional coordinate system х0 , у0 in such a way that 

the whole section is in the first quadrant (this is not obligatory, but 

it is convenient since with such a choice of axes the coordinates 

of the centres of gravity of the components of the section have positive 

values) and determine using formulae the positions of the centres of gravity 

concerning these axes:  

𝑥𝑐 =
𝐴1 ⋅ 𝑥1 + 𝐴2 ⋅ 𝑥2 + 𝐴3 ⋅ 𝑥3

𝐴1 + 𝐴2 + 𝐴3
=
24 ⋅ 12 + 17.2 ⋅ 3 + 23.4 ⋅ 21.93

24 + 17.2 + 23.4
= 13.2 cm 

𝑦𝑐 =
𝐴1 ⋅ 𝑦1 + 𝐴2 ⋅ 𝑦2 + 𝐴3 ⋅ 𝑦3

𝐴1 + 𝐴2 + 𝐴3
=
24 ⋅ 0.5 + 17.2 ⋅ 4 + 23.4 ⋅ 11

24 + 17.2 + 23.4
= 5.24 cm 

We visually check that the position of the specified centre of gravity 

is correct: it is in the area of the triangle С1С2С3, so the calculation can be 

continued.  

 
Fig. 2.11. Calculation scheme to Example 2.6 
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4. Through the calculated centre of gravity C pass the central axes 

of the sections хс and ус and concerning these axes we determine 

the coordinates of the centres of gravity of the component figures.  

To check the correctness of the determination of the centre of gravity 

of the section and the coordinates of the centres of gravity of the simple 

components concerning the central axes хс, ус we calculate the static 

moments of the section concerning the axes хс and ус: 

𝑆𝑥𝑐 = 𝐴1(𝑦1 − 𝑦𝑐) + 𝐴2(𝑦2 − 𝑦𝑐) + 𝐴3(𝑦3 − 𝑦𝑐) = 24(0.5 − 5.24) + 

+17.2(4 − 5.24) + 23.4(11 − 5.24) = −135.088 + 134.784 = −0.304 cm 

𝑆𝑦𝑐 = 𝐴1(𝑥1 − 𝑥𝑐) + 𝐴2(𝑥2 − 𝑥𝑐) + 𝐴3(𝑥3 − 𝑥𝑐) = 24(12 − 13.2) + 

+17.2(3 − 13.2) + 23.4(21.93 − 13.2) = −204.24 + 204.282 = 0.042 cm 

The values of the static moments are close to zero. This shows that 

the coordinates of the centre of gravity were calculated with a high degree 

of accuracy. So the position of the central axes was determined correctly.  

5. We determine the axial moments and the centrifugal moment 

of inertia concerning the central axes хс and ус: 

𝐽𝑦𝑐 =∑[𝐽𝑦𝑐]

3

𝑖=1

=∑[𝐽𝑦1 + (𝑥𝑖 − 𝑥𝑐)
2𝐴𝑖]

3

𝑖=1

= 𝐽𝑦1 + (𝑥1 − 𝑥𝑐)
2 ⋅ 𝐴1 + 𝐽𝑦2 + (𝑥2 − 𝑥𝑐)

2 ⋅ 𝐴2 + 𝐽𝑦3 + (𝑥3 − 𝑥𝑐)
2 ⋅ 𝐴3

= 1152 + (12 − 13.2)2 ⋅ 24 + 198 + (3 − 13.2)2 ⋅ 17.2 + 113 + (21.93 − 13.2)2

⋅ 23.4 = 5070.43 cm4 
 

𝐽𝑥𝑐 =∑[𝐽𝑥𝑐]

3

𝑖=1

=∑[𝐽𝑥1 + (𝑦𝑖 − 𝑦𝑐)
2𝐴𝑖]

3

𝑖=1

= 𝐽𝑥1 + (𝑦1 − 𝑦𝑐)
2 ⋅ 𝐴1 + 𝐽𝑥2 + (𝑦2 − 𝑦𝑐)

2 ⋅ 𝐴2 + 𝐽𝑥3 + (𝑦3 − 𝑦𝑐)
2 ⋅ 𝐴3

= 2 + (0.5 − 5.24)2 ⋅ 24 + 198 + (4 − 5.24)2 ⋅ 17.2 + 1520 + (11 − 5.24)2 ⋅ 23.4

= 3062.02 cm4 
 

Centrifugal moment of the entire section: 

𝐽𝑥𝑐𝑦𝑐 =∑[𝐽𝑥𝑐𝑦𝑐]

3

𝑖=1

=∑[𝐽𝑥𝑖𝑦𝑖 + (𝑥𝑖 − 𝑥𝑐)(𝑦𝑖 − 𝑦𝑐)𝐴𝑖]

3

𝑖=1

= 𝐽𝑥1𝑦1 + 

+(𝑥1 − 𝑥𝑐)(𝑦1 − 𝑦𝑐) ⋅ 𝐴1 + 𝐽𝑥2𝑦2 + (𝑥2 − 𝑥𝑐)(𝑦2 − 𝑦𝑐) ⋅ 𝐴2 + 𝐽𝑥3𝑦3 + 

+(𝑥3 − 𝑥𝑐)(𝑦3 − 𝑦𝑐) ⋅ 𝐴3 = 0 + (12 − 13.2)(0.5 − 5.24) ⋅ 24 − 116.6 + 

+(3 − 13.2)(4 − 5.24) ⋅ 17.2 + 0 + (21.93 − 13.2)(11 − 5.24) ⋅ 23.4 = 1414.12cm4 
 

6. Calculate the position of the principal central axes and determine 

the values of the principal central moments of inertia:  
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tg2𝛼0 =
2𝐽𝑥𝑐𝑦𝑐
𝐽𝑦𝑐 − 𝐽𝑥𝑐

=
2 ⋅ 1414.12

5070.43 − 3062.02
= 1.408 

 

2𝛼0 = 54.62° ⇒ 𝛼0 = 27.31° 

 

Since 𝐽𝑥𝑐 < 𝐽𝑦𝑐, the axis of least stiffness х (𝐽𝑥 = 𝐽𝑚𝑖𝑛) is inclined at α0 < 45 ° to 

the хс axis, the axis of greatest stiffness y (𝐽𝑦 = 𝐽𝑚𝑎𝑥) is perpendicular to it. The 

angle α0 is postponed counterclockwise (α0 > 0). 

𝐽𝑚𝑎𝑥
𝑚𝑖𝑛

=
𝐽𝑥𝑐 + 𝐽𝑦𝑐

2
± √(

𝐽𝑥𝑐 − 𝐽𝑦𝑐
2

)
2

+ 𝐽𝑥𝑐𝑦𝑐
2

=
3062.02 + 5070.43

2
± √(

3062.02 − 5070.43

2
)
2

+ 1414.122

= (4066.225 ± 1734.406) cm4 

 

𝐽𝑦𝑚𝑎𝑥 = 5800.63 , 𝐽𝑥𝑚𝑖𝑛 = 2331.82 cm
4 

 

7. Verification. 

For verification, we check the following conditions: 

1) the sum of moments about any pair of central axes of the section should 

be constant: 
𝐽𝑥 + 𝐽𝑦 = 5800.63 + 2331.82 = 8132.45cm

4 

𝐽𝑥𝑐 + 𝐽𝑦𝑐 = 3062.02 + 5070.43 = 8132.45cm
4 

Condition (1) is met:  
𝐽𝑥 + 𝐽𝑦 = 𝐽𝑥𝑐 + 𝐽𝑦𝑐 

2) the centrifugal moment of inertia of the section concerning the principal 

central axes must be zero. We calculate the centrifugal moment of inertia 𝐽𝑥𝑦: 

 

𝐽𝑥𝑦 =
𝐽𝑥𝑐 − 𝐽𝑦𝑐

2
sin 2𝛼0 + 𝐽𝑥𝑐𝑦𝑐 cos 2𝛼0 =

3062.02 − 5070.43

2
sin 54.62° + 

+1414.12 cos 54.62° = −818.76 + 818.77 = 0.01 cm4 
 

Relative error 
0.01

818.765
100% = 0.001% < 2% 

Condition (2) is also satisfied: 𝐽𝑥𝑦 ≈ 0. It means that the calculation has 

been carried out correctly. 
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Individual task 

(calculation) 

 

Task 2.4. Determine the moments of inertia (axial and centrifugal) 

and bending strength indices concerning the major central axes (see scheme 

for the task). The variant number is determined from the list.  

  

Procedure: 

1. Determine the coordinates of the centre of gravity of the entire section.  

2. Determine the axial moments and centrifugal moments concerning 

the central axes.  

3. Determine the position of the major central axes.  

4. Determine the values of the major central moments of inertia 

of the section.  

5. Determine the bending strength indices relative to the major central 

axes of the section. 
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Schemes for the Task 2.4 
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Task 2.5. Determine the position of the principal central axes, the values 

of the principal central moments of inertia and the bending strength indices 

(see diagram for the task).  

 

 Procedure: 

1. Determine the coordinates of the centre of gravity of the entire section.  

2. Determine the axial moments of inertia and the centrifugal moment 

of inertia of the section concerning the central axes.  

3. Determine the position of the principal central axes.  

4. Determine the values of the principal central moments of inertia 

of the section. 

5. Determine the bending strength ratios concerning the major central 

axes of the section. 

 Initial data: 

the cross-section contains: C-bar C20, I-beam I20, isosceles angle 

100  100  10, and non-isosceles angle 80  50  6.   
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Schemes to the Task 2.5 

 

 
  

 

15.1 15.2 15.3

15.515.4 6

15.7 15.8 15.9

15.10 15.11 15.12

15.13 15.14 15.15
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15.16 15.17 15.18

15.19 15.20 15.21

15.22 15.23 15.24

15.25 15.26 15.27

15.28 15.29 15.30
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15.31 15.32 15.33

15.34 15.35 15.36

15.37 15.3915.38

15.4115.40 15.42
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2.4. Torsion 
 

General information 

Torsional deformation occurs when a moment (pair of forces) acts 

on the rod in a plane perpendicular to the bar axis. 

The internal moment Ms in any cross-section of the bar is equal 

to the algebraic sum of the torques applied on one side of the cross-section 

Ms = ∑Ms. 

  

Principles for determining the sign of Ms 

Concerning the cross-section, the acting moment is positive when 

it induces a clockwise rotation and negative when it induces a counter-

clockwise rotation. 

In calculations, the relationship between the torque Ms (Nm), 

the power P (W), the angular velocity ω (s-1) or the number of revolutions 

per minute n (rpm): 

𝑀𝑠 =
𝑃

𝜔
 Nm 

It is known from a course in theoretical mechanics that angular velocity:  

𝜔 =
𝜋𝑛

30
 (𝑠−1), 

then: 𝑀𝑠 =
30𝑃

𝜋𝑛
Nm or 𝑀𝑠 = 9551

𝑃

𝑛
 Nm  

In the cross sections, only shear stresses [τ], arise with torsional 

deformation, which for the shafts are: 

𝜏 =
𝑀𝑠
𝑊𝑜

 MPa 

where Wo – is the torsional strength index, which is: 𝑊𝑜 =
𝐽𝑜

𝑟
;   

 r – radius,  

Jo – polar moment of inertia;  

 For the full section: 

𝑊𝑜 =
𝜋𝑑3

16
= 0.2𝑑3 cm2 

 For the ring section:  

𝑊𝑜 =
𝜋𝐷𝑧

3(1 − 𝛼4)

16
= 0,2𝐷𝑧

3 (1 − 𝛼4), 𝛼 =
𝑑𝑤
𝐷𝑧

 

 Dz – outer diameter , dw – inner diameter. 

 The angle of twist of the section is determined from the formula:  

𝜑 = 𝜃 ∙ 𝑙 =
𝑀𝑠 ∙ 𝑙

𝐺 ∙ 𝐽𝑜
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where – relative torsion angle; 

l – section length; 

 G – transverse modulus of elasticity of the material (MPa);  

 GJo – characterises the stiffness of the section under torsion. 

  

Strength condition: 

𝜏𝑚𝑎𝑥 =
𝑀𝑠
𝑊𝑜

≤ 𝑘𝑠 

where τmax – maximum shear stress occurring in the rod section;  

 Ms – torque;  

 Wo – torsional strength factor;  

 ks – allowable torsional stress ( ks =0.5 ÷ 0.6 k).  

  

Stiffness condition: 

𝜃𝑚𝑎𝑥 =
𝜑

𝑙
=
𝑀𝑠
𝐺𝐽𝑜

≤ [𝜃]
rad

m
 

where θmax  the maximum relative torsion angle that occurs in the rod section;  

 Ms – torque in the section;  

        [θ] – permissible relative torsion angle.  

 

Three types of problem 

1. Checking the strength of a structural element (verifying calculations)   

𝜏𝑚𝑎𝑥 =
𝑀𝑠

𝑊𝑜
≤ 𝑘𝑠- strength condition. 

2. Section selection of a structural element (design calculations)  

 in terms of strength:  

for full section 𝑑 ≥ √
16𝑀𝑠

𝜋𝑘𝑠

3  

for ring section 𝐷 ≥ √
16𝑀𝑠

𝜋𝑘𝑠(1−𝛼
4)

3
, where 𝛼 =

𝑑𝑤

𝐷𝑧
 

 in terms of stiffness: 

for full section 𝑑 ≥ √
32𝑀𝑠

𝜋𝐺[𝜃]

4   

 for ring section 𝐷 ≥ √
32𝑀𝑠

𝜋𝐺[𝜃](1−𝛼4)

4
, where 𝛼 =

𝑑𝑤

𝐷𝑧
 

[𝜃] = (0.44 ÷ 1.75) ∙ 10−2
rad

m
 

3. Verification of stability (operational): 
𝑀𝑠 ≤ 𝑊𝑜𝑘𝑠 


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Examples of calculation 

 

Example  2.7. Pairs of forces act on a steel beam through three pulleys 

M1, М2, M3 (Fig. 2.12, a). Make diagrams of Ms moments and rotation angles  

of the sections, verify the strength and stiffness of the beam if diameter 

d=70 mm, shear modulus G = 8104 MPa, permissible relative rotation angle 

[θ] = 1.5 deg/m. 

Solution 

1. Drawing up torque diagrams.  

Calculate the value of the torque 

for each segment:  
𝑀𝑠1 = 𝑀1 = 2 kNm 

𝑀𝑠2 = 𝑀1 +𝑀2 = 2 + 1 = 3 kNm 

𝑀𝑠3 = 𝑀1 +𝑀2 +𝑀3 = 2 + 1 − 7 = −4 kNm 

Plotting a diagram of the Ms  

torques (Fig. 2.12, b). 

2. Plotting a diagram of the torsion 

angles.  

The torsion angle of a segment is 

calculated according to the formula:  

𝜑 = 𝜃 ∙ 𝑙 =
𝑀𝑠 ∙ 𝑙

𝐺 ∙ 𝐽𝑜
 

Polar moment of inertia: 𝐽𝑜 =
𝜋𝑑4

32
.  

The stiffness GJo along the whole shaft 

is constant, so the deformation sections are consistent with the load sections. 

Then: 

𝐺𝐽𝑜 = 𝐺 ∙
𝜋𝑑4

32
= 8 ∙ 104 ∙ 106 ∙

3.14 ∙ (72 ∙ 10−3)4

32
= 188574 Nm 

Calculate the angles of rotation on each section: 

𝜑1 =
𝑀𝑠1 ∙ 𝐽1

𝐺𝐽𝜌
=
2 ∙ 103 ∙ 0.4

188574
= 4.24 ∙ 10−3rad 

   𝜑2 =
𝑀𝑠2∙𝐽2

𝐺𝐽𝜌
=

3∙103∙0.3

188574
= 4.77 ∙ 10−3rad 

𝜑3 =
𝑀𝑠3 ∙ 𝐽3

𝐺𝐽𝜌
=
−4 ∙ 103 ∙ 0.2

188574
= −4.24 ∙ 10−3rad 

We begin to plot the torsion angles φ relative to the fixed cross-section А: 
𝜑𝐴 = 0; 

𝜑𝐵 = 𝜑𝐴 + 𝜑3 = 0 + (−4.24 ∙ 10
−3) = −4.24 ∙ 103rad 

 
Fig. 2.12. Rod diagram to Example 2.7: 

a - load diagram; b- diagram of torsional 

moments; c - diagram of torsion angles 

of beam sections 
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𝜑𝐶 = 𝜑𝐴 + 𝜑3 + 𝜑2 = 0 + (−4.24 ∙ 10
−3) + 4.77 ∙ 10−3 = 0.53 ∙ 10−3rad 

𝜑𝐷 = 𝜑𝐴 + 𝜑3 + 𝜑2 + 𝜑1 = 0 + (−4.24 ∙ 10
−3) + 4.77 ∙ 10−3 + 4.2 ∙ 10−3 = 4.73 ∙ 10−3rad 

Based on the obtained data, we create a graph of the twist angles φ 

(Fig.  2.12, c). 

3. Check the strength conditions of the shaft: 
𝜏𝑚𝑎𝑥 ≤ 𝑘𝑠 

𝜏𝑚𝑎𝑥 =
|𝑀𝑠𝑚𝑎𝑥|

𝑊𝑜
=
|𝑀𝑠𝑚𝑎𝑥|

𝜋𝑑3
16⁄

=
16 ∙ 4 ∙ 103

3.14(70 ∙ 10−3)3
= 59.4 ∙ 106 N/m2 = 59.4 MPa 

 

59.4 MPa  70 MPa – the strength condition is satisfied. 

4. Check the shaft stiffness condition:  
𝜃𝑚𝑎𝑥 ≤ [𝜃] 

𝜃𝑚𝑎𝑥 =
|𝑀𝑠𝑚𝑎𝑥|

𝐺𝐽𝑜
=
4 ∙ 103

188574
= 2.12 ∙ 10−2m−1 ∙

180°

3.14
= 1.22 deg/m 

1,22 deg/m  1,5 deg/m – the stiffness condition is satisfied.  

 

Example 2.8. For the shaft (Fig. 2.13, a), loaded as shown in the figure, 

determine the diameters and twist angles of individual sections, given 

[θ] = 0.03 rad/m, material: S215 steel, safety factor n = 1.5; shear modulus 

G = 8∙104 MPa, shaft angular velocity  = 80 rpm, N1 = 30 kW, N2 = 15 kW, 

N3 = 22 kW. 

 

Fig. 2.13. Shaft load diagram:  

a - shaft load; b - torques diagram; c - torsional angle diagram 
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Solution 

1. Determine the torques transmitted by the pulleys using the formula:  

𝑀 =
𝑁

𝜔
 

𝑀1 =
30 ∙ 103

80
= 375 Nm 

 𝑀2 =
15 ∙ 103

80
= 187.5 Nm  

𝑀3 =
22∙103

80
= 275 Nm  

 The torque (M0) is calculated based on the equilibrium condition 

of the shaft:  

∑𝑀𝑖 = 𝑀1 −𝑀0 +𝑀2 +𝑀3 = 0;𝑀0 = 375 + 187.5 + 275 = 83.75 Nm 

2. Calculate the torque on each segment of the shaft using the sectioning 

method: 
𝑀𝑠1 = −𝑀1 = −375 Nm 

𝑀𝑠2 = −𝑀1 +𝑀0 = −375 + 837.5 = 462.2 Nm 

𝑀𝑠3 = −𝑀1 +𝑀0 −𝑀2 = −375 + 837.5 − 187.5 = 275 Nm 

Make a plot of torques (Fig. 2.13, b). 

3. Determine the diameters of the shaft for each segment using the torsional 

strength criteria: 

𝜏𝑚𝑎𝑥 =
𝑀𝑠

𝑊𝑜
≤ 𝑘𝑠,  where 𝑘𝑠 = (0.5 ÷ 0.6) ∙ 𝑘, 𝑘 =

𝑅𝑒

𝑛
 

 For S215 steel, we have 𝑘𝑠 =
240

1.5
∙ 0.5 = 80 MPa.  

𝑊𝑜 =
𝜋𝑑3

16
, than 𝑑𝑖 ≥ √

16 ∙ 𝑀𝑠
𝜋𝑘𝑠

3

 

𝑑1 = √
16 ∙ 375

3.14 ∙ 80 ∙ 106

3

= 2.98 ∙ 10−2 m,  𝑑1 = 30 mm 

𝑑2 = √
16 ∙ 462,5

3.14 ∙ 80 ∙ 106

3

= 3.08 ∙ 10−2 m, 𝑑2 = 31 mm 

𝑑3 = √
16 ∙ 275

3.14 ∙ 80 ∙ 106

3

= 2.59 ∙ 10−2 m, 𝑑3 = 26 mm 

4. Determine the diameters of the shaft for each segment based on 

the condition of sufficient torsional rigidity:  

𝜃 =
𝑀𝑠
𝐺𝐽𝑜

≤ [𝜃], then 𝐽𝑜 =
𝜋 ∙ 𝑑4

32
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then 𝑑𝑖 ≥ √
32 ∙ 𝑀𝑠

𝜋 ∙ 𝐺[𝜃]

4

 

𝑑1 = √
32 ∙ 375

3.14 ∙ 8 ∙ 1010 ∙ 0.03

4

= 3.59 ∙ 10−2 m; 𝑑1 = 36 mm 

𝑑2 = √
32 ∙ 462,5

3.14 ∙ 8 ∙ 1010 ∙ 0.03

4

= 3.7 ∙ 10−2 m; 𝑑2 = 37 mm 

𝑑3 = √
32 ∙ 275

3.14 ∙ 8 ∙ 1010 ∙ 0.03

4

= 3.29 ∙ 10−2 m; 𝑑3 = 33 mm 

Ultimately, we adopt:  
𝑑1 = 36 mm; 𝑑2 = 37 mm; 𝑑3 = 33 mm 

With these diameters, both the torsional rigidity and the strength criteria 

are satisfied. Then sketch of the shaft (Fig. 2.13). 

5. To construct the twist angle diagram, the twist angle of the shaft along 

its segments must be determined using the following formula:  

𝜑𝑖 =
𝑀𝑠𝑙𝑖
𝐺 ∙ 𝐽𝑜𝑖

 

𝜑1 =
𝑀𝑠1𝑎

𝐺 ∙ 𝐽𝑜1
=

−375 ∙ 3 ∙ 32

8 ∙ 1010 ∙ 3.14(3.6 ∙ 10−2)4
= −8.53 ∙ 10−2 rad 

𝜑2 =
𝑀𝑠2𝑏

𝐺 ∙ 𝐽𝑜2
=

462.5 ∙ 2 ∙ 32

8 ∙ 1010 ∙ 3.14(3.7 ∙ 10−2)4
= 6.28 ∙ 10−2 rad 

𝜑3 =
𝑀𝑠3𝑐

𝐺 ∙ 𝐽𝑜3
=

275 ∙ 1.5 ∙ 32

8 ∙ 1010 ∙ 3,14(3.3 ∙ 10−2)4
= 4.43 ∙ 10−2 rad 

As a fixed reference, we conditionally consider the segment of the shaft 

where the zero-angle pulley is located. Concerning this reference, we plot the 

twist angles of the segments of the shaft, thereby constructing the twist angle 

diagram (Fig. 2.13, c). 

The first segment: 𝜑1 = −8.53 ∙ 10
−2 rad. 

The second segment: 𝜑2 = 6.28 ∙ 10
−2 rad. 

The third segment: 𝜑2 + 𝜑3 = (6.28 + 4.43) ∙ 10
−2 = 10.71 ∙ 10−2 rad. 
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Individual task 

(calculation) 

 

Task 2.6. For a given shaft (see schematics for the task), on which pulleys 

are mounted and where forces act (table below), determine the diameters and 

twist angles of its segments, given [θ] = 0.03 rad/m, material: S215 steel, safety 

factor n = 1.5; shear modulus G = 8∙104 MPa, shaft angular velocity  = 80 rpm.  

Procedure: 

1. Determine the torques. 

2. Determine the torques on the shaft segments. 

3. From the strength condition, determine the diameters of the shaft 

for each segment. 

4. From the torsional rigidity condition, determine the diameters 

of the shaft for each segment. 

5. Determine the twist angle of the shaft for each segment and plot 

the twist angle diagrams. 

 

Table 2.4. Initial data for Task 2.6 

Var. 

no 

N1 N2 N3 N4 a b c d e 

kW m 

1 10 30 20 20 1 2 1 2 1 

2 20 15 10 25 2 1 2 2 1 

3 40 15 25 30 2 1 3 2 1 

4 5 8.5 10 3.5 2 4 1 2 2 

5 8 8 10 6 1 2 2 2 1 

6 6 16 20 2 1 2 1 1 1 

7 4 16 10 10 2 1 2 1 1 

8 20 10 18 12 1 3 1 2 1 

9 24 6 10 8 3 1 1 3 1 

10 4 12 10 6 1 2 2 1 1 
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Schemes for Task 2.6 
 

  



103 
 

 
 

 



104 
 

 
 



105 
 

 

 



106 
 

2.5. Bending 
 

General information 

Bending, where only the bending moment is present, is called pure 

bending. 

Bending, where both the bending moment and shear force are present, 

is called transverse bending. 

The planes in which the principal central axes of inertia lie are called 

the principal planes of the beam.  

If the plane of action of the force coincides with one of the principal 

planes of the beam, i.e., the bending axis of the beam lies in the plane of the 

force, the bending is called planar or simple.  

If the plane of the force does not coincide with any of the principal 

planes of the beam, i.e., the bending axis of the beam does not lie in the plane 

of the force, such bending is called skew bending. 

 

Shear force and bending moment 

In simple transverse bending, the cross-sections of the beam 

experience: shear force Q  and bending moment Mg. 

The shear force Q at the considered cross-section numerically equals 

the algebraic sum of the projections of the forces acting on one side 

of the section.  

The bending moment Мg at the considered cross-section numerically 

equals the sum of the moments of all forces and couples of forces acting on 

one side of the section concerning the z-axis.   

 

Sign convention 

The shear force is positive if the external force tends to rotate the beam 

clockwise relative to the given section, and negative if in the opposite 

direction (Fig. 2.14). 

The bending moment is positive if the beam bends with a sagging 

curvature (Fig.  2.14). 
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Fig. 2.14. Principle of determining forces and bending moments 

 

Drawing diagrams of bending moments and tangential forces  

 

Methods of verification  Q i Mg diagrams 

In the segment where continuous loading is present, the Q diagram 

takes the form of an inclined line, while the Mg diagram is a parabola. 

In the segment where continuous loading is not present, the Q diagram 

takes the form of a line parallel to the beam axis, and the Mg diagram 

is an inclined line. 

At the point where a concentrated force is applied, the Q diagram 

shows a jump in the absolute value equal to this force. 

In the cross-section where a couple of forces are applied, the Mg 

diagram shows a jump in the absolute value equal to this moment. 

In edge cross-sections, the bending moment is zero. The exception 

is cross-sections where a couple of forces (bending moment) are applied. 

 

Calculating the strength of beams under normal stresses 

The formula for the bending strength condition: 

𝜎 =
𝑀𝑚𝑎𝑥

𝑊𝑧
≤ 𝑘 

where 𝑊𝑧 =
𝐽𝑧

уmax
 – section modulus concerning the z-axis; 

k – allowable stress of the material.  

Three types of problems are solved using bending strength cond.  

Verification of the beam strength (verification calculations).  

σmax is calculated and compared with k. 

𝜎 =
𝑀max

𝑊𝑧
≤ 𝑘 

Selection of the beam cross-section (design calculations). The required 

cross-sectional dimension is calculated 

𝑊𝑧 ≥
𝑀max

𝑘
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The values of Wz and Wу for I-beam, channel and angle profiles 

are selected from the catalogue tables. For square and circular cross-

sections:  

 

𝑊𝑧 =
𝑎3

6
  𝑎 = √6 ⋅ 𝑊𝑧

3  

 

Wz = 0.1d3  𝑑 = √
𝑊𝑧

0.1

3
 

Beam load-bearing capacity calculations. The maximum bending 

moment is calculated:  
Mmax  k ∙ Wz 

 

Calculating the strength of beams under shear stresses 

In simple transverse bending, both normal stresses , and shear 

stresses , occur in the beam's cross-sections, which are calculated according 

to the formula:  

𝜏𝑚𝑎𝑥 =
𝑄𝑚𝑎𝑥 ∙ 𝑆𝑧𝑚𝑎𝑥

𝐽𝑧 ∙ 𝑏
, 

where Qmax – shear force occurring in the cross-section;  

𝑆𝑧𝑚𝑎𝑥– static moment concerning  the neutral axis of the cross-section 

of a section that is on one side of a line drawn through the point under 

examination, parallel to the neutral axis; 

Jz – moment of inertia of the entire cross-section concerning the neutral 

axis;  

b – width of the cross-section (in the case of variable width, the value 

of b  is taken at the level of the point of interest).  

 

Calculation of the stiffness of a beam under bending  

In bending a beam, the beam's axis deflects, causing points along this 

axis to shift. However, the distances are sufficiently small compared 

to the length of the beam, so their direction can be considered perpendicular 

to the beam's axis. These displacements are referred to as deflections. 
 

Fig. 2.15. Diagram of forces acting on the beam 
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The curve along which the original axis of the beam rotates under 

the action of external forces is called the deflected axis of the beam 

or the elastic line. Deflections at different cross-sections vary and depend on 

the distance z (Fig. 2.15) from the chosen coordinate system (in this case, 

0 coincides with point A), that is,  yz = f(z). 

The angle formed by the tangent to any point k  on the deflected axis 

with its initial position is denoted by  (Fig. 2.15). The angle  defines 

the rotational displacements of the cross-sectional plane of the beam under 

bending and is called the angle of deflection of the beam cross-section. 

 

The formula for the stiffness condition 

Linear or angular displacements of the cross-section should not exceed 

the permissible value:  
𝑓 ≤ [𝑓] 

where f – is the maximum deflection of the beam; 

 - is the permissible deflection of the beam.  

The permissible deflection of the beam  depends on the 

definitions and operating conditions of the designed structure. For example, 

for a manual crane  = l/400; for an electric crane  = l/700; for machine 

shafts used for cutting metals  = 0.0005 to 0.0010l (l – distance between 

beams). 
𝜃𝑚𝑎𝑥 ≤ [𝜃] 

The permissible angle of deflection is typically 0.001 rad. 

To calculate the deflection of the beam, we use the universal elasticity 

equation. 

𝑓(𝑧) = 𝑓0 + 𝜃0𝑧 +
𝑀(𝑧)2

2! 𝐸𝐽𝑥
+
𝑃(𝑧)3

3! 𝐸𝐽𝑥
+
𝑞(𝑧)4

4! 𝐸𝐽𝑥
+∑

𝑀(𝑧 − 2)2

2! 𝐸𝐽𝑥
+∑

𝑃(𝑧 − 𝑏)3

3! 𝐸𝐽𝑥
+∑

𝑞(𝑧 − 𝑐)4

4! 𝐸𝐽𝑥
 

 

𝜃(𝑧) = 𝜃0 +
𝑀𝑧

𝐸𝐽𝑥
+
𝑃(𝑧)2

2! 𝐸𝐽𝑥
+
𝑞(𝑧)3

3! 𝐸𝐽𝑥
+∑

𝑀(𝑧 − 𝑎)

𝐸𝐽𝑥
+∑

𝑃(𝑧 − 𝑏)2

2! 𝐸𝐽𝑥
+∑

𝑞(𝑧 − 𝑐)3

3! 𝐸𝐽𝑥
 

where “!” – denote factorial; 

f0, 0 – input parameters (deflection and angle of deflection of the left 

cross-section of the beam);  

a, b, c – abscissa of sections where moments M, acting forces  P, 

and the starting point of the load q occur; 

EJx – stiffness of the beam cross-section; 

Deflection  f0 and angle 0 are calculated based on the beam's fixation 

condition.  
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Examples of calculations 

 

Example 2.9. For a beam loaded as shown in Fig. 2.16, plot 

the diagrams of Q and Mg. 

 

Solution 

1. Determination of the reactions at 

the supports of the beam. For 

symmetric loading: 

𝑅𝐴 = 𝑅𝐵 =
𝑃

2
=
10

2
= 5 kN 

2. Plotting the shear force scheme Q 
0 ≤ 𝑥1 ≤ 2 

𝑄(𝑥1) = 𝑅𝐴 

𝑄(𝑥1 = 0) = 5 kN, 

 𝑄(𝑥1 = 2) = 5 kN  

Fig. 2.16. Beam loading scheme 
0 ≤ 𝑥2 ≤ 20 

𝑄(𝑥2) = 𝑅𝐵 

𝑄(𝑥2 = 0) = −5 kN,𝑄(𝑥2 = 2) = −5 kN 
3. Plotting the bending moment diagram Mg 

0 ≤ 𝑥1 ≤ 2 
M(х1) = RA ∙ х1;  M(х1 = 0) = RA ∙ 0 = 0, M(х1 = 2) = RA 2 = 52 = 10 kNm 

0 ≤ 𝑥1 ≤ 2 

M(х2) = RВ ∙ х2;  M(х2 = 0) = RВ ∙ 0 = 0, M(х2 = 2) = RВ  2 = 52 = 10 kNm 

Based on the obtained data, we create the diagrams Q(х) and Mg(х) 

(Fig. 2.16). 

 

Example 2.10. For a beam loaded as shown in Fig. 2.17, plot 

the diagrams of  Q and Mg. 

 

Solution 

1. Determination  

of the reactions at the supports  

of the beam. 

𝑅𝐴 = 𝑅𝐵 =
𝑞⋅6

2
; 𝑅𝐴 = 𝑅𝐵 =

4⋅6

2
=  12 kN 

2. Plotting the shear force diagram Q. 
0 ≤ 𝑥 ≤ 6 

𝑄(𝑥) = 𝑅𝐴 − 𝑞 ∙ 𝑥 

𝑄(𝑥 = 0) = 𝑅𝐴 − 𝑞 ∙ 0 = 12 kN 

 

Fig. 2.17. Beam loading scheme 
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𝑄(𝑥 = 6) = 𝑅𝐴 − 𝑞 ∙ 6 = 12 − 4 ∙ 6 = −12 kN 

4. Plotting the bending moment diagram Mg. 
0 ≤ 𝑥 ≤ 6 

𝑀(𝑥) = 𝑅𝐴 ∙ 𝑥 −
𝑞⋅𝑥2

2
; 

𝑀(𝑥 = 0) = 𝑅𝐴 ∙ 0 −
𝑞 ⋅ 02

2
= 0 kNm 

𝑀(𝑥 = 6) = 𝑅𝐴 ∙ 6 −
𝑞 ⋅ 62

2
= 12 ∙ 6 −

4 ⋅ 62

2
= 0 kNm 

In the section where  Q = 0, the diagram Mg has the maximum bending 

moment. We calculate the maximum Mg. For this purpose, we set 

the transverse force equation to zero and determine the point where 

the extremum occurs:  

𝑄(𝑥) = 𝑅𝐴 − 𝑞 ∙ 𝑥 = 0, then  𝑥 =  
𝑅𝐴

𝑞
=

12

4
= 3 kN 

𝑀(𝑥 = 3) = 𝑅𝐴 ∙ 3 −
𝑞 ⋅ 32

2
= 12 ∙ 3 −

4 ⋅ 32

2
= 18 kNm 

Based on the obtained data, plot the diagrams Q(х) and Mg(х) (Fig. 2.17). 

 

Example 2.11. For a beam loaded as shown in Fig. 2.18, plot 

the diagrams of Q and Mg.  

 

Solution 

1. Plotting the shear force diagram Q. 
0 ≤ 𝑥 ≤ 3 

𝑄(𝑥1) = 𝑃1 

𝑄(𝑥1 = 0) = 𝑃1 = 6 kN 

𝑄(𝑥1 = 3) = 𝑃1 = 6 kN 

3 ≤ 𝑥 ≤ 7 

𝑄(𝑥2) = 𝑃1 − 𝑃2 + 𝑞(𝑥2 − 3) 

𝑄(𝑥2 = 3) = 𝑃1 − 𝑃2 + 𝑞(3 − 3) = 6 − 14 + 5 ∙ 0

= −8 kN 

𝑄(𝑥2 = 7) = 𝑃1 − 𝑃2 + 𝑞(7 − 3) = 6 − 14 + 5 ∙ 4

= 12 kN  

Fig. 2.18. Beam loading scheme 

2. Plotting the bending moment diagram Mg. 
0 ≤ 𝑥1 ≤ 3 

𝑀(𝑥1 = 0) = −𝑃1 ∙ 0 = 0 kNm 
𝑀(𝑥1 = 3) = −𝑃1 ∙ 3 = −6 ∙ 3 = −18 kNm 

3 ≤ 𝑥2 ≤ 7 

𝑀(𝑥2) = −𝑃1 ∙ 𝑥2 + 𝑃2(𝑥2 − 3) −
𝑞(𝑥2 − 3)

2

2
 

𝑀(𝑥2 = 3) = −𝑃1 ∙ 3 + 𝑃2(3 − 3) −
𝑞(3 − 3)2

2
= −6 ∙ 3 + 14 ∙ 0 −

5 ∙ 02

2
= −18 kNm 
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𝑀(𝑥2 = 7) = −𝑃1 ∙ 7 + 𝑃2(7 − 3) −
𝑞(7 − 3)2

2
= −6 ∙ 7 + 14 ∙ 4 −

5 ∙ 42

2
= −26 kNm 

We calculate the maximum value of Mg(х2) at the location where the shear 

force becomes zero in the second segment. We set the transverse force 

equation to zero:  
𝑄(𝑥2) = 𝑃1 − 𝑃2 + 𝑞(𝑥2 − 3) = 0 

𝑃1 − 𝑃2 + 𝑞 ∙ 𝑥2 − 𝑥2 ∙ 3 = 0        𝑥2 =
−𝑃1+𝑃2+𝑞∙3

𝑞
=

−6+14+5⋅3

5
= 4.6 m 

𝑀(𝑥2 = 4.6) = −6 ∙ 4.6 + 14 ∙ (4.6 − 3) −
5 ∙ (4.6 − 3)2

2
= −11.6 kNm 

Based on the obtained data, we create the diagrams  Q(х) and Mg(х) (Fig. 2.18). 

 

Example 2.12. Based on the strength and stiffness conditions, 

determine the required size of the C-bar for the beam (Fig. 2.19), given that 

the permissible deflection   l/400, the permissible stress k 

and the modulus of elasticity Е = 2  105 MPa. 

 

Data: 

  l/400 

k = 210 MPa 

Е = 2  105 MPa 
 

Fig. 2.19. Beam loading scheme 

Searched for: 

C-bar - ? 

 

Solution 

From the equilibrium conditions, determine the support reactions 

of the beam:  
∑𝑀𝐴 = 0;  𝑀𝑅 − 𝑃 ∙ 𝑙 = 0;  𝑀𝑅 = 𝑃 ∙ 𝑙 = 30 ∙ 3 = 60 kNm  

∑𝑌𝑖 = 0;  𝑅𝐴 − 𝑃 = 0; 𝑅𝐴 = 𝑃 = 20 kN; RA =Р = 20 kN 

Determine the maximum bending moment: 
𝑀(𝑥) = −𝑃 ∙ 𝑥 

𝑀(𝑥 = 0) = −𝑃 ∙ 0 = 0 

𝑀(𝑥 = 3) = −𝑃 ∙ 3 = −20 ∙ 3 = −60 kNm 

From the strength condition, select the cross-section:  

𝑊𝑥 ≥
𝑀max

𝑘
=
60 ⋅ 103

210 ⋅ 106
= 0.286 ∙ 10−3 m3 = 286 cm3 

The beam's cross-section consists of two C-bars so one C-bar 

𝑊𝑥 =
286

2
= 143 cm3 
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From the Table D.58, C-bar C20 has a bending strength index 

Wх = 152 cm3 and a moment of inertia Jx = 1520 cm4. Therefore, for two C-

bars: 
𝑊𝑥 = 2 ∙ 152 = 304 cm

3 
𝐽𝑥 = 2 ∙ 1520 = 3040 cm

4 
Verify the stresses: 

𝜎max =
𝑀max

𝑊𝑥
≤ 𝑘 

𝜎max =
60 ⋅ 103

304 ⋅ 10−6
= 0.197 ⋅ 109

𝑁

𝑚2
= 197 MPa < 210 MPa 

The strength is ensured.  

According to the stiffness condition, select the beam cross-section:  
𝑓 ≤ [𝑓] 

[𝑓] =
𝑙

400
=

3

400
= 0.0074 m = 7.4 mm 

The universal elasticity equation for a beam:  

𝑓(𝑥) = 𝑓0 + 𝜃0𝑥 −𝑀𝑅
𝑥2

2𝐸𝐽𝑥
+ 𝑅𝐴

𝑥3

6𝐸𝐽𝑥
 

The deflection f0 and the angle 0 from the beam's support condition 

are equal to zero; therefore, the maximum deflection for the given case is:  

𝑓(х = 𝑙 = 3 m) = −𝑃𝑙
𝑙2

2𝐸𝐽𝑥
+ 𝑃

𝑙3

6𝐸𝐽𝑥
=
−3𝑃𝑙3 + 𝑃𝑙3

6𝐸𝐽𝑥
= −

𝑃𝑙3

3𝐸𝐽𝑥
 

𝑓𝑚𝑎𝑥 = −
20 ⋅ 103 ⋅ 33

3 ⋅ 2 ⋅ 1011 ⋅ 2 ⋅ 1520 ⋅ 10−8
=  0.0296 m =  29.6 mm 

The maximum deflection exceeds the permissible deflection value, 

so a different C-bar needs to be selected. We determine the required 

moment of inertia for the new C-bar:  

𝑓 =
−𝑃𝑙3

3𝐸𝐽𝑥
  𝑓 

𝐽𝑥 ≥
𝑃 ⋅ 𝑙3

3𝐸[𝑓]
=

20 ⋅ 103 ⋅ 33

3 ⋅ 2 ⋅ 1011 ⋅ 7.4 ⋅ 10−3
= 12.162 ⋅ 10−5m4 = 12162 cm4 

For one C-bar  Jx = 12162 / 2 = 6081 cm4. 

From the Table D.58, we select C-bar C33 Jx = 7980 cm4. 

Finally, we adopt C-bar C33, thus, the stiffness condition is satisfied. 

 

Example 2.13. Verify the serviceability of a cantilever wooden beam 

(Fig. 2.20), given that γf = 1.2 (load safety factor), service condition factor 

γс = 1.1; and the computational strength R = 15 MPa. 
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Data: 

γf = 1.2 

γс = 1.1 

R = 15 MPa 

Searched for: 

The serviceability 

of the beam - ? 

 

Fig. 2.20. Beam loading scheme 

Solution 

1. Determine the design load. 
𝑞𝑐𝑎𝑙𝑐 = 𝑞 ∙ 𝛾𝑓 = 10 ∙ 1.2 = 12 kN/m 
𝑃𝑐𝑎𝑙𝑐 = 𝑃 ∙ 𝛾𝑓 = 25 ∙ 1.2 = 30 kN 

2. Plot the shear force diagram Q. 
0 ≤ 𝑥1 ≤ 1.2 

𝑄(𝑥) = 𝑃𝑐𝑎𝑙𝑐 + 𝑞𝑐𝑎𝑙𝑐 ∙ 𝑥1 

𝑄(𝑥 = 0) = 𝑃𝑐𝑎𝑙𝑐 + 𝑞𝑐𝑎𝑙𝑥 ∙ 30 kN 

𝑄(𝑥 = 1,2) = 𝑃𝑐𝑎𝑙𝑐 + 𝑞𝑐𝑎𝑙𝑐 ∙ 1.2 = 30 + 12 ∙ 1.2 = 44.4 kN 

1,2 ≤ 𝑥1 ≤ 2 

𝑄(𝑥) = 𝑃𝑐𝑎𝑙𝑐 + 𝑞𝑐𝑎𝑙𝑐 ∙ 1.2 

𝑄(𝑥 = 1,2) = 𝑃𝑐𝑎𝑙𝑐 + 𝑞𝑐𝑎𝑙𝑐 ∙ 1.2 = 30 + 12 ∙ 1.2 = 44.4 kN 

𝑄(𝑥 = 2) = 𝑃𝑐𝑎𝑙𝑐 + 𝑞𝑐𝑎𝑙𝑐 ∙ 1.2 = 30 + 12 ∙ 1.2 = 44.4 kN 

3. Make a scheme Mg. 
0 ≤ 𝑥1 ≤ 1.2 

𝑀(𝑥1) = −𝑃𝑐𝑎𝑙𝑐 ∙ 𝑥 −
𝑞𝑜𝑏 ∙ 𝑥

2

2
 

𝑀(𝑥1 = 0) = −𝑃𝑐𝑎𝑙𝑐 ∙ 0 −
𝑞𝑐𝑎𝑙𝑐 ∙ 0

2

2
= 0 kNm 

𝑀(𝑥1 = 1.2) = −𝑃𝑐𝑎𝑙𝑐 ∙ 1.2 −
𝑞𝑐𝑎𝑙𝑐 ∙ 1.2

2

2
= −30 ∙ 1.2 −

12 ∙ 1.22

2
= −44.6 kNm 

1.2 ≤ 𝑥1 ≤ 2 

𝑀(𝑥) = −𝑃𝑐𝑎𝑙𝑐 ∙ 𝑥 − 𝑞𝑐𝑎𝑙𝑐 ∙ 1.2 ∙ (𝑥2 − 0.6) 

 𝑀(𝑥2 = 1,2) = −30 ∙ 1.2 − 12 ∙ 1.2 ∙ (1.2 − 0.6) = −44.6 kNm 

𝑀(𝑥2 = 2) = −30 ∙ 2 − 12 ∙ 1.2 ∙ (2 − 0.6) = −80.16 kNm 
Based on the obtained data, plot the diagrams  Q(х) and Mg(х) (Fig. 2.20). 

Determine the bending strength index for a rectangular cross-section:  

𝑊𝑥  =  𝑊𝑧 =
𝑏ℎ2

6
=
15 ⋅ 302

6
= 2250 cm3 

Check the serviceability of the beam. From the strength condition:  
Mg = 80.16 kNm ≤ Mmax 

Mmax ≤ k  Wх = γс RWх = 1.1  15  106  2250  10-6 = 37125 Nm = 37.3 kNm 

The actual bending moment Mg is greater than the design moment Mmax. 
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Conclusion: The serviceability of the beam is not ensured; it is necessary 

to either reduce the load or increase the cross-sectional area 

of the rectangle.  

 

Example 2.14. From the conditions of strength and stiffness, select 

the dimensions of the beam's cross-sectional area (Fig.2.21). 

 
Fig. 2.21. Beam loading scheme 

 

For the loaded beam:  

1. Determine the values of shear forces Qi and bending moments 𝑀𝑔𝑖
 

and plot their diagrams; 

2. From the strength condition, determine the required dimensions 

of the beam for three cross-sectional variants:  

а) circular cross-section; 

b) rectangular cross-section (where h/b = 2); 

c) I-beam cross-section. 

Choose the most rational cross-sectional shape among the three options 

and justify the choice.  

3. For the selected rational cross-section, plot the normal and shear stress 

diagrams. Determine the equivalent stress for this beam.  

4. Check the stiffness of the beam with the chosen cross-section using 

the strength condition, given that f = 0,001l; Е = 2105 MPa; k = 160 MPa. 

 

Solution 

1. From the equilibrium conditions, calculate the support reactions 

of the beam.  
∑𝑀𝐴 = 0; −𝑞 ∙ 2 ∙ 1 −𝑀 + 𝑅𝐵 − 𝑞 ∙ 2 ∙ 5 − 𝑃 ∙ 6 = 0 

𝑅𝐵 =
+𝑞 ⋅ 2 ⋅ 1 + 𝑀 + 𝑞 ⋅ 2 ⋅ 5 + 𝑃 ⋅ 5

4
=
20 ⋅ 2 ⋅ 1 + 80 + 20 ⋅ 2 ⋅ 5 + 40 ⋅ 6

4
= 140 kN 

∑𝑀𝐴 = 0;𝑅𝐴 ∙ 4 + 𝑞 ∙ 2 ∙ 3 − 𝑀 − 𝑞 ∙ 2 ∙ 1 − 𝑃 ∙ 2 = 0 
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𝑅𝐴 =
−𝑞 ⋅ 2 ⋅ 3 +𝑀 + 𝑞 ⋅ 2 ⋅ 1 + 𝑃 ⋅ 2

4
=
−20 ⋅ 2 ⋅ 3 + 80 + 20 ⋅ 2 ⋅ 1 + 40 ⋅ 2

4
= 20 kN 

Verification: 

∑𝑌 = 0− 𝑅𝐴 − 𝑞 ∙ 4 − 𝑃 + 𝑅𝐵 = 0 

−20 − 80 − 40 + 140 = 0 

2. Determine the transverse forces Q 
0 ≤ 𝑥1 ≤ 2 

𝑄(𝑥1) = −𝑅𝐴 − 𝑞 ∙ 𝑥1 

𝑄(𝑥1 = 0) = −𝑅𝐴 − 𝑞 ∙ 0 = −20 − 20 ∙ 0 = −20 kN 

𝑄(𝑥1 = 2) = −𝑅𝐴 − 𝑞 ∙ 2 = −20 − 20 ∙ 2 = −60 kN 

2 ≤ 𝑥2 ≤ 4 

𝑄(𝑥2) = −𝑅𝐴 − 𝑞 ∙ 𝑥2 

𝑄(𝑥1 = 2) = 𝑃 + 𝑞 ∙= −20 − 20 ∙ 2 = −60 kN 

𝑄(𝑥1 = 4) = −𝑅𝐴 − 𝑞 ∙ 2 = −20 − 20 ∙ 2 = −60 kN 

0 ≤ 𝑥3 ≤ 2 

𝑄(𝑥3) = 𝑃 + 𝑞 ∙ 𝑥3 

𝑄(𝑥3 = 0) = 𝑃 + 𝑞 ∙ 0 = 40 + 20 ∙ 0 = 40 kN 

𝑄(𝑥3 = 2) = 𝑃 + 𝑞 ∙ 2 = 40 + 20 ∙ 2 = 80 kN 
3. Determine the bending moment Mg. 

0 ≤ 𝑥1 ≤ 2 

𝑀(𝑥1)  =  −𝑅𝐴 𝑥1  − 
𝑞 ⋅ 𝑥1

2

2
 

𝑀(𝑥1 = 0) =  −𝑅𝐴 0 − 
𝑞 ⋅ 02

2
= 0 kNm 

𝑀(𝑥1 = 2) =  −𝑅𝐴 2 − 
𝑞 ⋅ 2

2
= −80 kNm 

2 ≤ 𝑥2 ≤ 4 

𝑀(𝑥2) =  −𝑅𝐴 𝑥2  − q ∙ 2(𝑥2 − 1) +𝑀 

𝑀(𝑥2 = 2) =  −𝑅𝐴 2 − q ∙ 2(2 − 1) +𝑀 = 0 kNm 

𝑀(𝑥2 = 4) =  −𝑅𝐴 4 − q ∙ 2(4 − 1) +𝑀 = −120 kNm 

0 ≤ 𝑥3 ≤ 2 

𝑀(𝑥3)  =  −P 𝑥3  −  
𝑞 ⋅ 𝑥3

2

2
 

𝑀(𝑥3 = 0) =  −P 0 − 
𝑞 ⋅ 02

2
= 0 kNm 

𝑀(𝑥3 = 2) =  −P 2 − 
𝑞 ⋅ 22

2
= −120 kNm 

 

4. Plot the diagrams for Q and Mg, considering that in two intervals there 

is a uniform load q. In this case, the Mg diagram is a parabola, with the bulge 

oriented in the direction opposite to the load. In the second interval, the Mg 

diagram is bounded by straight lines (Fig. 2.22). As shown in the diagram, 

the maximum moment Mg = 120 kNm occurs at the section where х = 4 m. 
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Fig. 2.22. Diagram of shear forces and bending moments for the beam of Example 2.14 

 

5. From the normal stress strength condition, select the required cross-

sectional dimensions of the beam:  

 𝜎max =
𝑀max

𝑊𝑥
≤ 𝑘 

Required bending strength of the beam cross-section: 

𝑊𝑥 ≥
𝑀𝑚𝑎𝑥

𝑘
, so 𝑊𝑥 ≥

120⋅103

160⋅106
= 0,75 ⋅ 10−3 m3 = 750 cm3 

For a circular cross-section of the beam, we have:    

𝑊𝑥 = 
𝜋𝑑3

32
, then 

𝑑 ≥ √
32𝑊𝑥
𝜋

3

≥ √
32 ⋅ 750 ⋅ 10−6

3.14

3

≥ √7.643 ⋅ 10−3
3

≥ 1.97 ⋅ 10−3⋅
1
3 ≥ 1.97 ⋅ 10−1 m = 19.7 cm 

We assume d = 20 cm,   𝐴 = 𝜋𝑑2

4
=

3.14⋅202

4
= 314 cm2 

The stresses acting in the beam will be: 

𝜎𝑚𝑎𝑥 =
𝑀𝑚𝑎𝑥
𝑊𝑥

=
𝑀𝑚𝑎𝑥
𝜋𝑑3

32

=
120 ∙ 103

3.14 ∙ 0.203
∙ 32 = 153 ∙ 106  

N

m2
= 153 MPa 

The stresses in the beam are:  
153 − 160

160
⋅ 100% = −4,4% < [5%] 

For a rectangular cross-section of the beam: 

𝑊𝑥 =
𝑏ℎ2

6
 

because  𝑏 = ℎ

2
, then  𝑊𝑥 =

ℎ

2
⋅ℎ2

6
=

ℎ3

12
. 

 ℎ = √12𝑊𝑥
3 = √12 ⋅ 750 ⋅ 10−6

3
= √9.0 ⋅ 10−3

3
= 2.082 ⋅ 10−3⋅

1

3 = 2.082 ⋅ 10−1 m = 20.82 cm 

We assume  ℎ = 21 cm,   𝑏 =
ℎ

2
= 10.5 cm,   А = 220.5 cm2. 

For this cross-section, the acting stresses are:  
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𝜎𝑚𝑎𝑥 =
𝑀𝑚𝑎𝑥
𝑊𝑥

=
𝑀𝑚𝑎𝑥
𝑏ℎ2

6

=
120 ∙ 103

0.105 ∙ 0.212
∙ 6 = 15.5 ∙ 106  

N

m2
= 155.5 MPa 

The stresses in the beam will be:  
155,5 − 160

160
⋅ 100% = −2.8% < [5%] 

For the I-beam: from Table D.59 the closest values for Wz = 750 cm3 

are for I-beam no. 36 with a bending strength indicator Wz = 743 cm3.   

The stresses acting in I-beam I36 are:  

𝜎 =
𝑀𝑚𝑎𝑥
𝑊𝑧

=
120 ∙ 103

743 ∙ 10−6
= 0.161 ∙ 109 = 162 MPa 

The overload on the beam is:  
162−160

160
⋅ 100% = +1.25% > [5%]  

Ultimately, we choose I-beam I36: the moment of inertia Jz = 13380 cm4, 

and the cross-sectional area  А = 61.9 cm2.  

Conclusion: The most rational choice among the three cross-sections 

is I-beam I 36. 

 

6. Check the strength of the I-beam concerning the maximum shear 

stresses : 

𝜏𝑚𝑎𝑥 =
𝑄𝑚𝑎𝑥 ∙ 𝑆𝑥𝑚𝑎𝑥

𝐽𝑥 ∙ 𝑏
≤ 𝑘𝑠 

where: 𝑆𝑥𝑚𝑎𝑥  -  the static moment of the beam's cross-section about 

the neutral axis (from the tables in the appendix), 

b – the width of the I-beam flange (Table D.59). 

 

For materials if ks = (0.5 ÷ 0.6)k, then ks = 0.56  160 =90 MPa. 

𝜏𝑚𝑎𝑥 =
80 ⋅ 103 ⋅ 423 ⋅ 10−6

7.5 ⋅ 10−3 ⋅ 13380 ⋅ 10−8
= 0.337  108 Pa =  33.7 MPa  𝑘𝑠  =  90 MPa 

7. Plot the diagrams of normal stresses  and shear stresses  

for the I-beam. 

Normal stresses:   𝜎 = 𝑀𝑚𝑎𝑥

𝑊𝑥
=

𝑀𝑚𝑎𝑥∙𝑦

𝐽𝑥
, 

where  у – the distance from the neutral axis to the considered point.  

𝜎(1) =
120⋅103⋅18⋅10−2

13380⋅10−8
= 0.161 ⋅ 109

N

m2 = 161 MPa  

𝜎(2) =
120⋅103⋅(18−1,23)⋅10−2

13380⋅10−8
= 0.150 ⋅ 109

N

mm2 = 150 MPa  

𝜎(3) =
120⋅103⋅0

13380⋅10−8
= 0 MPa  

Shear stresses: 
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𝜏(1) =

𝑄𝑚𝑎𝑥 ∙ 𝑆(ℎ
2
)

𝑏 ∙ 𝐽𝑥
=

80 ∙ 103 ∙ 0

145 ∙ 10−3 ∙ 13380 ∙ 10−8
= 0 

where 𝑆
(
ℎ

2
)

 = 0 – the static moment of inertia about the neutral axis for 

the portion of the area that is cut off from the cross-section by a line 

(flange edge).;  

𝜏(1′) =

𝑄𝑚𝑎𝑥 ∙ 𝑆𝑓𝑙𝑎𝑛𝑔𝑒
1𝑝⁄

𝑏 ∙ 𝐽𝑥
=

80 ∙ 103 ∙ 310 ∙ 10−6

145 ∙ 10−3 ∙ 13380 ∙ 10−8
= 0.0128 ∙ 108

N

m2
= 1.28 MPa 

 

where Sflange/1p – the static moment of the flange area about the neutral axis:  

𝑆𝑓𝑙𝑎𝑛𝑔𝑒
1𝑝⁄
= 𝑏 ∙ 𝑡 (

ℎ

2
−
𝑡

2
) = 145 ∙ 12.3 (

360

2
−
12.3

2
) = 310062 mm2 = 310 cm3 

where b – the flange width of the I-beam, 

t – the flange thickness of the I-beam (Table D.59). 

𝜏(2) =
𝑄𝑚𝑎𝑥 ∙ 𝑆𝑓𝑙𝑎𝑛𝑔𝑒/1𝑝

𝑑 ∙ 𝐽𝑥
=

80 ∙ 103 ∙ 310 ∙ 10−6

7.5 ∙ 10−3 ∙ 13380 ∙ 10−8
= 0.247 ∙ 108  

N

m2
= 24.7 MPa 

𝜏(3) =
𝑄𝑚𝑎𝑥 ∙ 𝑆𝑓𝑙𝑎𝑛𝑔𝑒/2𝑝

𝑏 ⋅ 𝐽𝑥
=

80 ⋅ 103 ⋅ 423 ⋅ 10−6

7.5 ⋅ 10−3 ⋅ 13380 ⋅ 10−8
N

m2
=  33.7 MPa, 

where 𝑆flange/2p the static moment of inertia of the half-section of the I-

beam concerning the neutral axis (from the table in the 

appendix).  

The scheme of normal stresses σ and shear stresses τ of the I-beam cross-

section are shown in Fig. 2.23.  

 
Fig. 2.23. Diagram of normal and tangential stresses in an I-beam 

 

8. The equivalent stresses of the I-beam cross-section are determined 

according to the Huber-Mises yield criterion:  

𝜎𝑟𝑒𝑑
𝐼𝑉 = √𝜎2 + 3 ⋅ 𝜏2 ≤ 𝑘 

𝜎red
𝐼𝑉 = √𝜎2

2 + 3 ⋅ 𝜏2
2 = √1502 + 3 ⋅ 24, . = 156.13 MPa <  160 MPa 

9. Check the selected the I-beam no. 36 using the stiffness criterion. 
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The stiffness criterion:  𝑓 ≥ [𝑓]  =  0.001𝑙 =  . 0 m 

To determine the deflection of the I-beam, we place the origin 

of the coordinate system at the left support and write the universal equation 

of the elastic line for the last segment of the beam:  

𝐸𝐽𝑥𝑓(𝑥) = 𝐸𝐽𝑥𝑓0 + 𝐸𝐽𝑥𝜃0 ⋅ 𝑥 − 𝑅𝐴
𝑥3

6
− 𝑞

𝑥4

24
+𝑀

(𝑥 − 2)2

2
+ 

+𝑞
(𝑥 − 2)4

24
+ 𝑅𝐵

(𝑥 − 4)3

6
− 𝑞

(𝑥 − 4)4

24
 

From the beam's support condition, it follows: 
𝑓(𝑥 = 0) = 𝑓0 = 0, 𝑓(𝑥 = 4) = 0 

The angle 0 is calculated from the condition that for х = 4, the deflection 

of the beam f = 0. 

𝐸𝐽𝑥𝑓(𝑥 = 4) = 𝐸𝐽𝑥𝑓0 + 𝐸𝐽𝑥𝜃0 ⋅ 4 − 𝑅𝐴
43

6
− 𝑞

44

24
+𝑀

(𝑥 − 2)2

2
+ 𝑞

(𝑥 − 2)4

24
= 0 

𝐸𝐽𝑥 ⋅ 0 + 𝐸𝐽𝑥𝜃0 ⋅ 4 − 20
43

6
− 20

44

24
+ 80

(4 − 2)2

2
+ 20

(4 − 2)4

24
= 0 

Thus, the rotation angle of the cross-section at the left support is  𝜃0 =
63.3

𝐸𝐽𝑥
. 

Determine the deflection of the I-beam at critical locations:  

𝐸𝐽𝑥𝑓(𝑥 = 2) = 𝐸𝐽𝑥 ⋅ 0 + 𝐸𝐽𝑥
63,3

𝐸𝐽𝑥
⋅ 2 − 20

23

6
− 20

24

24
=  86.7 kNm3  

𝑓(𝑥 = 2) =
86,7 ⋅ 103

2 ⋅ 1011 ⋅ 13380 ⋅ 10−8
 =  0.00324 m =  0.324 cm 

 𝐸𝐽𝑥𝑓(𝑥 = 6) = 𝐸𝐽𝑥 ⋅ 0 + 𝐸𝐽𝑥
63,3

𝐸𝐽𝑥
⋅ 6 − 20

63

6
− 20

64

24
+ 80

(6−2)2

2
+ 

   +20
(6−2)4

24
+ 140

(6−4)3

6
− 20

(6−4)4

24
= −393 kN · m3 

  𝑓(𝑥 = 6) =
−393⋅103

2⋅1011⋅13380⋅10−8
= − 0.0148 m =  −1.48 cm  

 

The maximum deflection occurs at the end of the beam for х = 6 m 

and is f =  0.0148 m, which exceeds the permissible deflection 

 f  = 0.001l = 0.006 m = 0.6 cm. 

Since the maximum deflection exceeds the permissible deflection, it is 

necessary to select a different I-beam. To do this, we determine the required 

moment of inertia for the new I-beam:  

𝐽𝑥 ≥
−393 ⋅ 103

2 ⋅ 1011 ⋅ 0.6 ⋅ 10−2
= 327.5 ⋅ 10−6 m4  =  32750 cm4 

According to Table D.59, the I-beam I50 with Jz = 39727 cm4 meets 

the stiffness requirements.  
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Individual tasks 

(calculation) 

 

Task 2.7. Check the serviceability of the beam (Table 2.5, calculation 

schemes). 
 

Table 2.5. Initial data for Task 2.5 

Var. 

no 

Force 

Р, kN 

Torque 

М, kNm 

Continuous 

load q, 

kN/m 

Reliability 

factor f 

Service 

condition 

factor 

с 

Computational 

strength 

R, MPa 

1 25 30 18 1.2 1.1 20 

2 40 40 12 1.3 1.2 15 

3 15 35 10 1.1 1.1 18 

4 20 46 15 1.2 1.2 22 

5 35 30 14 1.0 1.1 16 

6 25 25 18 1.2 1.2 20 

7 22 28 10 1.3 1.1 16 

8 34 18 8 1.1 1.2 18 

9 28 34 15 1.3 1.1 20 

10 18 20 16 1.2 1.2 15 
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Schemes to Task 2.7 
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Task 2.8. Based on the strength and stiffness criteria, select the cross-

section of the beam (calculation schemes). 

For the loaded beam: 

- determine the values of shear forces Q, bending moments Mg and plot 

their diagrams; 

- from the strength criteria, determine the required dimensions 

of the beam cross-section in three variants:  

a) circular cross-section; 

b) rectangular cross-section (h/b = 2); 

c) I-beam cross-section. 

Choose the most rational cross-section shape from the three variants 

and justify your choice. 

- For the selected cross-section, draw the diagrams of normal and shear 

stresses. Using the appropriate failure hypothesis, determine the reduced 

stresses for the given beam.  

- Using the strength criterion, verify the stiffness of the beam with 

the selected cross-section, given f = 0,001l; Е = 2105 MPa. 

 
Table 2.6. Initial data for Task 2.8 

Var. 

no 

Force 

Р,  

kN 

Moment 

of a couple 

of forces 

M, kNm 

Continuous 

load 

 q, kN/m 

Permissible 

stresses 

k, MPa 

а,  

m 

b,  

m 

с,  

m 

1 15 30 8 200 2 3 1 

2 14 20 6 150 3 2 2 

3 15 15 5 180 1 4 1 

4 20 16 10 220 2 4 1 

5 15 20 7 160 3 2 2 

6 25 25 8 200 3 1 2 

7 20 15 10 160 4 1 1 

8 14 18 8 180 3 1 2 

9 20 30 5 200 2 4 1 

10 18 20 6 150 3 2 1 
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Schemes to Task 2.8
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2.6. Bending with torsion of round rods 
 

General information 

Shafts of various machines typically operate under the influence 

of both bending and torsional stresses. When torque is transmitted 

to the shaft via a pulley and belt drive, a pair of forces is generated: torsional 

force and bending force. a similar scenario is observed in gear transmissions. 

In most cases, shafts are bent in two planes rather than one. 

If the belt drive is set at an angle (Fig. 2.24), the shaft is bent 

in the horizontal plane by the projection of the belt tension forces onto 

the horizontal axis, and in the vertical plane by the weight of the pulley 

and the projection of the belt tension forces onto the vertical axis. 

Bearings supporting the shaft are considered in calculations as spatial 

hinge supports, i.e., connections that prevent linear movements but do not 

interfere with the rotation of fixed sections of the shaft. 

In the case of simultaneous bending and twisting, the bending moment 

Mg and the torque Ms are taken into account for the cross-section of the shaft. 

Shafts are usually made of medium-carbon structural steel. 

Construction calculations are based on failure hypotheses. 
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Examples of calculation 

 

Example 2.15. Three pulleys are mounted on a shaft. The pulley with 

a diameter D1 = 0.6 m and an inclination angle 1 = 45  rotates at n = 500 rpm 

and transmits a power of N = 75 kW. The other two pulleys have the same 

diameter D2 = 0.4 m and the same inclination angle 2 = 45 , each 

transmitting a power of N/2 (Fig. 2.24). 

 
Fig. 2.24. Shaft diagram to Example 2.15 

 

Procedure:  

- determine the moments applied to the pulleys based on the given 

values of N (kW) and n (rpm); 

- plot the torque diagrams Ms; 

- given the moments and the specified pulley diameters D1 and D2 

determine the tension forces t1 and t2, acting on the pulleys; 

- calculate the shaft loads, assuming the forces are equal to the three 

peripheral forces;   

- determine the bending forces acting in the horizontal and vertical 

planes (without considering the weights of the pulleys and shaft); 

- plot diagrams of the horizontal bending moments 𝑀g
ℎ and vertical 

bending moments 𝑀g
𝑣; 

- plot the diagrams of the total bending moments Mg; 

- using the Ms and Mg diagrams, identify the critical cross-section 

and calculate the maximum computional  moment Mcomp (according 

to the appropriate failure hypothesis);  

- select the shaft diameter d for k = 70 MPa. 
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Initial data:   а = 1 m;  b = 1.5 m;  с = 1.5 m. 

 

Solution 

Wheel 1 – driving wheel, wheels 2 and 3 (of the same diameter) – driven 

wheels. Т1, T2 – tension of the belt on the driving wheel, t1= t2 = T/2 – tension 

of the belt in the driven part (Fig. 2.25). 

 
Fig. 2.25. Schematic of the drive shaft 

 

1. Calculate the torques acting on the wheels using the given values of  N  

and  n according to the formulas: 

𝑀1 =
𝑁

𝜔
=

𝑁

𝑛
𝜋
30

=
75 ⋅ 103

500
3.14
30

= 1433.12 Nm 

𝑀2 =
𝑁 2⁄

𝜔
=
𝑁/2

𝑛
𝜋
30

=
75 ⋅ 103/2

500
3.14
30

= 716.56 Nm 

Plot the diagram of the computed torques on the shaft (Fig. 2.26, a). 

2. Determine the values of the torques along the segments of the shaft 

as the sum of the moments on one side of the examined segment 

in the computed shaft diagram (Fig. 2.26, a): 
𝑀s
АС = 𝑀2 = 716,56 Nm,𝑀s

𝐶𝐷 = 𝑀2 +𝑀2 = 𝑀1 = 1433.12 Nm 

Based on the obtained data, plot the torque diagram (Fig. 2.26, b). 

3. Calculate the belt tensions t1 and t2 acting on the wheels: 

For wheel 1: 

The torque of the belt drive is equal to the product of the difference 

in tension forces and half of the pulley diameter: 

𝑀1 = (𝑇1 − 𝑡1)
𝐷1
2
= (2𝑡1 − 𝑡1)

𝐷1
2
=
𝑡1𝐷1
2

 

then, 

𝑡1 =
2𝑀1
𝐷1

=
2 ⋅ 1433.12

0.6
= 4777 N 

For wheel 2: 

𝑀2 = (𝑇2 − 𝑡2)
𝐷2
2
=
𝑡2𝐷2
2
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then, 

𝑡2 =
2𝑀2
𝐷2

=
2 ⋅ 716.56

0.4
= 3583 N 

4. Determine the belt contact forces on the shaft: 
𝑃𝐴 = 𝑇2 + 𝑡2 = 3𝑡2 = 10.75 kN 

𝑃𝐶 = 𝑇2 + 𝑡2 = 3𝑡2 = 10.75 kN 

𝑃𝐷 = 𝑇1 + 𝑡1 = 3𝑡1 = 14.37 kN 

5. Calculate the bending forces on the shaft in the horizontal plane 

(neglecting the mass of the wheels and the shaft):  
𝑃𝐴
𝐻 = 𝑃𝐴 ⋅ 𝑐𝑜𝑠 𝛼2 = 10.75 ⋅ 𝑐𝑜𝑠 45° = 7.6 kN 

𝑃𝐶
𝐻 = 𝑃𝐶 ⋅ 𝑐𝑜𝑠 𝛼2 = 10.75 ⋅ 𝑐𝑜𝑠 45° = 7.6 kN 

𝑃𝐷
𝐻 = −𝑃𝐷 ⋅ 𝑐𝑜𝑠 𝛼1 = 14.33 ⋅ 𝑐𝑜𝑠 45° = −10.13 kN 

Plot the diagram of forces in the horizontal plane (Fig. 2.26 c). 

Determine the support reactions: 
∑𝑀𝐵 = 0 − 𝑃𝐴

𝐻 ⋅ 𝑎 + 𝑃𝐶
𝐻 ⋅ 𝑏 − 𝑃𝐷

𝐻 ⋅ (𝑏 + 𝑐) + 𝑅𝐸
𝐻 ⋅ (𝑏 + 𝑐 + 𝑎) = 0 

𝑅𝐸
𝐻 =

𝑃𝐴
𝐻 ⋅ 𝑎 − 𝑃𝐶

𝐻 ⋅ 𝑏 + 𝑃𝐷
𝐻(в + с)

𝑏 + 𝑐 + 𝑎
=
7.6 ⋅ 1 − 7.6 ⋅ 1.5 + 10.13(1.5 + 1.5)

1.5 + 1.5 + 1
= 6,65 kN 

∑𝑀𝐸 = 0 − 𝑃𝐴
𝐻(𝑎 + 𝑏 + 𝑐 + 𝑎) + 𝑅𝐵

𝐻(𝑏 + 𝑐 + 𝑎) − 𝑃𝐶
𝐻(𝑐 + 𝑎) + 𝑃𝐷

𝐻 ⋅ 𝑎 = 0 

𝑅𝐵
𝐻 =

𝑃𝐴
𝐻(𝑎 + 𝑏 + 𝑐 + 𝑎) + 𝑃𝐶

𝐻(𝑐 + 𝑎) − 𝑃𝐷
𝐻 ⋅ 𝑎

𝑏 + 𝑐 + 𝑎
=

=
7.6 ⋅ (1 + 1.5 + 1.5 + 1) − 7.6(1.5 + 1) − 10.13 ⋅ 1

1.5 + 1.5 + 1
= 11.72 kN 

Verification: 
∑𝑦 = 0 + 𝑃𝐴

𝐻 − 𝑅𝐵
𝐻 + 𝑃𝐶

𝐻 − 𝑃𝐷
𝐻 + 𝑅𝐸

𝐻 = 0 + 7.6  11.72 +  7.6  10.13 +  6.65 =  0 

 

6. Calculate the values of the bending moments 𝑀g
𝐻 from the horizontal 

forces: 
 𝑀g𝐴

𝐻 = 𝑃𝐴
𝐻 ⋅ 0 = 0 Nm  

 𝑀gВ
𝐻 = 𝑃А

𝐻 ⋅ а = 7.6 ⋅ 1 = 7.6 Nm  

 𝑀gС
𝐻 = 𝑃А

𝐻(𝑎 + 𝑏) − 𝑅𝐵
Г ⋅ 𝑏 = 7,6(1 + 1.5) − 11.72 ⋅ 1.5 = 1.42 Nm 

 𝑀g𝐷
𝐻 = 𝑃А

𝐻(𝑎 + 𝑏 + 𝑐) − 𝑅𝐵
𝐻(𝑏 + 𝑐) + 𝑃𝐶

𝐻 ⋅ с = 

  =7.6(1 + 1.5 + 1.5) − 11.72(1.5 + 1.5) + 7.6 ⋅ 1.5 = 6.65 Nm 

 𝑀g𝐷
𝐻 = 𝑃𝐸

𝐻 ⋅ 𝑑 = 6.65 ⋅ 1 = 6.65 Nm 

 𝑀g𝐸
𝐻 = 𝑃𝐸

𝐻 ⋅ 0 = 0 Nm 

Based on the obtained results, plot the bending moment diagram 

in the horizontal plane (Fig. 2.26, d). 

7. Determine the bending forces on the shaft in the vertical plane 

(neglecting the mass of the wheels and the shaft): 
𝑃𝐴
𝑉 = −𝑃𝐴 ⋅ sin𝛼2 = −10.75 ⋅ sin45∘ = −7.6 kN 
𝑃𝐶
𝑉 = −𝑃𝐶 ⋅ sin𝛼2 = −10.75 ⋅ sin45∘ = −7.6 kN 

𝑃𝐷
𝑉 = −𝑃𝐷 ⋅ sin𝛼1 = −14.33 ⋅ sin45

° = −10.13 kN 
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Plot the diagram of forces in the vertical plane (Fig. 2.26, e). 

Determine the support reactions: 
 ∑𝑀𝐵 = 0 = 𝑃𝐴

𝑉 ⋅ 𝑎 − 𝑃𝐶
𝑉 ⋅ 𝑏 − 𝑃𝐷

𝑉 ⋅ (𝑏 + 𝑐) + 𝑅𝐸
𝑉 ⋅ (𝑏 + 𝑐 + 𝑎) = 0 

𝑅𝐸
𝑉 =

−𝑃𝐴
𝑉 ⋅ 𝑎 + 𝑃𝐶

𝑉 ⋅ 𝑏 + 𝑃𝐷
𝑉(в + с)

𝑏 + 𝑐 + 𝑎
=
−7.6 ⋅ 1 + 7.6 ⋅ 1.5 + 10.13(1.5 + 1.5)

1.5 + 1.5 + 1
= 8.55 kN 

∑𝑀𝐸 = 0; 𝑃𝐴
𝑉(𝑎 + 𝑏 + 𝑐 + 𝑎) − 𝑅𝐵

𝑉(𝑏 + 𝑐 + 𝑎) + 𝑃𝐶
𝑉(𝑐 + 𝑎) + 𝑃𝐷

𝑉 ⋅ 𝑎 = 0 

𝑅𝐵
𝑉 =

𝑃𝐴
𝑉(𝑎 + 𝑏 + 𝑐 + 𝑎) + 𝑃𝐶

𝑉(𝑐 + 𝑎) + 𝑃𝐷
𝑉 ⋅ 𝑎

𝑏 + 𝑐 + 𝑎
= 

=
7.6 ⋅ (1 + 1.5 + 1.5 + 1) + 7.6(1.5 + 1) + 10.13 ⋅ 1

1.5 + 1.5 + 1
= 16.78 kN 

 Verification: 
∑𝑦 = 0 − 𝑃𝐴

𝑉 + 𝑅𝐵
𝑉 − 𝑃𝐶

𝑉 − 𝑃𝐷
𝑉 + 𝑅𝐸

𝑉 = 0 

7.6 +  16.78 −  7.6 −  10.13 + 8.55 =  0 

 

8. Calculate the values of the bending moments 𝑀g
𝑉 from the vertical 

forces: 
𝑀g𝐴
𝑉 = −𝑃А

𝑉 ⋅ 0 = 0 kNm 

МgВ
𝑉 = −𝑃А

𝑉 ⋅ а = −7.6 ⋅ 1 = −7.6 kNm 

МgС
𝑉 = −𝑃А

𝑉(𝑎 + 𝑏) + 𝑅𝐵
𝑉 ⋅ 𝑏 = −7.6(1 + 1.5) + 16.78 ⋅ 1.5 = 6.125 kNm 

Мg𝐷
𝑉 = +𝑃𝐸

𝑉 ⋅ а = +8.55 ⋅ 1 = 8.55 kNm 

𝑀gЕ
𝑉 = −РЕ

𝑉 ⋅ 0 = 0 kNm 

Based on the obtained results, plot the bending moment diagram 

for the vertical section (Fig. 2.26, f). 

9. Calculation and preparation of the combined bending moment diagram Мg. 

We determine the total bending moments 𝑀g
𝐻 and 𝑀g

𝑉 in the shaft sections 

based on the diagrams: 

𝑀g = √(𝑀g
𝐻)

2
+ (𝑀g

𝑉)
2
 kNm 

𝑀g
𝐴 = 0 kNm; Мg

𝐵 = √(-7.6)2 + (-7.6)2 = 10.75 kNm  

𝑀g
𝐶 = √(-1.42)2 + (6.125)2 = 6.29 kNm 

Мg
𝐷 = √(-6.65)2 + (8.55)2 = 10.83 kNm 

𝑀g
𝐸 = 0 kNm 

The diagram of the combined bending moments is shown in Fig. 2.26, g. 

10. Identify the critical cross-section from the diagrams Ms and Mg 

and calculate the value of the maximum calculated moment according to the 

appropriate strength hypothesis (Fig. 2.26, h). 

   The critical cross-section for the shaft is section D, where Ms = 1.433 kNm 

and Mg = 10.83 kNm. 

According to the Coulomb-Tresca failure criterion: 
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𝑀red = √𝑀𝑔
2 +𝑀s

2 = √10.832 + 1.4332 = 10.92 kNm  

11. We determine the shaft diameter based on the strength criterion:  

𝜎red =
𝑀red

𝑊
≤ 𝑘 

where 𝑊 =
𝜋𝑑3

32
 – the bending strength index for a shaft with a continuous 

cross-section is, therefore: 

 𝑑 = √
32⋅𝑀𝑐𝑎𝑙𝑐

𝜋⋅𝑘

3
= √

32⋅10.92⋅103

3.14⋅70⋅106

3
= 0.1167 m 

From Table D.43, we adopt a shaft diameter d = 120 mm. 
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Fig. 2.26 Shaft load charts 
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Individual tasks 

(calculation) 

 

Task 2.9. Determine the shaft diameter based on bending 

and torsional strength conditions (Table 2.7, schemes below).  

 
Table 2.7. Initial data for Task 2.9 

Var. 

no 

Scheme 

no 

N, 

kW 

n, 

rpm 
а, m b, m с, m 

D1, 

mm 

D2, 

mm 

1, 

deg 

2, 

deg 

1 7 10 100 0.5 1 1.5 600 400 30 30 

2 3 75 600 0.5 2 1 800 650 45 45 

3 5 80 800 1 2 1 1000 600 30 45 

4 12 100 1000 1 2 0.5 1200 800 45 30 

5 9 80 900 1 2.5 1.5 1400 700 45 60 

6 2 70 700 0.5 2.5 1 1200 800 60 30 

7 1 85 900 0.5 2 1.5 800 500 30 45 

8 4 95 1000 1 2.5 2 1000 800 30 30 

9 6 75 800 0.5 1.5 1 800 600 60 45 

10 7 40 300 1 2 1.5 800 500 45 45 

11 10 60 600 0.5 1.5 1 850 650 30 45 

12 8 70 900 1 2 1.5 1200 900 60 45 

13 7 80 1000 0.5 2 1 850 550 30 60 

14 3 90 800 0.5 1.5 1 800 450 30 30 

15 5 70 600 0.5 1.5 1 1200 800 60 30 

16 2 80 900 1 2 1.5 1300 900 30 45 

17 9 100 1000 0.5 1 1.5 1000 600 30 30 

18 12 75 900 1 2 1 1000 700 45 30 

19 1 40 500 0.5 2 1.5 1000 800 30 45 

20 8 50 400 0.5 1 2 600 300 30 60 

21 11 80 900 0.5 1 1.5 600 400 30 45 

22 10 65 700 1 3 2 1200 900 30 45 

23 7 75 800 1 2 1.5 1000 700 45 30 

24 6 50 500 0.5 2 1.5 1200 800 30 60 

25 11 100 400 0.5 1 1.5 1000 700 45 60 

26 5 50 700 1 3 2 1200 400 30 45 

27 2 60 800 0.5 2 2.5 1300 900 45 30 

28 9 75 750 0.5 2 1.5 900 600 60 60 

29 12 85 850 1 3 2 800 500 45 30 

30 1 90 900 1 2 1.5 900 600 30 30 

31 8 120 1200 1 3 2 1200 800 45 30 

32 7 140 1400 0.5 2 1 1400 900 30 30 



135 
 

Var. 

no 

Scheme 

no 

N, 

kW 

n, 

rpm 
а, m b, m с, m 

D1, 

mm 

D2, 

mm 

1, 

deg 

2, 

deg 

33 5 150 500 0.5 1 1 1000 800 45 60 

34 6 65 600 0.5 1.5 1 800 500 30 45 

35 4 55 450 0.5 1 1.5 800 500 45 45 

36 2 90 900 0.5 2 1 900 500 30 60 

37 12 120 1200 0.5 2.5 1 1200 900 45 45 

38 1 100 1000 0.5 1.5 1 1000 800 60 45 

39 11 90 900 1 3 2 900 600 60 45 

40 8 80 900 0.5 1 1.5 600 400 30 45 

41 3 100 400 0.5 1 1.5 1000 700 45 60 

42 4 50 400 0.5 1 2 600 300 30 60 

44 6 65 560 0.5 1.5 1 700 500 45 45 

45 7 70 700 0.5 1.5 1 700 500 60 45 

46 9 90 1000 1 2 1 1000 800 45 45 

47 2 120 1200 0.5 1.5 1 1200 600 45 45 
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Schemes to Task 2.9 
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2.7. The strength of compressed rods 
 

General information 

Constructions and their elements can be destroyed due to the loss 

of the original elastic equilibrium state  loss of stability. The length 

of a compressed rod significantly impacts the nature of the damage. So-called 

"stubby" rods fail due to loss of strength; the only deformation type 

is compression.  

As the length of the compressed rod increases, a loss of stability occurs, 

manifesting as a transition from a straight form of equilibrium to a curved 

one. Due to the curvature of the axis in the rod, both compressive 

and bending deformations occur. This happens suddenly when the load 

on the rod increases slightly, and the stress level is low enough that the 

strength has not yet been exceeded. 

The stress at which a centrally compressed straight rod loses its 

stability can be much less than the tensile strength of the material from 

which it is made. When the rod loses its straight shape, additional bending 

stresses appear in its cross-sections, leading to its failure. Therefore, after 

calculating the strength, the compressed rod must be checked for stability, 

and if necessary, assessed for stability. 

Bending caused by an axial force is referred to as longitudinal 

bending.  

The compressive force at which a rod may lose stability is known 

as the critical force (Fcr). 

Equilibrium can be stable, unstable, or neutral (Fig. 2.27). 

The value of the critical force (Fcr) for a compressed rod of length l 

is calculated using Euler's formula:  

𝐹cr =
𝜋2𝐸 ∙ 𝐽min

(𝜇 ⋅ 𝑙)2
 

where Е – longitudinal modulus of elasticity of the rod;  

Jmin – minimum axial moment of inertia of the rod's cross-section; 

  length reduction factor (depends on the method of the rod's end 

conditions). 
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The values of the coefficient μ are selected from the relevant tables. 

Some cases are shown in Fig. 2.28. 

 
Fig. 2.28. Values of μ for selected cases 

 

To ensure the stability of a compressed rod with a certain safety 

margin, the following conditions must be met. 

F   F ,  if   [𝐹] =
𝐹cr

𝑛
 , 

where n – safety factor. 

 

Critical stresses. Slenderness of the rod 

Stability condition in terms of stresses: 

𝜎cr =
𝐹cr

𝐴
 

The critical stresses cr are calculated using the formula: 

𝜎cr =
𝜋2𝐸

𝜆2
,  if  𝜆 =

𝜇𝑙

𝑖𝑚𝑖𝑛
, 

 - slenderness of the rod (characterizes the stiffness of the cross-

section); 

 
F

0,1 0,2 5,0 7,0 0,1

F F F F

 

 
Fig. 2.27. Types of bar equilibrium 
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𝑖 = √
𝐽min

𝐴
 – the smaller of the radius of inertia of the rod's cross-section 

(geometric characteristic of the cross-section); 

А – cross-sectional area of the rod. 

 

Euler's formula can be applied provided that the critical stress does not 

exceed the material's proportional limit:  

𝜎𝑐𝑟 ≤ 𝜎𝐻  namely 𝜎cr =
𝐹cr

𝐴
=

𝜋2𝐸

𝜆2
≤ 𝑅𝑚 

Typically, the condition for applying Euler's formula is expressed 

by the inequality: 

𝜆 ≥ 𝜆𝑙𝑖𝑚 = √
𝜋2𝐸

𝑅𝑚
, 

where lim – limiting slenderness of a rod made of a material.  

 

In contrast to the slenderness of the rod , which is a geometric 

characteristic, the limiting slenderness lim  depends solely on the physical 

and mechanical properties of the rod material and does not depend on its 

dimensions.  

For a rod made of steel S215 (Е = 2,1  105 MPa, H = 200 MPa): 

𝜆lim = √
3.142 ⋅ 2 ⋅ 105

200
≅ 100 

This means that if a rod made of steel S215 has a slenderness of 100, 

applying Euler's formula to calculate  Fcr and cr will result in an incorrect 

outcome. 

From practical experience, stable equilibrium phenomena can also 

occur at stresses exceeding the proportional limit.  

Jasinski F.S. conducted experimental studies on the stability of rods 

beyond the proportional limit and derived an empirical formula for critical 

stresses dependent on the slenderness of the rod: 
𝜎𝑐𝑟 = 𝑎 − 𝑏𝜆 + 𝑐𝜆, 

where а, b, с – empirical coefficients that have the dimension of stress.  

For deformable materials, it is most often assumed that  c = 0, 

simplifying the formula to: 
𝜎𝑐𝑟 = 𝑎 − 𝑏𝜆 

These formulas apply to rods whose slenderness falls within the limits: 
𝜆0 < 𝜆 < 𝜆𝑙𝑖𝑚, 

where 0 – slenderness at which cr  equals the ultimate stress lim.  
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For a deformable material, lim is equal to the yield strength Re, 

and for an undeformable material, it is equal to the compressive strength Rc. 

For slenderness   0  cr = lim, and in this case, the rod's strength should 

not be checked.  

Values of empirical coefficients and slenderness 0 and lim for some 

materials are presented in Table 2.8. 

 
Table 2.8. Empirical coefficient values and slenderness for selected materials 

Material а, MPa b, MPa с, MPa 0 lim 

Steel S215 310 1.14 0 61 100 

Steel S275 350 1.15 0 57 90 

Duraluminum A7 406 2.83 0 30 53 

Cast iron 776 12 0.053 10 80 

Pin 29.3 0.194 0  70 

 

The critical force is determined by the stresses cr as for axial 

compression of the rod: 
𝐹𝑐𝑟 = 𝜎𝑐𝑟 ∙ 𝐴 

Cross-sectional radius of inertia 

In calculations of stability, it is sometimes convenient to use the radius 

of inertia ρ:  

𝜌 =
𝑖min

√𝐴
=
√𝐽min

𝐴
 

The radius of inertia characterizes the shape of the cross-section and 

does not depend on its dimensions. The larger the ρ, the greater the load-

bearing capacity of a compressed rod with the same cross-sectional area. 

Table 2.9 presents the values of  ρ for some cross-sections.  

 
Table 2.9. Values of ρ for certain sections 

Cross-section  

Tubular (𝑐 =
𝑑

𝐷
= 0.95 ÷ 0,8) 1.246 ÷ 0.602 

Tubular (с = 0,7 ÷ 0,5) 0.482 ÷ 0.364 

Angle bracket 0.5 ÷ 0.3 

I-beam 0.41 ÷ 0.27 

C-bar 0.41 ÷ 0.29 

Square 0.289 

Circular 0.283 

Rectangle 0.204 
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Calculations of Stability Using the Stress Reduction Factor 

There is a relationship between the allowable compressive stress k and 

the allowable stability stress kst: 
𝑘𝑠𝑡 = 𝜑𝑘, 

where  - the reduction factor for the allowable stress in a compressed rod.  

 

The values of the reduction factor  have been calculated for rods 

made of different materials, depending on their slenderness. Table 2.10 

presents these values.   

 
Table 2.10. Values of φ for selected materials in relation to slenderness 

Sl
en

d
er

n
es

s 

Steels S215 

and S235 
Steel S275 Cast iron Wood 

Steels 

17Mn4, 

15GA, 

13Mn6, 

S355J2 

  𝜆/√  𝜆/√  𝜆/√  𝜆/√  𝜆/√ 

0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 

10 0.99 10.05 0.98 10.10 0.97 10.15 0.99 10.05 0.98 10.10 

20 0.97 20.31 0.96 20.41 0.91 20.97 0.97 20.31 0.95 20.52 

30 0.95 30.78 0.93 31.11 0.81 33.33 0.93 31.11 0.92 31.28 

40 0.92 41.70 0.89 42.40 0.69 48.15 0.87 42.88 0.89 42.40 

50 0.89 53.00 0.85 54.23 0.57 66.23 0.80 55.90 0.84 54.56 

60 0.86 64.70 0.80 67.08 0.44 90.45 0.71 71.21 0.78 67.93 

70 0.81 77.78 0.74 81.37 0.34 120.15 0.60 90.37 0.71 83.08 

80 0.75 92.38 0.67 97.74 0.26 156.9 0.48 115.5 0.63 100.8 

90 0.69 108.4 0.59 117.2 0.20 201.3 0.38 146.0 0.54 122.5 

100 0.60 129.1 0.50 141.4 0.16 250.0 0.31 179.6 0.46 147.4 

110 0.52 152.5 0.43 167.8   0.25 220.0 0.39 176.1 

120 0.45 178.9 0.37 197.3   0.22 255.8 0.33 208.9 

130 0.40 205.6 0.32 229.8   0.18 306.4 0.29 241.4 

140 0.36 233.3 0.28 264.6   0.16 350.0 0.25 280.0 

150 0.32 265.2 0.25 300.0   0.14 400.9 0.23 312.8 

160 0.29 297.1 0.23 333.6   0.12 461.9 0.21 349.1 

170 0.26 333.4 0.21 371.0   0.11 512.6 0.19 390.0 

180 0.23 375.3 0.19 413.0   0.10 569.2 0.17 436.6 

190 0.21 414.6 0.17 460.8   0.09 633.3 0.15 490.6 

200 0.19 458.8 0.15 516.4   0.08 707.1 0.13 555.1 

210 0.17 509.3 0.14 561.3       

220 0.16 550.0 0.13 610.2       
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Considering the coefficient  the strength condition takes the form:  

𝜎 =
𝐹

𝐴
≤  ∙  𝑘  

The stability condition allows for two types of calculations 

for compressed members - verification and design calculations. Additionally, 

it enables the calculation of the permissible load on the member.  

 

Verification calculations for compressed rods 

The stresses in the rod are calculated using the formula:  

𝜎 =
𝐹

𝐴
 

Based on the known dimensions and shape of the cross-section, 

the smallest axial moment of inertia is determined, and the minimum radius 

of gyration is calculated: 

𝑖 = √
𝐽min

𝐴
 

Slenderness of the rod:  𝜆 =
𝜇𝑙

𝑖𝑚𝑖𝑛
 

Determine the value of the factor of stress reduction  from Table 2.10. 

Calculate the permissible stress to ensure stability: 

𝑘𝑠𝑡 = 𝜑 ∙ 𝑘 

Check the condition: 

𝜎 =
𝐹

𝐴
 𝑘𝑠𝑡   ∙ k 

 

Design calculations for the stability of compressed rods   

using the coefficient  

In design calculations, the task is to select the shape of the cross-

section, the area, and the rod's material based on the rod's known load 

and length. This condition contains two unknown values   and А. Therefore, 

rods are calculated using an iterative approximation method. 

1. For the first approximation, the value of the coefficient  is assumed 

to be: 
𝜑1 = 0.5 ÷ 0.6 

2. Calculate the cross-sectional area of the rod: 

𝐴 ≥
𝐹

𝜑1𝑘
 

3. Assume the cross-sectional shape and calculate the minimum radius 

of inertia for the known area: 



143 
 

𝑖𝑚𝑖𝑛 = √
𝐽𝑚𝑖𝑛
𝐴

 

4. Calculate the slenderness based on the known end restraints of the rod:  

𝜆 =
𝜇𝑙

𝑖𝑚𝑖𝑛
 

5. Knowing the effective slenderness  from Table 2.10, select the value 

of the coefficient 𝜑1
′ . 

6. Calculate the permissible stability stresses:  
𝜎st = 𝜑1

′ ⋅ 𝑘 
7. Compare the calculated stresses in the rod 𝜎calc =

𝐹

𝐴
  

and the permissible stability stresses kst: 
𝜎calc − 𝑘𝑠𝑡

𝑘𝑠𝑡
≤   =  0,05 

where  - the accuracy of the calculations (usually the accuracy  =  0.05 

or  5 %). 

 

8. If the condition from step 7 is satisfied, the design calculation task 

is completed. If the condition is not met, repeat the entire calculation 

for a new value 𝜑2 =
𝜑1+𝜑

2
 until the condition from step 7 is met. Typically, 

three to four iterations are required to satisfy the condition  = 0.05. 

 



144 
 

Examples of calculations 

 

Example 2.16. Check the stability of a rod with a length of l = 2.5 m, 

an outer diameter D = 76 mm, and an inner diameter d = 64 mm. The rod 

is supported on one end and fixed on the other end. The compressive force 

F = 150 kN, the material is chrome-molybdenum steel (kr = 540 MPa, 

Е = 2.15105 MPa), and the stability safety factor kst = 3.5.  

 

Solution 

Determine the critical slenderness of the given material: 

𝑙𝑖𝑚  =  √
𝜋2𝐸

𝑅𝑚
= √

3.142 ⋅ 2.15 ⋅ 1011

540 ⋅ 106
= 63 

 

To determine the slenderness of the rod () calculate the axial moment 

of inertia of its cross-section: 

𝐽𝑚𝑖𝑛 = 𝐽 =
𝜋

64
(𝐷4 − 𝑑4) =

3,14

4
(764 − 644) = 81.4 ∙ 104mm4 = 81.4 ∙ 10−8 mm4 

Cross-sectional area: 

𝐴 =
𝜋

4
(𝐷2 − 𝑑2) =

3.14

4
(762 − 642) = 1319 mm2 

The radius of inertia of the cross-section: 

𝑖𝑚𝑖𝑛 = 𝑖 = √
𝐽𝑚𝑖𝑛
𝐴

= √
81.4 ∙ 104

1319
= 24.8 mm 

Calculate the slenderness of the rod, assuming the coefficient  = 0.7: 

𝜆 =
𝜇𝑙

𝑖
=
0.7 ⋅ 2.5 ⋅ 103

24.8
= 70.7 

Since the slenderness of the rod is greater than the critical slenderness 

(λ > λlim) the critical force is determined using Euler's formula: 

𝐹cr =
𝜋2𝐸 ∙ 𝐽𝑚𝑖𝑛
(𝜇 ∙ 𝑙)2

=
3.142 ∙ 2.15 ∙ 1011 ∙ 81.4 ∙ 10−8

(0.7 ∙ 2.5)2
= 564 ∙ 103 N = 564 kN 

Determine the stability safety factor and compare it with the specified 

value kst: 

𝑘𝑠𝑡 =
𝐹𝑠𝑡
𝐹
=
564

150
= 3.76 > 3.5 

 

Conclusion: The stability of the rod is ensured. 

 

Example 2.17. Check the stability of a steel column loaded as shown 

in Fig. 2.29, with a section of an I-beam I20, a height of 1.5 m, and fixed 
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at one end, if: F = 160 kN, kst  = 1.5, and the material of the column with S215 

z σe = 240 MPa, n = 1,045. 

Solution 

From Table D.59 for the I-beam I 20, 

take the geometric characteristics 

required for the calculations:  
𝐴 = 26.8 ∙ 10−2 m2 

𝐽𝑦 = 𝐽𝑚𝑖𝑛 = 115 ∙ 10
−8m4 

𝑖𝑚𝑖𝑛 = 𝑖𝑦 = 2.07 ∙ 10
−2m 

 

Calculate the slenderness of the column, 

assuming the coefficient  = 2 (Fig. 2.28). 

𝜆 =
𝜇𝑙

𝑖𝑚𝑖𝑛
=

2 ⋅ 1.5

2.07 ⋅ 10−2
= 145 

Calculate the values of the coefficient  using the linear interpolation 

formula: 

𝜑 = 𝜑1 −
𝜑1 −𝜑2
𝜆2 − 𝜆1

(𝜆 − 𝜆1) 

Since   145 select the value from Table 2.4 (material of the column – 

S215) 
1 = 140 1 = 0.36 

2 = 150 2 = 0.32 

𝜑145 = 0.36 −
0.36 − 0.32

150 − 140
(145 − 140) = 0.34 

Calculate the permissible stresses for steel S215:  

𝑘 =
𝑅0.2
𝑛

=
210

1.045
= 230 MPa 

If the safety factor  n is not available, use the values from Table D.2. 

Calculate the permissible stresses:  
𝑘𝑠𝑡 = 𝜑 ∙ 𝑘 = 0.34 ∙ 230 = 78.2 MPa 

Calculate the applied stresses in the steel:  

𝜎 =
𝐹

𝐴
=

160 ⋅ 103

26.8 ⋅ 10−4
= 59.7  106 Pa =  59.7 MPa 

Since the stresses in the column are less than the permissible stresses  
59.7 MPa < k = 78.2 MPa 

the stability of the column is ensured. 

Calculate the critical force for the given column. Since the slenderness 

of column   145  lim = 100 use Euler's formula to determine cr: 

𝐹cr = 𝜎cr ⋅ 𝐴 =
𝜋2𝐸

𝜆2
⋅ 𝐴 =

3.142 ⋅ 2.1 ⋅ 1011

1452
26.8 ⋅ 10−4 = 2.64 ⋅ 105 = 264 kN 

The safety factor of the column:  

 

Fig. 2.29. Diagram of column to 

Example 2.16 



146 
 

𝑘st =
𝐹cr

𝐹
=
264

160
= 1.65 

Since kst = 1.65   1.5, the stability of the column is ensured. 

 

Conclusion: The stability of the column is ensured.  

 

Example 2.18. Determine the permissible load F on a rod (Fig. 2.30) 

consisting of two angles (110  70  8) with l = 3.4 m; k = 190 MPa;   = 12 mm; 

material – S275 steel. 

Solution 

 

Using the stability condition 

for the permissible load F, 

we have:   
[𝐹] = 𝜑 ∙ 𝑘 ∙ 𝐴 

To calculate  , it is necessary 

to determine the slenderness , 

which in turn requires calculating 

the minimum radius of inertia 

for the given cross-section of the rod.  

Using data from Table D.61 for a single angle 110  70  8 (mm):  
𝐽𝑥1 = 172 cm

4;  𝐽𝑦1 = 54.6 cm
4 

𝐴1 = 13.9 cm
2, 𝑥0 = 1.64 cm 

Concerning the principal central axes х0у of the cross-section, we have: 
𝐽𝑥 = 2𝐽𝑥1 = 2 ∙ 172 = 344 cm

4 

𝐽у = 2 ∙ [𝐽у1 + (х0 +
𝛿

2
)А1] =  2 ∙ 54.6 + (1.64 +  0.6) ∙ 2 13.9 =  249 cm

4  

Since Jу  Jх, the minimum radius of inertia is: 

𝑖𝑚𝑖𝑛 = 𝑖𝑦 = √
𝐽у

2𝐴1
= √

249

2 ⋅ 13.9
=  2.99 cm =  2.99  10−2m 

Slenderness of the rod: 

𝜆 =
𝜇𝑙

𝑖𝑚𝑖𝑛
=

1 ⋅ 3.4

2.99 ⋅ 10−2
= 114 

Given that   114 assigns the value from Table 2.10 (material 

of the column – steel S275). 
𝜆1 = 110; 𝜑1 = 0.43 

𝜆2 = 120; 𝜑2 = 0.37 

𝜑114 = 0,43 −
0.43 − 0.37

120 − 110
(114 − 110) = 0.406 

Permissible value of the force: 

 

Fig. 2.30. Beam bar to Example 2.17 
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[𝐹] = 0.406 ∙ 190 ∙ 106 ∙ 2 ∙ 13.9 ∙ 10−4 = 2144.5 ∙ 102 N = 214.45 kN 

 

Example 2.19. For a column created of two channel sections 

(Fig. 2.31) select their dimensions and the distance  using the stability 

condition of the column concerning the principal axes of the cross-section 

with:  

F = 400 kN, l = 6.6 m, for material S235 Re = 260 MPa, n = 1,18. 

 

Solution 

A peculiarity of the designed column 

is that concerning the principal axis x, 

the moment of inertia of the section 

depends only on the dimensions 

of the channel sections, whereas 

concerning the axis y, the moment 

of inertia depends on both 

the dimensions of the channel 

sections and the distance  between 

them, i.e. 
𝐽𝑥 = 2𝐽𝑥1 ,    𝐽у = 2(𝐽у1 + 𝑎

2𝐴), 

where А – cross-sectional area of a single C-bar;  

a = /2 – centroid coordinates for the given axis.  

Then, from the stability condition of the column in the two principal 

planes, we formulate the equation:  𝐽𝑥 =  𝐽у or 2𝐽𝑥1 = 2(𝐽у1 + 𝑎
2𝐴),  from which 

𝑎 = √
𝐽𝑥1 − 𝐽𝑦1

А
 

Determine the permissible stress for S235 steel 

𝑘 =
𝑅𝑒
𝑛
=
210

1.18
= 220 MPa 

If the safety factor  n is not available, use the values from Table D.2. 

Select the dimensions of the channel sections using an iterative 

approximation method. Assume an initial approximation of φ1 = 0.5 

and calculate the cross-sectional area of the column based on the stability 

condition in the у0z plane, where the moment of inertia depends only on 

the type of C-bar: 

𝐴 ≥
𝐹

𝜑1 ⋅ 𝑘
≥

400 ⋅ 103

0.5 ⋅ 220 ⋅ 106
≥ 36.36 ⋅ 10−4m2  =  36.36 cm2 

 

Fig. 2.31. Column scheme to Example 2.18 
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Since the column consists of two C-bars, the calculated cross-sectional 

area of a single channel section should satisfy the condition:  

𝐴1 ≥
36.36

2
≥ 18.18 ≈ 18.2 сm2 

From Table D.58, select the C-bar C 16 and list its characteristics:  
𝐴 = 18.1 cm2, 𝑖𝑚𝑖𝑛 = 6.42 cm 

Additionally, Comment that for a column consisting of two channel 

sections, the radius of inertia concerning the x-axis will be equal to the radius 

of inertia of a single channel section because:  

𝑖𝑥 = √
2𝐽𝑥1
2𝐴

= √
𝐽𝑥1
𝐴
= 6.42 cm 

Calculate the slenderness of the column in the plane у0z: 

𝜆 =
𝜇 ⋅ 𝑙

𝑖𝑥
=

0,7 ⋅ 6.6

6.42 ⋅ 10−2
= 71.96 ≈ 72 

From Table 2.10, find the corrected value of the coefficient 𝜑1
′  (material 

steel S235): 
𝜆 = 70,𝜑 = 0.81, 

𝜆 = 80, 𝜑 = 0.75 

Then, for  = 72 we have: 

𝜑1
′ = 0.81 −

0.81 − 0.75

10
(72 − 70) = 0.798 

Since 𝜑1 and 𝜑1
′  differ significantly, perform calculations in the second 

approximation by assuming: 

𝜑2 =
0.5 + 0.798

2
= 0.65 

Calculate the cross-sectional area of the column and the cross-sectional 

area of a single channel section:  

𝐴 ≥
400⋅103

0.65⋅220⋅106
≥ 27.97 ⋅ 10−4 m2 = 28 cm2,    𝐴1 ≥

28

2
= 14 cm2 

From Table D.58, select C-bar C 14 and take its characteristics:  
𝐴 = 15.6 cm2, 𝑖𝑚𝑖𝑛 = 5.6 cm 

Calculate the slenderness of the column:  

𝜆 =
𝜇 ⋅ 𝑙

𝑖𝑥
=

0.7 ⋅ 6.6

5.6 ⋅ 10−2
= 82.5 

Calculate the corrected values of the coefficient 𝜑2
′  (material - S235 steel): 

𝜆 = 80,𝜑 = 0.75, 

𝜆 = 90, 𝜑 = 0.69 

Then, for  = 82.5 we have: 

𝜑2
′ = 0.75 −

0.75 − 0.69

10
(82.5 − 80) = 0.78 

Since 𝜑2
′   , proceed to the third approximation:  
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𝜑3 =
0.6 + 0.78

2
= 0.715 

𝐴 ≥
400 ⋅ 103

0.715 ⋅ 220 ⋅ 106
≥ 25.43 ⋅ 10−4m2 = 25.43 cm2 

𝐴1 ≥
25.43

2
= 12.7cm2 

From Table D.58, select C-bar C12, for which:  
𝐴 = 13.3 cm2, 𝑖𝑚𝑖𝑛 = 4.78 cm 

Calculate the slenderness of the column: 

𝜆 =
𝜇 ⋅ 𝑙

𝑖𝑥
=

0.7 ⋅ 6.6

4.78 ⋅ 10−2
= 96.55 

Calculate the corrected values of the coefficient 𝜑3
′  (material - steelS235): 

𝜆 = 90, 𝜑 = 0.69 

𝜆 = 100,𝜑 = 0.60 

Then, for  = 96.55 we have: 

𝜑2
′ = 0.69 −

0.69 − 0.60

10
(96.55 − 90) = 0.68 

Check the fulfilment of the strength condition in the third approximation. 

To do this, calculate the stresses in the rod and the permissible stresses: 
𝑘𝑠𝑡′′′ = 𝜑3

′ ⋅ 𝑘 = 0.68 ⋅ 220 = 149 MPa  

𝜎 =
𝐹

2 ⋅ 𝐴
=

400 ⋅ 103

2 ⋅ 13.3 ⋅ 10−4
= 150.4 ⋅ 106 = 150.4 MPa 

By comparing  and kst´´´ we determine that the excess in the column is:  

𝜂 =
150.4 − 149.6

149.6
⋅ 100% = +0.53% [5%] 

It follows that the strength condition of the column in the у0z plane will be 

satisfied if it consists of two C-bars C12. 

After determining the dimensions of the channel sections in one plane, 

calculate the size of the spacing  in the х0z plane. From the Table D.58, select 

the necessary additional data:  
𝐽𝑥1 =  304 cm

4;  𝐽у1
=  31.2 cm4 

We calculate the distance  between channel sections of the column:  

𝛿 = 2𝑎 = 2 ⋅ √
𝐽𝑥1 − 𝐽у1

𝐴
= 2 ⋅ √

304 − 31.2

13.3
= 9.06 cm 

Answer: According to the condition for equal column strength in two 

planes, the column should be constructed from two C-bars C12 spaced 

at a distance of  = 9.06 cm. 
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Individual tasks 

(calculations) 

 

Task 2.10. Determine the dimensions of the compressed steel rod 

section and the distance  based on strength requirements, by calculating 

the factor  (Fig. 2.32, Table 2.11).  

 

a b c d       e 

Fig. 2.32. Beam schemes to Task 2.10 

 
Table 2.11. Initial data for Task 2.10 

Var. 

no 
Scheme 

Fixing  

scheme   

(Fig. 2.32) 

Compressive 

force F, kN 

Length  

of the rod 

l, m 

Steel 

1 2 a 280 3.0 S215 

2 8 b 300 4.8 S275 

3 1 c 450 5.0 S215 

4 3 b 350 5.5 S235 

5 5 c 350 3.6 S235 

6 9 a 400 5.0 S215 

7 10 d 200 2.8 S275 

8 4 b 350 3.0 S235 

9 6 c 260 3.6 S215 

10 11 e 400 6.5 S275 

11 15 b 500 4.8 S215 

12 7 a 360 2.8 S215 

13 4 c 420 4.8 S275 

14 15 e 280 3.0 S215 

15 6 d 340 2.8 S235 

16 13 a 380 4.8 S235 

17 12 b 280 2.5 S215 

F

0,1 0,2 5,0 7,0 0,1

F F F F

а) б) в) г) д) 
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Var. 

no 
Scheme 

Fixing  

scheme   

(Fig. 2.32) 

Compressive 

force F, kN 

Length  

of the rod 

l, m 

Steel 

18 9 c 450 2.8 S275 

19 7 d 380 5.8 S215 

20 1 e 360 4.0 S275 

21 5 d 300 3.0 S235 

22 15 c 550 3.8 S215 

23 2 s 380 3.5 S235 

24 5 e 380 2.8 S275 

25 10 b 280 2.6 S215 

26 3 d 350 3.5 S235 

27 8 a 400 4.0 S215 

28 14 e 340 4.8 S275 

29 9 c 420 3.0 S235 

30 1 b 400 3.6 S215 

31 13 d 370 5.0 S235 

32 8 b 430 2.8 S275 

33 7 e 340 2.8 S275 

34 12 c 360 3.5 S235 

35 14 a 300 3.6 S215 

36 3 b 440 3.0 S275 

37 4 e 650 6.0 S215 

38 15 d 380 2.5 S215 

39 9 a 420 5.0 S235 

40 5 c 360 3.8 S275 



152 
 

Schemes to Task 2.10 
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CHAPTER ІІІ 
MACHINE PARTS 

 

3.1. Calculation of welded joints 

 

General information 

Welded joints are permanent connections.  

 Welding - the process of obtaining a permanent joint through 

intermolecular interaction forces, as a result of either general or local 

heating or pressure.  

 Of the many different types of welding, electric arc welding, resistance 

welding, and gas welding are the most commonly used in mechanical 

engineering. 

 

Types of welded joint 

 Welded joints - joints formed by welding.  

 Welded joints are strong and tight. 

 Depending on the construction (relative position of the parts 

to be joined), a distinction is made between butt, corner, lap and overlap 

joints. 

The basic types of welded joints made by arc welding are standardised. 

Welded joints made by manual arc welding are governed by EN ISO 15614, 

butt and fillet welds can be used in welded joints. 

 

Basic calculation formulae 

 The main criterion for weld performance is strength. The calculation 

of strength is based on the assumption that the stresses in the weld 

are distributed uniformly along the length as well as the cross-section.  

In general form, the strength condition for butt and fillet welds can be 

written as: 
𝜎 ≤ 𝑘𝑟(𝑐)

′  

𝜏 ≤ 𝑘𝑡
′ 

where 𝑘𝑟(𝑐)
′  – allowable tensile stress in the butt joint, MPa; 

𝑘𝑡
′– allowable shear stress of fillet weld, MPa. 

 

 The butt welds (Fig. 3.1, a) are calculated in the cross-section of the parts 

to be joined without taking into account the weld thickness.   
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a 

 
   b                      c 

Fig. 3.1 For the calculation of welds: 

a - there are tensile forces in the butt welds;  

b - in fillet welds with machined  

tensile forces occur at the edges;  

c - there are tensile forces and a bending moment in fillet welds 

 

Bond tensile strength condition (compression) (Fig. 3.1, a, b) 

𝜎 =
𝐹

𝑠𝑙
≤ 𝑘𝑟(𝑐)

′ , 

where F – load, N;  

s – thickness of welded elements, mm;  

l – bond length, mm;  

𝑘𝑟(𝑐)
′  – permissible stresses for the butt weld in tension (compression), 

MPa.  

  

Strength condition of a weld loaded simultaneously with a tensile 

force and a bending moment (Fig. 3.1, c) 

𝜎 =
𝐹

𝑠𝑙
+
𝑀𝑢
𝑊𝑆

=
𝐹

𝑠𝑙
+
6𝑀𝑢

𝑠𝑙2
≤ 𝑘𝑟

′ 

 Fillet welds are calculated in shear. The failure of fillet welds takes 

place at or near the smallest cross-section passing through the bisector 

of the right angle (Fig. 3.2).  
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Fig. 3.2. Diagram of a fillet weld and the forces involved 

Calculation of flange welds 

 a) loaded by axial force (Fig. 3.3, a)  

 
        a b 

Fig. 3.3. Forces occurring in a flange weld: 

a - loaded with axial force; b - loaded with axial force and bending moment 

 

Strength condition 

 =
𝐹

2𝑙𝛽𝑘
≤ 𝑘𝑡

′ 

 or the permissible stress on the weld  
𝐹 ≤ 2𝑙𝛽𝑘𝑘𝑡

′ 

where  is a coefficient that characterises the depth of remelting;   

k - weld root, mm. The weld fossa (k) is taken as the smaller fossa 

of the triangle inscribed in the weld cross-section. If the thickness of the 

parts to be welded is the same, the weld bead is equal to the thickness 

of the parts to be joined, k = . When the thickness of the parts to be 

welded is different, the weld bead is equal to the smallest thickness 

of the part. For technological reasons, the minimum value 

of the weld bead is 3 mm, the maximum is 20 mm;  

l - weld length, mm (lk   50 ÷ 60k);  

𝑘𝑡
′
  - allowable tangential stresses of fillet weld, MPa;  

kl - design weld cross-section, mm2.  



156 
 

For multi-run automatic and semi-automatic welding and manual 

welding  = 0.7, for two- and three-leg semi-automatic welding  = 0.8, 

for automatic welding with the same parameters  = 0.9 and for single-leg 

automatic welding  = 1.1; 

 

b) loaded with a bending moment (Fig. 3.3, b) 

For relatively short welds (l < b), the strength condition, 

𝜏 =
𝑀

𝛽𝑘𝑙𝑏
≤ 𝑘𝑡

′, 

where b – the width of the plate, mm. 

 

Calculation of overlap welds 

a) axially loaded (Fig. 3.4, а) 

Strength condition 

 =
𝐹

𝛽𝑘𝑙
≤ 𝑘𝑡

′, 

where l is the length of the weld, mm, if the weld is made from one side and 2l 

if the weld is made from two sides.  

 
                   a                            b 

Fig. 3.4 Diagram of forces and moments in an overlap weld: 

a - loaded with axial force; b - loaded with bending moment 

 

b) loaded by a bending moment (Fig. 3.4, b - without F) 

 

Strength condition 

𝜏 =
М

𝑊𝑠
=
6𝑀

𝛽𝑘𝑙2
≤ 𝑘𝑡

′ 

where 𝑊𝑜𝑐 =
𝛽𝑘ℎ2

6
 – section strength index of the seam. 

 

с) loaded with axial force and bending moment (Fig. 3.4, b) 

Strength condition 

𝜏 =
6𝑀

𝛽𝑘𝑙2
+

𝐹

𝛽𝑘𝑙
≤ 𝑘𝑡

′ 
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Calculation of combination welds 

Combination welds are used when a simple angle weld (butt, fillet, 

flange) does not provide the required weld strength. 

Combination welds are calculated based on the principle of load 

distribution in proportion to the load capacity of the individual joints. 

a) Calculation of the combined weld under axial force (Fig. 3.5, a) 

Strength condition 

𝜏 =
𝐹

𝛽𝑘(2𝑙𝑘 + 𝑙𝑐𝑧)
≤ 𝑘𝑡

′ 

b) calculation of the combined moment weld (Fig. 3.5, b – without F)

  

Strength condition 

𝜏 =
М

(𝛽𝑘𝑙𝑘𝑙𝑐𝑧 + 𝛽𝑘𝑙𝑘
2 6⁄ )

≤ 𝑘𝑡
′ 

 
Fig. 3.5. Distribution of forces in combined welds: 

a - loaded by an axial force; 

b - loaded by bending moment 

 

c) calculation of combined welds loaded by axial force and bending 

moment (Fig. 3.5, b)  

Strength condition 
𝜏 = 𝜏𝑀 + 𝜏𝐹 ≤ 𝑘𝑡

′  

𝜏𝑀 =
𝑀

(𝛽𝑘𝑙𝑘𝑙𝑐𝑧 + 𝛽𝑘𝑙𝑐𝑧
2 6⁄ )

 

𝜏𝐹 =
𝐹

𝛽𝑘(2𝑙𝑘 + 𝑙𝑐𝑧)
, 

where lk, lcz – joint and butt joint lengths, mm. 

 

When loading non-symmetrical profiles, for example, an angle iron 

(Fig. 3.6), the load passes through the centre of mass of the profile. When 

the welds are uniformly loaded, their length is inversely proportional 

to the distance of the weld from the line of incidence of the load.  
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So 
𝑙1
𝑙2
=
𝑎

𝑏
 

Since the total length of the welds L= l1 +l2, then  

𝑙1 = 𝑙
𝑎

𝑎 + 𝑏
; 𝑙2 = 𝑙

𝑏

𝑎 + 𝑏
 

From the equation of statics, the load on the hinges follows: 

𝐹1 = 𝐹
𝑎

𝑎 + 𝑏
;  𝐹2 = 𝐹

𝑏

𝑎 + 𝑏
 

For an equilateral angular profile, it can be roughly assumed that F1 = 0,7F 

and F2 =0.3F, then from the strength condition the length of the welds is: 

𝑙1 =
𝐹1
𝛽𝑘𝑘𝑡

′ ;  𝑙2 =
𝐹2
𝛽𝑘𝑘𝑡

′ 

 
Fig. 3.6. Flange welds in asymmetric member joints loaded with axial force 

 

When the fillet weld is loaded with a torque (welded gears, pulleys, 

sprockets, couplings, drums, shafts, etc.), the strength condition will take 

the form of the following. (Fig. 3.7, a), the strength condition will take the form: 

𝜏 =
2𝑇

𝛽𝑘𝜋𝑑2
≤ 𝑘𝑠

′  

When the fillet weld is loaded with a torque (Fig. 3.7, b), and bending, 

the strength condition will take the form:  

𝜏 = √𝜏𝑠
2 + 𝜏𝑔

2 ≤ 𝑘𝑡
′ , 

where 𝜏𝑠 =
2𝑇

𝛽𝑘𝜋𝑑2
; 𝜏𝑔 =

𝑀𝑢

𝑊𝑝
≈

4𝑀4

𝛽𝑘𝜋𝑑2
. 

 
a                 b 

Fig. 3.7. Calculation scheme of a fillet weld: 

a - load of the flange weld in torque;  

b - load of the flange weld in torsion and bending moment  
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The strength condition for spot welded joints made by arc welding 

(Fig. 3.8) will take the form: 

𝜏 =
4𝐹

𝜋𝑑2𝑧𝑖
≤ 𝑘𝑡

′ 

where z is the number of welding points; and i is the number of shear planes. 

For the structure in Fig. 3.8, a – z = 4, i = 1; in Fig. 3.8, b – z = 2, i = 2. 

 

Welded point diameter: 

d = l.2s + 4 mm at s < 3 mm;  

d = 1.5s + 5 mm at s > 3 mm. 

The distance between the edges of t1 and t2 is normalized taking into 

account technological and energy factors. They usually take 
𝑡 = 3𝑑; 𝑡1 = 2𝑑; 𝑡2 = 1.5𝑑 

A point connection is characterised by a high-stress concentration. 

Therefore, it does not perform very well under varying loads. Stress 

concentrations arise not only at the weld points but also in the parts 

themselves in the weld zone.  

Spot-welded joints are often used not as working joints that carry 

the main load, but as bonding joints. 

 
Fig. 3.8. Diagram of spot welding calculations: 

a - overlapping; 

b - with translation 

 

For continuous contact welding (Fig. 3.9), the strength condition will take 

the form: 

𝜏 =
𝐹

𝑏𝑙
≤ 𝑘𝑡

′ 

where b – width of welded joint, mm. 
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Fig. 3.9. Calculation scheme of continuous contact welding 

 

The permissible stresses depend on the type of welding, type 

of electrode, type of weld, the material of the workpieces and the nature 

of the load. The permissible stresses under static loading are selected from 

Table D.3.   
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Examples of calculations 

 

Example 3.1. Check the strength of a butt weld (Fig. 3.1, a) made with 

an electrode type E34, E42, E42A, with a constant tensile force acting on it 

F = 65 kN, width of strands b =100 mm, thickness s =5, of strands S215 steel 

with kr=160 MPa. 

 

Data: 

Electrode type 

E34, E42, E42A 

F = 65 kN 

b = 100 mm 

s = 5 mm 

material – S215 steel 

constant loading 

Searched for: 

σ - ? 

Solution 

1. Determine the permissible stresses for the weld, taking into account 

that the load acting on the joint induces tensile stresses in the weld, from 

Table D.3 for S215 steel and the given electrode types: 
𝐸34:  𝑘𝑟

′ = 0,75𝑘𝑟 = 0.75 ∙ 160 = 120 MPa; 

𝐸42: 𝑘𝑟
′ = 0.9𝑘𝑟 = 0.9 ∙ 160 = 144 MPa; 

𝐸42𝐴:   𝑘𝑟
′ = 𝑘𝑟 = 160 MPa. 

2. Check the strength condition 

We assume b = l = 100 mm. 

𝜎 =
𝐹

𝑠 ∙ 𝑙
=
65 ∙ 103

5 ∙ 100
= 130

N

mm2
= 130 MPa 

The calculated values are compared with the permissible:  

Е34: 130 MPa > 𝑘𝑟
′  = 120 MPa – condition is not met; 

Е42: 130 MPa < 𝑘𝑟
′= 144 MPa – condition is met; 

Е42А: 130 MPa <  𝑘𝑟
′= 160 MPa – condition is met.  

Conclusion: The strength condition is fulfilled for connections formed via 

electrode types E42 and E42A. 

 

Example 3.2. Check the strength of a lap butt weld (Fig. 3.10), made 

by manual arc welding with an E50 electrode.  The axial force F = 40 kN, 

the weld was made on one side, plate thickness s1 = 5 mm; s2 =10 mm; material 

of plates - steel S215 with kr = 160 MPa; plate width b1 = 100 mm; b2 = 400 mm. 
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Data: 

Electrode type E50 

F = 40 kN 

b1 = 100 mm 

b2 = 400 mm 

s1 = 5 mm 

s2 = 10 mm 

material–S215 

steel 

kr = 160 MPa 

constant loading 

 

Searched for: 

 –? 

 

Fig. 3.10. Diagram for the calculation of 

the butt weld to Example 3.2 

Solution 

1. Determine the permissible stresses for the weld.  

Taking into account that the load acting in the weld induces tensile 

stresses, from Table D.2 for S215 steel we derive the following.  
𝑘𝑡
′ = 0,6𝑘𝑐 = 0.6 ∙ 160 = 96 MPa 

2. Check the weld strength condition 

Take the weld bead equal to the smallest thickness of the plate 

k = s1 = 5 mm; we take the weld length l = b1 =100 mm; for manual hatch 

welding, the remelting factor   = 0.7. 

 =
𝐹

𝛽𝑘𝑙
=

40 ⋅ 103

0.7 ⋅ 5 ⋅ 100
= 114 

N

mm2
= 114 MPa > 𝑘𝑡

′ = 96 MPa  

the condition is not met.   

 

Conclusion: the weld will not ensure the strength of the welded joint. 

 

Example 3.3. Check the strength of the butt weld (Fig. 3.7, b), made 

without edge treatment, performed by manual arc welding with E42 

electrodes. The joint is loaded with torque T = 1500 Nm, the load is constant, 

pipe diameter d = 273 mm, wall thickness s = 7 mm and pipe material C10 

steel. 

Data: 

Electrode type E42 

T = 1500 Nm 

d = 273 mm 

s = 7 mm 

material – C10 steel 

Searched for: 

 –? 
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Re = 220 MPa 

constant loading 

Solution 

1. Determine the permissible stress for the weld. 

In the case of a butt weld made without edge treatment, shear stresses 

occur under torque. 

For C10 steel, according to Table D.2, we take σr = 210 MPa 

and determine the allowable stress. Taking n = 1.5 (Comment to Table D.3), 

we calculate the 

𝑘𝑟 =
𝑅𝑒
𝑛
=
210

1.5
= 140 MPa 

From Table D.3 𝑘𝑡′ = 0.6𝑘𝑟 = 0.6 ∙ 140 = 84 MPa. 

2. Check the strength of the weld. 

Take the angular length of the weld equal to the thickness of the pipe 

wall.   
𝑘 = 𝑠 = 7 mm 

Take the angular length of the weld equal to the thickness of the pipe 

wall β = 0.7; 

Moment in Nm is converted to Nmm  
𝑇 = 1500 Nm = 1500 ∙ 103 Nmm 

 =
2𝑇

𝛽𝑘𝜋𝑑2
=

2 ∙ 1500 ∙ 103

0.7 ∙ 7 ∙ 3.14 ∙ 2732
=

N

mm2
=  2.6 MPa <   𝑘𝑡

′ = 84 MPa 

the condition is met. 

 

Conclusion: the weld will ensure the strength of the welded joint. 

 

Example 3.4. Determine the permissible load that the lap joint can 

withstand (Fig. 3.4, a), made by manual arc welding with E42 electrode, S215 

steel strip material with kr = 160 MPa, weld made on both sides, plate width 

b = 100 mm, weld made on both sides, plate width s1 = 6 mm, s2 = 8 mm. 

Continuous load. 

 

Data: 

Electrode type E42 

b = 100 mm 

plate thickness  

s1 = 6 mm  

s2 = 8 mm 

Searched for: 

[F] - ? 
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kr =160 MPa 

material - S215 steel 

Solution 

1. Determine the allowable stress for the weld. 

Taking into account that the acting load in the weld causes shear 

stresses using Table D.3 for S215 steel we determine: 
𝑘𝑡
′ = 0,6𝑘𝑟 = 0.6 ∙ 160 = 96 MPa 

2. Determine the permissible stresses. 

Determine the permissible stresses: k = s1 = 6 mm; the length of the weld 

is given by l = 2b = 200 mm; for manual electrode arc welding, the remelting 

factor is  = 0.7.  

From the strength condition 𝜏 = 𝐹

𝛽𝑘𝑙
≤ 𝑘𝑡

′  

[𝐹] ≤ 𝑘𝑡
′𝛽𝑘𝑙 = 0.7 ⋅ 96 ⋅ 6 ⋅ 200 = 80640 N  

 

Answer: [F] ≤ 80640 N . 

 

Example 3.5. Calculate the length of the combined weld (Fig. 3.5, a) 

overlapped by manual arc welding with E42 electrodes, with constant load 

F = 78 kN, plate thickness s1 = 5 mm, s2 = 10 mm, steel strip material S15 

with kr =160 MPa, plate width b1 = 100 mm, b2 = 150 mm. 

 

Data: 

Electrode type E42 

F=78 kN 

b1 = 100 mm 

b2 = 150 mm 

s1 = 5 mm 

s2 = 10 mm 

material – steel S215 

kr =160 MPa 

constant loading 

β = 0.7 

Searched for: 

lgen - ? 

Solution 

1. Determine the permissible stresses for the weld. 

Taking into account that the load acting in the weld causes shear 

stresses, from Table D.3 for S215 steel 
𝑘𝑡
′ = 0.6𝑘𝑟 = 0.6 ∙ 160 = 96 MPa 
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2. From the strength condition we determine the length of the weld. 

We predetermine the angular length of the weld equal to the smaller 

of the two sheet thicknesses, i.e. k = s1 = 5 and for manual arc welding, 

we assume a remelting factor of. 

From the strength condition  = 𝐹

𝛽𝑘𝑙
≤ 𝑘𝑡

′, we have 

𝑙𝑔𝑒𝑛 ≥
𝐹

𝛽𝑘𝑘𝑡
′
=

78 ⋅ 103

0.7 ⋅ 5 ⋅ 96
= 232 mm 

Answer: lgen  232 mm. 

 

Example 3.6. Determine the length of the weld joint at the angle bar 

75 × 75 × 8 (Fig. 3.11). Alternating axial tensile load F = 138 kN, cycle 

characteristic R = –1. Manual arc welding with E50A. Angle and bevel 

material S215 steel with kr = 160 MPa. 

 

Data: 

Angle 74 × 75 × 8 

Electrode type E50A 

F = 65 kN 

R = -1 

material - S215 steel 

kr = 160 MPa 

variable loading 

 

Searched for: 

lk - ? lcz - ? 

Fig. 3.11. Calculation scheme to 

Example 3.6 

Solution 

1. To reduce the length of the overlap between the angle and the haunch, 

we use a combined corner weld with a normal section.  

From Table D.60, we extract the distance of the centre of gravity to the edge 

from z0 = 21.5 mm. 

2. Determine the permissible stresses for the weld. 

From Table D.3 for angle welds under alternating load (Table D.3)  
𝑘𝑡
′ = 𝛾0.65𝑘𝑟 

The coefficient taking into account the effect of variable load 

is determined by the formula: 

𝛾 =
1

(0.6𝐾𝑒𝑓 + 0.2) − (0.6𝐾𝑒𝑓 − 0.2)𝑅
 

From table D.4 Kef =3.5 (less favourable option), then 

𝛾 =
1

(0,6 ∙ 3.5 + 0,2) − (0.6 ∙ 3.5 − 0.2) ∙ (−1)
= 0.23 
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So  
𝑘𝑡
′ = 𝛾0.65𝑘𝑟 = 0.23 ∙ 0.65 ∙ 160 = 24 MPa 

3. From the strength condition we determine the design length of all 

welds. 

The weld bead thickness is taken to be equal to the thickness of the angle 

side  
𝑘 = 𝑠 = 8 mm 

 For manual electric arc welding, the remelting coefficient 
𝛽 = 0.7 

From the strength condition 

 =
𝐹

𝛽𝑘𝑙
≤ 𝑘𝑡

′  we have 𝑙𝑔𝑒𝑛 ≥
𝐹

𝛽𝑘𝑘𝑡
′
=

65 ⋅ 103

0.7 ⋅ 8 ⋅ 24
= 484 mm 

4. Determine the dimensions of the welds: 

 a) assume a butt weld length equal to the width of the angle bracket 
𝑙𝑐𝑧 = 𝑏 = 75 mm 

 b) the length of the side weld (using the lever principle) 
𝑙𝑏 = 𝑙𝑔𝑒𝑛 − 𝑙𝑐𝑧 = 484 − 75 = 409 mm 

 c) the length of the side weld (using the lever principle) 

𝑙𝑘2 = 𝑙𝑘1
𝑧0
𝑏
= 409 ∙

21.6

75
= 117.25 mm 

 then 
𝑙𝑏1 = 𝑙𝑏 − 𝑙𝑏2 = 409 − 117.25 = 291.75 mm 

Given the poor quality of the weld at the end and beginning, 

we attribute: 
𝑙𝑏2 = 130 mm; 𝑙𝑏1  = 310 mm < 𝑙𝑏𝑚𝑎𝑥 = 50 ÷ 60𝑘 = 400 ÷ 480 mm 

The corner profile is often welded completely along the fitting contour. 

Answer: lcz = 75 mm; lk2 = 130 mm; lk1 = 310 mm. 

 

Example 3.7. Calculate bracket and weld (Fig. 3.5, b) F = 10 kN, 

М = 8 kNm, static load, plate thickness s = 12 mm. Sheet material S215 steel. 

Welding - manual with electrode E42.  

 

Data: 

Electrode load E42 

F = 10 kN 

M = 8 kNm 

material - S215 steel 

static load 

Searched for: 

b - ? lb - ? lcz - ? 
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Solution 

1. From table D.3 we assume for S215 steel kr = 160 MPa. 

2. Considering only the basic load (bending moment), we determine 

the width of the cantilever from the strength condition. Convert 

the moment values Nm into Nmm, hence M = 8 kNm = 8106 Nmm.  

From the strength condition   = 𝑀

𝑊ос
=

6𝑀

𝑠𝑏2
≤ 𝑘𝑟 we have 

𝑏 ≥ √
6𝑀

𝑠𝑘𝑟
= √

6 ⋅ 8 ⋅ 106

12 ⋅ 160
= 158 mm 

Taking into account the F load, we assume b =165 mm.  

3. Check strength under total load 

𝜎 =
6𝑀

𝑠𝑏2
+
𝐹

𝑠𝑏
=
6 ⋅ 8 ⋅ 106

12 ⋅ 1652
+

104

12 ⋅ 165
 152 

N

mm2
 = 152 MPa 𝑘𝑟 = 160 MPa 

The strength condition is met. 

4. Determine the permissible stresses for the weld. 

From Table D.3  
𝑘𝑡
′ = 0.6𝑘𝑟 = 0.6 ∙ 160 = 96 MPa 

5. Determine the dimensions of the weld 

Accept 𝑙𝑐𝑧 = 𝑏 = 165 mm, 𝑘 = 𝑠 = 12 mm. 

Based on the strength conditions, we determine the length of the butt 

weld in advance, only according to the main load. 

𝑙𝑐𝑧 =
6М− 𝛽𝑘𝑙𝑐𝑧

2 𝑘𝑡
′

6𝛽𝑘𝑙𝑐𝑧𝑘𝑡
′

=
6 ⋅ 8 ⋅ 106 − 0,7 ⋅ 12 ⋅ 1652 ⋅ 96

6 ⋅ 0.7 ⋅ 12 ⋅ 165 ⋅ 96
= 33 mm 

Given the poor quality of the weld at the end and the beginning, 

we ultimately assume a side weld length of lb = 50 mm. 

6. Check the strength of welds after total load. 

𝜏𝐹 =
𝐹

𝛽𝑘(2𝑙𝑘 + 𝑙𝑐𝑧)
=

104

0,7 ⋅ 12(2 ⋅ 50 + 165)
= 4.5 N/mm2  =  4.5 MPa 

𝜏𝑀 =
М

(𝛽𝑘𝑙𝑏𝑙𝑐𝑧 + 𝛽𝑘𝑙𝑐𝑧
2 6⁄ )

=
8 ⋅ 106

(0.7 ⋅ 12 ⋅ 50 ⋅ 165 + 0.7 ⋅ 12 ⋅ 1652/6)
≈ 75 N/mm2  = 75 MPa 

𝜏 = 𝜏𝐹 + 𝜏𝑀 = 4.5 + 75 = 80 MPa <  𝑘𝑡
′ = 96 MPa 

Strength condition is met. 

Answer: b= 165 mm; lb = 50 mm; lcz = 165 mm. 

 

Example 3.8. Calculate a spot welded joint (Fig. 3.8, a). Calculate a spot 

welded joint (R = -0.5), F = 3 kN, plate thickness s = 3 mm, material – C10 

steel (R-1 = 160 MPa). 
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Data: 

Resistance spot welding 

F = 3 kN 

R = -0.5 

material – C10 steel 

R-1 = 160 MPa 

variable loading 

Searched for: 

Welded joint - ? 

Solution 

1. Determine the permissible stresses for the plate. 

Assuming n = 1.5 (Table D.3) we calculate 

𝑘𝑟 =
𝑅−1
𝑛
=
160

1.5
= 107 MPa 

2. Determine the coefficient, taking into account the variable load.                                  

From Table D.4 Kef =7.5 

𝛾 =
1

(0.6𝐾𝑒𝑓 + 0.2) − (0.6𝐾𝑒𝑓 − 0.2)𝑅
=

1

(0.6 ∙ 7.5 + 0.2) − (0,6 ∙ 7.5 − 0.2)(−0.5)
= 0.146 

3. Determine the permissible stresses for the plate 
𝑘 = 𝛾𝑘𝑟 = 0.146 ∙ 107 = 15.6 MPa 

4. From the tensile strength condition we determine the width of the plate 

𝑏 =
𝐹

𝑠𝑘
=
3 ⋅ 103

3 ⋅ 15.6
= 64 mm 

We assume b = 65 mm. 

5. Determine the dimensions of the joint: 

 a) the diameter of a point 𝑑 = 1.2𝑠 + 4 = 1.2 ∙ 3 + 4 = 7.6 mm.   

We assume d = 8 mm; 

 b) step 𝑡 = 3𝑑 = 3 ∙ 8 mm; distance between edges 
𝑡1 = 2𝑑 = 2 ∙ 8 = 16 mm; 𝑡2 = 1.5𝑑 = 1.5 ∙ 8 = 12 mm; 

 c) the number of points from the strength condition. 

Determine in advance the permissible stresses for the welding points 

taking into account the effect of the alternating load from Table D.3 we have  
𝑘𝑡
′ = 𝛾 ∙ 0.6𝑘𝑟 = 0.146 ∙ 0.6 ∙ 107 = 9.4 MPa 

Take the number of points in two rows i = 1 

𝑧 =
4𝐹

𝜋𝑑2𝑘𝑡
′ ∙ 𝑖

=
4 ⋅ 3 ⋅ 103

3.14 ⋅ 829.4 ⋅ 1
= 6.35 

Take the number of points in two rows z = 8. 

6. Finally, we determine the width of the plate 
𝑏 = 3𝑡 + 2𝑡1 = 3 ∙ 24 + 2 ∙ 16 = 104 mm 

 We assume b = 105 mm. 

Answer: b= 65 mm; t = 24 mm; t1 = 16 mm; t2 = 12 mm; z = 8. 
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Individual tasks 

(calculation) 

 

Task 3.1. Check the strength of the weld (Fig. 3.5, a), which is subjected 

to a tensile force, the weld was made on one side. The data to calculations 

is shown in Table 3.1. 

 
Table 3.1. Initial data for Task 3.1 

Var. 

no 

Force, kN 

Joint 

length, 

mm 

Sheet 

thickness, 

mm 

Top plate 

width, mm Electrode  Steel 

F l s1 s2 b 

1 70 100 5 6 80 E50А C10 

2 60 120 6 8 100 Е42 S215 

3 50 115 6 6 120 Е42А 09G2S 

4 80 125 5 6 80 Е50А C10 

5 90 135 8 6 85 Е42 S215 

6 113 155 8 8 125 Е42А 09G2S 

7 143 145 8 10 142 Е50А C10 

8 135 165 6 8 150 Е42 S215 

9 132 185 8 6 130 Е42А 09G2S 

10 128 135 8 8 135 Е50А C10 

11 151 140 8 10 160 Е42 S215 

12 154 125 6 8 155 Е42А 09G2S 

13 130 135 8 6 165 Е50А C10 

14 140 100 8 8 180 Е42 S215 

15 150 120 8 10 170 Е42А 09G2S 

16 160 115 6 8 200 Е50А C10 

17 135 125 8 6 185 Е42 S215 

18 125 135 8 8 125 Е42А 09G2S 

19 140 155 8 10 120 Е50А C10 

20 165 145 10 8 185 Е42 S215 

21 155 165 8 8 210 Е42А 09G2S 

22 156 185 8 6 190 Е50А C10 

23 174 135 8 8 145 Е42 S215 

24 185 140 8 10 135 Е42А 09G2S 

25 166 125 10 8 165 Е50А C10 

26 138 135 8 8 155 Е42 S215 

27 144 100 8 6 145 Е42А 09G2S 

28 153 120 6 8 200 Е50А C10 

29 164 115 8 6 160 Е42 S215 

30 136 125 6 8 180 Е42А 09G2S 

 



170 
 

Task 3.2. Determine the length of the welds that connect the T-bar to the 

base (Fig. 3.11). The data to calculations is shown in Table 3.2. 

 
Table 3.2. Initial data for Task 3.2 

Var. 

no 

Load, kN T-bar size, mm 
Electrode Material Load character 

F  b × b × s 

1 70 45 × 45 × 3 Е50А C10 Variables (R = -0.5) 

2 60 50 × 50 × 4 Е42 S215 Constant 

3 50 56 × 56 × 5 Е42А 09G2S Variables (R = -0.6) 

4 80 63 × 63 × 6 Е50А C10 Constant 

5 90 56 × 36 × 3.5 Е42 S215 Variables (R = -0.7) 

6 113 63 × 63 × 6 Е42А 09G2S Constant 

7 143 70 × 70 × 5 Е50А C10 Variables (R = -0.55) 

8 135 80 × 80 × 6 Е42 S215 Constant 

9 132 75 × 75 × 7 Е42А 09G2S Variables (R = -0.58) 

10 128 63 × 63 × 4 Е50А C10 Constant 

11 151 80 × 80 × 5.5 Е42 S215 Variables (R = -0.85) 

12 154 90 × 90 × 6 Е42А 09G2S Constant 

13 130 63 × 40 × 4 Е50А C10 Variables (R = -0.8) 

14 140 70 × 45 × 4.5 Е42 S215 Constant 

15 150 75 × 50 × 5 Е42А 09G2S Variables (R = -0.9) 

16 160 90 × 56 × 6 Е50А C10 Constant 

17 135 50 × 50 × 4 Е42 S215 Variables (R = -1) 

18 125 56 × 56 × 5 Е42А 09G2S Constant 

19 140 63 × 63 × 6 Е50А C10 Variables (R = -0.95) 

20 165 56 × 36 × 3.5 Е42 S215 Constant 

21 155 63 × 63 × 6 Е42А 09G2S Variables (R = -0.78) 

22 156 70 × 70 × 5 Е50А Stal C10 Constant 

23 174 50 × 50 × 4 Е42 S215 Variables (R = -0.85) 

24 185 56 × 56 × 5 Е42А 09G2S Constant 

25 166 63 × 63 × 6 Е50А C10 Variables (R = -0.75) 

26 138 56 × 36 × 3.5 Е42 S215 Constant 

27 144 63 × 63 × 6 Е42А 09G2S Variables (R = -0.6) 

28 153 70 × 70 × 5 Е50А C10 Constant 

29 164 80 × 80 × 5.5 Е42 S215 Variables (R = -0.7) 

30 136 90 × 90 × 6 Е42А 09G2S Constant 
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Task 3.3. Calculate the point welded joint (Fig. 3.8a). The data 

to the calculations is shown in Table 3.3. 

 
Table 3.3. Initial data for Task 3.3 

Var. 

no 

Load, kN 
Sheet thickness, 

mm Sheet material Load character 

F  s 

1 7 3 C10 Constant  

2 6 4 S215 Variables (R = -0.5) 

3 5 5 09G2S Constant 

4 8 6 C10 Variables (R = -0.4) 

5 9 3 S215 Constant 

6 6.3 4 09G2S Variables (R = -0.3) 

7 4.3 5 C10 Constant 

8 3.5 6 S215 Variables (R = -0.2) 

9 3.2 3 09G2S Constant 

10 2.8 4 C10 Variables (R = -0.6) 

11 5.1 5 S215 Constant 

12 5.4 6 09G2S Variables (R = -0.7) 

13 3 3 C10 Constant 

14 4 4 S215 Variables (R = -0.8) 

15 5 5 09G2S Constant 

16 6 6 C10 Variables (R = -0.9) 

17 3.5 3 S215 Constant 

18 2.5 4 09G2S Variables (R = -1) 

19 4 5 C10 Constant 

20 6 6 S215 Variables (R = -0.75) 

21 5 3 09G2S Constant 

22 6 4 C10 Variables (R = -0.85) 

23 7 5 S215 Constant 

24 5 6 09G2S Variables (R = -0.65) 

25 6 3 C10 Constant 

26 3.8 4 S215 Variables (R = -0.55) 

27 4 5 09G2S Constant 

28 3 6 C10 Variables (R = -0.5) 

29 4 3 S215 Constant 

30 6 4 09G2S Variables (R = -0.95) 
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3.2. Calculation of threaded connections 
 

General information 

Threaded joints are detachable connections made using threads 

directly applied to the parts to be joined or threaded fasteners such as bolts, 

screws, pins and nuts. 

 

Basic thread parameters 

The basic parameters of the thread (Fig. 3.12) are: 

 
Fig. 3.12. Basic thread parameters 

 

Thread diameter (screw and nut): external - nominal thread diameter d, 

D; central d2, D2, i.e. the diameter of the imaginary cylinder, the base of which 

intersects the thread at the point where the width of the projection is equal 

to the only groove (if the value is not given in the table, it can be determined 

according to the formula: 𝑑2 =
(𝑑+𝑑1)

2
); internal d1 , D1 . The diameter 

of the screw, as the closing part, was indicated by lower case letters, 

the diameter of the screw, as the closing part, by upper case letters.   

The most important feature of a thread is the thread pitch p (t, S) – 

the distance between two adjacent thread turns measured parallel to the axis 

of the screw. 

The profile of a thread is the profile of the projection and furrow 

in the plane of its central section.  

Profile angle  - the angle between adjacent sides of a thread in axial 

section.  

The thread profile is also characterised by: 
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a) the height of the initial triangle of thread H, i.e. the triangle whose 

vertices are formed by the points of intersection of the extended thread 

profiles;  

b) the working height of the thread profile H1(h)  - along which the thread 

sides of the bolt and nut meet; 

Thread pitch Ph(S1) - the distance between two adjacent thread turns 

measured parallel to the axis of the bolt, or otherwise is the axial 

displacement after one revolution of the bolt t (Fig. 3.12):    

for a single thread S1 = S, 

for multi-pass S1 = zS, where z is the number of thread turns. 

The angle of elevation of the thread line  - the angle of elevation 

of the thread line after the average diameter. 

𝑡𝑔𝜑 =
𝑝

𝜋𝑑2
  or  𝜑 = 𝑎𝑟𝑐𝑡𝑔

𝑝

𝜋𝑑2
, 

where  - is the helix angle in degrees.  

 

These parameters can be considered in a general way, as all profiles 

have common elements and can be achieved by changing the profile angle, 

profile height and radius of curvature. For example, by decreasing the profile 

angle, one can go from a triangular thread to a trapezoidal thread and then 

to a rectangular thread. Threads, due to having gaps, cannot be used 

as centring elements.  

All geomteric thread parameters and their tolerances are standardised. 

 

Strength classes of threaded fasteners 

Steel bolts and screws according to EN ISO 898-2:2023-03 

are manufactured in 12 strength classes 3.6, 4.6, 4.8, 5.6, 5.8, 6.6, 6.8, 6.9, 8.8, 

10.9, 12.9, 14.9 (in order of increasing strength). The strength class 

is indicated as two numbers separated by a dot. The first number multiplied 

by 100 indicates the minimum strength limit (MPa) and the first number 

multiplied by the second and still multiplied by 10 indicates the yield 

strength limit (MPa). The strength class of bolt 5.6 is read as follows: the bolt 

material has a strength limit of 5 · 100 = 500 MPa and a yield strength limit 

of 5 · 6 · 10 = 300 MPa. Each strength class corresponds to a specific steel 

grade, for example, for strength class 3.6 the corresponding steels are S215, 

C10, etc.  
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Nuts according to EN ISO 898-2:2023-03 are produced in 7 strength 

classes 4, 5, 6, 8, 10, 12, and 14 (in order of increasing strength). The number 

multiplied by 100 indicates the maximum load value.  

 

Basic calculation formulae 

The value of the peripheral driving force (Fig. 3.13 ) 

𝐹𝑡 = 𝐹𝑡𝑔(𝜑 + 𝜌), 

where F – axial force on the bolt, N;  

𝜑 = 𝑎𝑟𝑐𝑡𝑔
𝑝

𝜋𝑑2
 – thread angle of elevation, degrees; 

𝜌 = 𝑎𝑟𝑐𝑡𝑔
𝑓

𝑐𝑜𝑠 𝛼 2⁄
 – thread friction angle, degrees;  

Р - thread pitch, mm;  

 - thread pitch, mm; 

f – friction coefficient;  

d2 – thread centre diameter, mm. 

 

Fig. 3.13. Interaction forces between bolt and nut  

 

Tightening torque for bolt or nut (Fig. 3.13, a, b) 

𝑀𝑑𝑜𝑘 = 𝑀𝑇𝑔 +𝑀𝑇𝑛, 

where MTg – thread friction torque, Nm: 

𝑀𝑇𝑔 = 𝐹𝑡
𝑑2
2
= 𝐹𝑡𝑔(𝜑 + 𝜌)

𝑑2
2

 

MTn – friction torque at the supporting end of the nut or bolt, Nm: 

𝑀𝑇 = 𝐹𝑓
𝐷𝑎𝑣
2
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Dcen = (D1+dh)/2 or – Dcen =1.4d – the central diameter of the screw's 

retaining surface (thread); dh – the diameter of the screw hole.  

the diameter of the screw hole Мр and МT we obtain 

𝑀𝑑𝑜𝑘 = 𝐹
𝑑2
2
[
𝐷𝑐𝑒𝑛
𝑑2

𝑓 + 𝑡𝑔(𝜑 + 𝜌)] 

Torque to loosen bolt or nut (Fig. 3.13, c) 

𝑀𝑜𝑑 = 𝐹
𝑑2
2
[
𝐷𝑐𝑒𝑛
𝑑2

𝑓 + 𝑡𝑔(𝜑 − 𝜌)] 

 

Thread calculations 

The main types of thread failure: are fastening threads - thread shear, 

and movable threads - thread wear. Because of this, the main performance 

and calculation criteria for fastening threads are the strength associated with 

shear stresses, and for movable threads, the wear resistance associated with 

compressive stresses (Fig. 3.14). 

Strength conditions for threads with shear stress 

for screws 𝜏𝑐 =
𝐹

(𝜋𝑑1𝐻𝐾𝐾𝑚)
≤ 𝑘𝑡,  

for nuts 𝜏𝑐 =
𝐹

(𝜋𝑑𝐻𝐾𝐾𝑚)
≤ 𝑘𝑡 ,  

where F – force;  

Н – the height of the screw or the depth of the screw into the 

component;  

K = ab/p or K = се/р – coefficient of thread completeness; 

for a triangular thread K=0.87, for a rectangular thread K = 0.5, 

for a rectangular thread K  0.65; Km =0.55 ÷ 0.75 – coefficient of non-

uniformity of load along the thread turns (higher value for large 

metric threads and provided the bolt material is stronger than the nut 

material); a, b, c, e, p - correction factors; 

kt – allowable shear stresses 𝑘𝑡 = 0.4𝑅𝑒  – constant load; 

kt = (0.2 ÷ 0.3)Rm – variable load. 

If the materials of the bolt and the nut are the same then the shear 

stresses are calculated for the bolt thread only. 

Condition for wear resistance of the running thread under 

compressive stresses: 

𝜎𝑐 =
𝐹

(𝜋𝑑2ℎ𝑧)
≤ 𝑘𝑐 , 

where d2 – centre diameter of the thread, mm; 
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h – centre diameter of thread, mm; 

𝑧 =
𝐻

𝑝
 – number of working turns of the screw or nut; 

kc – permissible compressive stress for the lower strength part of the 

threaded pair. Assumes 𝑘𝑐 = (0.3 ÷ 0.4)𝑅𝑚. 

The formula is the same for a bolt and the nut. The coefficient Kт 

is assumed equal to unity, taking into account thread lapping.  

  

Fig. 3.14. Force diagram for calculating thread strength and wear resistance 

 

Performance of a threaded connection without taking into account 

frictional forces at the end of the nut or bolt 

𝜂𝑝.𝑔 =
𝐴𝑝

𝐴з
=

𝑡𝑔𝜑

𝑡𝑔(𝜑 + 𝜌)
 

Bolt performance including friction at the nut end or thread end 

𝜂𝑝.𝑔 =
𝐴𝑝
𝐴з
=

𝑡𝑔𝜑

𝑡𝑔(𝜑 + 𝜌) +
𝑓𝑎𝑣
𝑑2

 

 

Strength calculation of threaded connections  

under different types of loading  

The main performance criterion for threaded connections is strength. 

All standard bolts, screws and studs are made to have equal tensile strength 

of the bar after threading, thread shear and head detachment (Fig. 3.15), 

so calculations of the strength of a threaded connection are usually carried 

out against only one performance criterion - the strength of the threaded part 

of the bar, taking into account the internal thread diameter d1.  
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Fig. 3.15. Areas of possible damage to fixing connections 

 

The length of the bolt, dowel or the height of the nut is taken according 

to the thickness of the parts to be joined. The other dimensions 

of the components of the threaded connection (nut, washer, etc.) 

are assumed to depend on the thread diameter according to the standard.  

Head shear strength (Fig. 3.15) 

𝜏𝑐 =
𝐹

𝜋𝑑ℎ
≤ 𝑘𝑡, 

where h – bolt head height, mm.  

 

Calculation of a bolt loaded by an axial tensile force F. The nut 

is screwed but not tightened. The bolt is not tightened. 

This case is rare. An example is the bolted connection of the bracket, 

block and hook end section of crane mechanisms (Fig. 3.16). The calculation 

boils down to determining the internal thread diameter d1 from the tensile 

strength condition  

𝜎𝑟 =
4𝐹

𝜋𝑑1
2 ≤ 𝑘𝑟  

where 

𝑑1 = √
4𝐹

𝜋𝑘𝑟
 

where F – current force, N; 

d1 – internal thread diameter, mm;  

kr – allowable tensile stresses, MPa; kr = 0.6Rm without tightening screws. 

 

The resulting value of the inner diameter d1  о is rounded up 

to the largest standardised value, to which the value of the outer diameter 

is matched.  



178 
 

 
Fig. 3.16. Diagram of forces in a thread loaded with an axial force 

 

Calculation of a thread loaded axially and by torque. An example 

is a threaded band during tightening (Fig. 3.17)  

 
Fig. 3.17. Forces in a threaded connection 

 

in this case, the strength condition becomes 

𝜎𝑟𝑒𝑑 =
1,3 ⋅ 4𝐹

𝜋𝑑1
2 ≤ 𝑘𝑟 

then 

𝑑1 = √
5.2𝐹

𝜋𝑘𝑟
 

where 1.3 – is a factor that takes into account the torsional stresses 

in the thread due to friction in the thread; 

𝑘𝑟 =
𝑅𝑚

[𝑛]
– allowable tensile stresses, MPa;  

[n] – safety factor. 

 

Calculation of a welded joint loaded with critical shear stresses 

A prerequisite for the reliability of the connection is that there is no 

displacement of the components at the connection point. Two cases can be 

considered: 
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The bolt is tightened without a gap (Fig. 3.18). In this case, the bolt 

is driven into a calibrated hole with a reamer, and the bolt core is made 

to a tolerance that allows a gap-free fit.  

The reliability (immobilisation of the parts to be joined) of the joint 

is ensured by the bolt core. The calculations refer to the shear and crushing 

of the core. Frictional forces are not included in the calculation, as tightening 

is not mandatory. In the general case, the bolt can be replaced by a pin 

of the two types of stresses, shear stresses are the most dangerous, so only 

shear stress calculations are usually carried out.  

 
Fig. 3.18. Diagram of the calculation of bolts placed in a hole without a slot 

 

Shear strength condition 

𝜏𝑐 =
4𝐹

𝜋𝑑2𝑧𝑖
≤ 𝑧 

then  

𝑑 = √
4𝐹

𝜋𝑘𝑡𝑧𝑖
, 

where i – number of shear planes; i = n - 1, where n – number of joined 

elements; 

z – number of connected bolts; 

kt – allowable shear stresses, MPa.  

 

The resulting value is rounded up to the larger normalized value.  

Compressive strength condition 

general formula 

𝜎𝑐 =
𝐹

𝑑 ∙ 𝑧 ∙ 𝛿𝑚𝑖𝑛𝑘𝑐
 

then 𝑑 = 𝐹

𝑘𝑔𝛿𝑚𝑖𝑛
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for the central element (Fig. 3.18)  

𝜏𝑠 =
𝐹

(𝑑 ∙ 𝛿2)𝑧
≤ 𝑘𝑐 

then 𝑑 = 𝐹

𝑘𝑐𝛿2𝑧
 

 

for the outermost element 

𝜎𝑐 =
𝐹

(2𝑑𝛿1𝑧)
≤ 𝑘𝑐 

then 

 𝑑 = 𝐹

2⋅𝑘𝑐𝛿1𝑧
  

 

where kc – permissible compressive stress of lower strength material, MPa;  

min – minimum thickness of joined parts, mm; 

1, 2 – thickness of joined parts, mm. 

 

The disadvantage of such connections is their high cost due 

to the complexity of the production technology (precise marking, positioning 

and accuracy of bolt production).  

The bolt is tightened with a gap (Fig. 3.19). In this assembly, reliability 

is provided by the frictional forces resulting from the tightening of the bolt, 

but it should not be subjected to external load. If the bolt is subjected 

to an external load in this assembly, reliability is compromised and such 

an assembly is not valid.  

 
Fig. 3.19. Diagram for calculating bolts in clearance holes 

In joints with a gap external loads do not act on the bolt. Therefore, 

the bolt is only calculated for static strength against a tightening force, even 

if the external load is variable. The effect of a variable load is calculated 

by selecting increased values for the safety factor.  

The no displacement condition can be written as: 
𝐹 ≤ 𝑖 ∙ 𝐹𝑡 = 𝑖 ∙ 𝐹𝑑𝑜 ∙ 𝑓 
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where i – number of shear planes (at Fig. 3.19 i = 2, when two elements 

are joined i=1); 

Ft – frictional force between connected parts due to tightening, N; 

f – coefficient of friction at the joint (f  0.15 ÷ 0.20 for steel and cast 

iron dry surfaces); 

Fdo – screw tightening force, N; 

𝐹𝑑𝑜 =
𝐾𝐹

𝑧𝑖𝑓
, 

where K – coefficient of adhesion reserve (K = 1.3 ÷ 1.5 under static load, 

K = 1.8 ÷ 2 under variable load); 

z – number of bolts in the assembly. 

 

The strength condition will take the form 

𝜎𝑟𝑒𝑑 =
1,3 ⋅ 4𝐹𝑑𝑜

𝜋𝑑1
2 ≤ 𝑘𝑟 

then 

𝑑1 = √
5,2𝐹𝑑𝑜
𝜋𝑘𝑟

 

When comparing the cases of placing bolts with and without a gap, it is 

worth noting that the first case is cheaper, as it does not require the accuracy 

of the bolt and hole dimensions. However, the working conditions of the bolt, 

placed with a gap, are worse than without. The design load on the bolt with 

a gap is 5 ÷ 7.5 higher than the external stress. In addition, as a result 

of the instability of the friction coefficient and the complex control 

of tightening, the operation of such connections at offsets is insufficiently stable. 

 

Calculation of pre-tightened joints when assembled  

and loaded with external tensile force 

This case is often found in mechanical engineering for the attachment 

of gearbox covers, tanks, cylinders, bearings (Fig. 3.20) etc. Here, two cases 

are also considered.  

There is no additional tightening of the bolt, so the design load is 

𝐹𝑐𝑎𝑙𝑐 = [1,3𝐾(1 − 𝜒) + 𝜒]𝐹, 

where  – external load factor characterising the susceptibility of the joint 

components ( = 0.2 ÷ 0.3 without seals;  = 0.4 ÷ 0.5 with seals). 
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Fig. 3.20. Strength distribution of the tightened connection 

 

It is possible to tighten the bolt additionally under full external load, 

in which case the design load is  

𝐹𝑐𝑎𝑙𝑐 = 1,3𝐹[𝐾(1 − 𝜒) + 𝜒], 

Strength condition 

𝜎𝑟𝑒𝑑 =
4𝐹𝑜𝑏

𝜋𝑑1
2𝑧
≤ 𝑘𝑟, 

then 

𝑑1 = √
4𝐹𝑜𝑏

𝜋𝑘𝑟𝑧
,  

where i is the number of bolts in the assembly. 

 

Calculation of a torque-loaded joint (couplings, complex gears, etc.). 

This case is similar to the transverse force loading case, the connected 

components are displaced by a circumferential force (Fig. 3.21). Here, two 

cases are also considered (bolts placed without a gap and with a gap). 

 
Fig. 3.21. Diagram of a torque loaded threaded connection  

 

The peripheral force will be 

𝐹𝑡 =
2𝑇

𝐷0
, 

where Т – torque, Nm; 

D0 – diameter of bolt axis, m. 
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The peripheral force Ft is replaced by F in the formulas for connections 

loaded transverse force.  

 

Calculation of assemblies loaded by centrifugal force  

Eccentric loading on the bolt occurs due to the non-parallelism 

of the bearing surfaces of the parts to be joined and the nut or the head 

of the screw, for example, due to the inclination of the channel flange 

(Fig. 3.22, a), errors in the manufacture of bolts, nuts, the use of slotted-head 

screws (Fig. 3.22, b) etc. In all cases, there are bending stresses in the bolt 

core in addition to tensile stresses.  

 

Fig. 3.22. Loading of the joint with centrifugal force 

 

The strength condition will take the form  

𝜎𝑟𝑒𝑑 = 𝜎𝑟 + 𝑠 =
4𝐹𝑜𝑏
𝜋𝑑1

+
32𝐹𝑐𝑎𝑙𝑐х

𝜋𝑑1
3 =

4𝐹

𝜋𝑑1
2 (1 +

8𝑥

𝑑1
) ≤ 𝑘𝑟 

where х – eccentricity value, mm. 

 

The value of the calculated load Fcalc is determined according 

to the formulae for pre-tightened connections when assembled before 

the external load is applied.  

If x = 0.5 d, the thread diameter can be determined  

𝑑1 = 2,24√
4𝐹𝑐𝑎𝑙𝑐
𝜋𝑘𝑟𝑧

 , 

where z – is the number of bolts in connection. 

 

Eccentric loading requires an increase in bolt diameter and a reduction 

in connection strength. In the design and manufacture of the connection 
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construction, it is necessary to avoid eccentric loading or to take measures 

to reduce eccentric loading (planning the bearing surfaces of nuts and screw 

heads, bolts and the use of standard bevel washers).  

Recommended values for permissible stresses, safety factors 

and dimensions for metric threads are given in D.7 ÷ D.9 in the appendix. 
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Examples of calculations 

 

Example 3.9. Determine the diameter of the cut end of the hook 

(Fig. 2.5) if: acting pulsating alternating load F = 10 T; hook material - C35 

steel; nut is screwed on but not tightened.  

 

Data: 

F= 10 T 

material – C35 steel 

pulsating variable load 

Searched for: 

d - ? 

Solution 

1. Determine the permissible stresses. 

Tables D.2 and D.7 for C35 steel taking into account the effect 

of a pulsating load kr = 125 MPa. 

2. From the strength condition we calculate the internal diameter 

of the thread: 

𝑑1 = √
4𝐹

𝜋𝑘𝑟
= √

4 ⋅ 100 ⋅ 103

3.14 ⋅ 125
= 31.9 mm 

Choose a metric thread that can withstand high loads and has high 

friction. According to Table D.8, we take the nearest larger value 

of the internal diameter d = 37.129 mm with a step of p = 4.5 mm, 

the external diameter of the thread d = M42. 

 

Answer: d= M42. 

 

Example 3.10. From the strength condition, determine the diameter 

of bolts in a threaded connection loaded with a variable transverse force 

F = 20 kN. Number of bolts z = 2, number of elements in assembly n = 3, bolt 

strength class 4.8, bolt tightening is uncontrolled. In the first case, the bolts 

are placed without a gap (Fig. 3.18), and in the second case with a gap 

(Fig. 3.19). 
 

Data: 

F = 20 kN 

strength class 4.8 

z = 2 

Searched for: 

d - ? 
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n = 3 

uncontrolled tightening 

case 1 – without gap 

case 2 – with gap 

Solution 

Cas 1 – bolts without gap (Fig. 3.18). 

In a shear-loaded assembly, strength is provided by the bolt core. 

1. Determine the allowable stresses. 

For bolts of strength class 4.8, the yield strength is 

𝑅𝑒 = 4 ∙ 8 ∙ 10 = 320 MPa, so from Table D.7 we will determine the allowable 

shear stress from the formula: 
𝑘𝑐 = (0.2 ÷ 0.3)𝑅𝑒 = (0.2 ÷ 0.3) ∙ 320 = 64 ÷ 96 MPa 

Accept 𝑘𝑐 = 64 MPa. 

2. From the strength condition we determine the diameter of the bolt. 

Several shear planes 𝑖 = 𝑛 − 1 = 3 − 1 = 2. 

𝑑 = √
4𝐹

𝜋𝑘𝑐𝑧𝑖
= √

4 ⋅ 2 ⋅ 103

3.14 ⋅ 64 ⋅ 2 ⋅ 2
≈ 10 mm 

From Table D.53, we adopt a bolt with increased accuracy for mounting 

from under the reamer d1 = 11 mm, at the end of which the thread d = M10 

is arranged.  

Case 2 – bolts with gap (Fig. 3.19). 

When a bolt is positioned with a slot, the immobility of the assembly 

is determined by the frictional forces generated when the bolts 

are tightened. The bolts are subjected to combined loads (tension 

and torsion), so calculations are based on the determination of equivalent 

stresses. 

3. Determine the allowable stresses. 

Taking into account alternating stress and uncontrolled tightening, 

and assuming that the bolt diameter will be in the range M16 ÷ M30 we 

assume [n] = 6.5 (Table D.58). 

𝑘𝑟 =
𝑅𝑒
[𝑛]

=
320

6.5
= 49 MPa 

4. Determine the tightening force of the screw. 

Steel-steel friction coefficient f ≈ 0.17; adhesion reserve coefficient under 

alternating load K = 1.8. 

𝐹𝑑𝑜 =
𝐾𝐹

𝑧𝑖𝑓
=
1.8 ⋅ 20 ⋅ 103

2 ⋅ 2 ⋅ 0.17
= 52941 N 
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5. From the strength condition we determine the internal diameter of the 

thread 

𝑑1 = √
5,2𝐹𝑑𝑜
𝜋𝑘𝑟

= √
5.2 ⋅ 52941

3.14 ⋅ 49
= 42.29 mm 

From Table D.8, we take the nearest larger value 𝑑1 = 42.587 mm, 

for which d = M48. 

Answer: case 1: d1 = 11mm; case 2: d = M48. 

 

Example 3.11. Determine the diameter of the bolts of the flange 

coupling (Fig. 3.21). Variable load, torque moment Т = 1 kNm, bolts 

of strength class 5.6, uncontrolled tightening, number of bolts z = 4, bolt axis 

core diameter D0 =200 mm. In the first case, the bolts are set without a gap 

and in the second case with a gap.  

 

Data: 

T = 1 kNm 

strength class 5.6 

z = 4 

D0 = 200 mm 

uncontrolled tightening 

case 1 – without gap 

case 2 – with gap 

Searched for: 

d – ? 

Solution 

Case1 – bolts without gap 

1. Determine the allowable stresses 

For bolts of strength class 5.6, the yield strength is  
𝑅𝑒 = 5 ∙ 6 ∙ 10 = 3000 MPa, 

so from Table D.7 we determine the allowable shear stress from the ratio 
𝑘𝑡 = (0.2 ÷ 0.3)𝑅𝑒 = (0.2 ÷ 0.3) ∙ 300 = 60 ÷ 90 MPa 

We assume kt =60 MPa. 

2. Determine the peripherical force acting on the assembly: 

1000 Nm = 106 Nmm,  

𝐹𝑡 =
2Т

𝐷0
=
2 ⋅ 106

200
= 10000 N 

3. From the strength condition we determine the diameter of the bolt 

Bumble of shear planes 𝑖 = 𝑛 − 1 = 2 − 1 = 1. 
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𝑑 = √
4𝐹𝑡
𝜋𝜏𝑎𝑣𝑧𝑖

= √
4 ⋅ 104

3.14 ⋅ 60 ⋅ 4 ⋅ 1
≈ 7.3 mm 

From Table D.53, we adopt a bolt with increased accuracy for mounting 

from under the reamer d1 = 9 mm at the end of which the thread d = M8 

is arranged.  

Case 2 – bolts with a gap (Fig. 3.21) 

1. Determine the allowable stresses 

Taking into account variable stress and uncontrolled tightening, 

and assuming that the bolt diameter will be in the range M16 ÷ M30, we 

assume [n] = 6.5  (Table D.58). 

𝑘𝑟 =
𝑅𝑒
[𝑛]

=
300

6.5
= 46 MPa 

2. Determine the bolt tightening force. 

Steel-steel friction coefficient f ≈ 0.17; adhesion reserve coefficient under 

alternating load K = 1.8. 

𝐹𝑑𝑜 =
𝐾𝐹𝑡
𝑧𝑖𝑓

=
1.8 ⋅ 104

4 ⋅ 1 ⋅ 0.17
= 26471 N 

3. From the strength condition we determine the internal diameter 

of the thread 

𝑑1 = √
5,2𝐹𝑑𝑜
𝜋𝑘𝑟

= √
5,2 ⋅ 26471

3,14 ⋅ 46
= 30,87 mm 

From Table D.8, we take the nearest higher value of d1 = 31.670 mm, 

for which d = M36. 

This case demonstrates the desirability of installing bolts in target 

couplings without a gap. 

 

Answer: case 1: d1 = 9 mm; case 2: d1 = M36. 

 

Example 3.12. Determine the number of bolts in an assembly, loaded 

with a constant transverse tension F = 50 kN. The bolts are assembled with 

a gap (Fig. 3.19), number of fasteners n = 3, bolt diameter d = М24, 

uncontrolled tightening, bolt material C10 steel. 

 

Data: 

F = 50 kN 

d = M24 

n = 3 

Searched for: 

z - ? 
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constant load 

uncontrolled tightening 

Solution 

1. Determine the allowable stresses. 

From Table D.1 for C10 steel Re = 210 MPa. 

From Table D.6 considering constant load and uncontrolled tightening for 

carbon steels in the size range M16 ÷ M30 we assume [n] = 3, then the 

allowable stresses 

𝑘𝑟 =
𝑅𝑒
[𝑛]

=
210

3
= 70 MPa 

2. From the strength condition we specify the number of bolts 

Steel-steel friction coefficient f  0.17; coefficient of adhesion under 

constant load K = 1.3; number of shear planes 𝑖 = 𝑛 − 1 = 3 − 1 = 2. From the 

Table D.9 for bolt M24 d1 = 20.752 mm. 

𝑧 =
5,2𝐾𝐹

𝑖𝑓𝜋𝑑1
2𝑘𝑟

=
5.2 ⋅ 1.3 ⋅ 50 ⋅ 103

2 ⋅ 0.17 ⋅ 3.14 ⋅ 20.7522 ⋅ 70
= 10.5 

We assume the number of bolts at the assembly z = 12. 

Answer: z = 12. 

 

Example 3.13. What is the maximum load that a screw connection 

loaded with a constant transverse force can withstand, where bolts 

are installed without gap (Fig. 3.18). Number of bolts z = 4, bolt diameter 

d = 17 mm, material of bolt – C35 steel (Re = 320 MPa), number of elements 

in connection n = 2. 

 

Data: 

d = 17 mm 

z = 4 

material – C35 steel 

Re = 320 MPa 

n = 2 

constant load 

Searched for: 

F - ? 

Solution 

1. Calculate the permissible stresses. 

With static load from the Table D.7 
𝑘𝑡 = 0.4𝑅𝑒 = 0.4 ∙ 320 = 128 MPa 

2. From the strength condition we determine the permissible load 



190 
 

𝐹 ≤
𝑘𝑡𝜋𝑑1

2𝑧𝑖

4
=
128 ⋅ 3.14 ⋅ 172 ⋅ 4 ⋅ 1

4
= 116155 N 

Answer: F = 116155 N. 

 

Example 3.14. Determine the diameter of the bearing connection 

shield bolts (Fig. 3.20), subjected to a constant axial load of F = 12.5 kN. 

A number of bolts z = 6, material – C35 steel (Re = 320 MPa), bolts were 

installed with a gap and tightened before the load was applied. Consider two 

cases: case 1 – without tightening of bolts under load; case 2 – with tightening 

of bolts under load. 

 

Data: 

F = 12.5 kN 

z = 6 

material – C35 steel 

Re = 320 MPa 

constant load 

Searched for: 

d -? 

Solution 

1. Determine the allowable stresses 

From Table D.6 with consideration of constant load and uncontrolled 

tightening for carbon steels in the size range M6 ÷ M16 we assume [n] = 4, 

then the allowable stresses 

𝑘𝑟 =
𝑅𝑒
[𝑛]

=
320

4
= 80 MPa 

2. Determine the design force for case 1 – without tightening the bolts 

under load. 

We take into account the soft gasket and assume  = 0.4, the adhesion 

reserve factor under constant load is assumed to be K = 1.3. 
𝐹𝑐𝑎𝑙𝑐 = [1.3𝐾(1 − 𝜒) + 𝜒]𝐹 = [1.3 ⋅ 1.3(1 − 0.4) + 0.4] ⋅ 12.5 ⋅ 10

3 = 17675 N. 
3. From the strength condition determine the inner diameter of the screw 

thread 

𝑑1 = √
4𝐹𝑐𝑎𝑙𝑐
𝜋𝑘𝑟𝑧

= √
4 ⋅ 17675

3.14 ⋅ 80 ⋅ 6
= 6.85 mm 

From Table D.8, we take the nearest larger value of d1 = 8.376 mm, which 

corresponds to the outside diameter of the M10 thread. 

4. Determine the design force for case 2 – with bolts tightened under load 
𝐹𝑐𝑎𝑙𝑐 = 1.3𝐹[𝐾(1 − 𝜒) + 𝜒] = 1.3 ⋅ 12.5 ⋅ 10

3[1.3(1 − 0.4) + 0.4] = 19175 N 
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5. From the strength condition we determine the internal diameter 

of the screw thread 

𝑑1 = √
4𝐹𝑐𝑎𝑙𝑐
𝜋𝑘𝑟𝑧

= √
4 ⋅ 19175

3.14 ⋅ 80 ⋅ 6
= 7.13 mm 

From Table D.8, we take the nearest larger value d1 = 8.376 mm, which 

corresponds to the outside diameter of the M10 thread. The bolt diameter 

is within the range M6 ÷ M16 for which a safety factor has been determined. 

 

Answer: for cases 1 and 2 d = M10. 

 

 Example 3.15. Determine the force that must be applied to the spanner 

when turning the nut (Fig. 3.13) for the bolt to reach its yield point Re = 210 MPa 

(C10 steel). Perform the calculation for an M24 bolt. Assume l = 15d, 

for the handle length of the spanner, friction coefficient in the thread at the end 

of the nut f = 0.15. 

 

Data: 

d = M24 

material - C10 steel 

Re = 210 MPa 

f = 0.15 

l = 15d 

Searched for: 

Fk - ? 

Solution 

1. From Table D.8 take the necessary dimensions for the calculation: 

d = 24 mm; d1 = 20.752 mm; d2 = 22.051 mm; p = 3 mm, we determine the 

angle of elevation of the thread according to the formula  

𝜑 = 𝑎𝑟𝑐𝑡𝑔
𝑝

𝜋𝑑2
= 𝑎𝑟𝑐𝑡𝑔

3

3.14 ⋅ 22.051
= 2∘30′ 

2. From the strength condition, determine the tightening force for the bolt 

at which there is a stress in the core equal to the yield strength 

𝐹𝑑𝑜 =
𝜋𝑑1

2𝑅𝑒
5.2

=
3.14 ⋅ 20.7522 ∙ 210

5.2
= 54625 N 

3. Determine the tightening torque applied to the nut 

Before that, we determine the friction angle 

𝜌 = 𝑎𝑟𝑐𝑡𝑔
𝑓

𝑐𝑜𝑠 𝛼
= 𝑎𝑟𝑐𝑡𝑔

0,15

𝑐𝑜𝑠 60° 2⁄
= 9∘50′ 
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𝑀𝑧𝑎𝑘 = 𝐹𝑑𝑜
𝑑2

2
[
𝐷𝑎𝑣

𝑑2
𝑓 + 𝑡𝑔(𝜑 + 𝜌)] =  

= 54625
22.051

2
[
33.6

22.051
⋅ 0.15 + 𝑡𝑔(2∘30′ + 9∘50′)] = 258975 Nmm ≈ 259 Nm 

4. Determine the force to be applied 

𝐹𝑘 =
М𝑧𝑎𝑘

𝑙
=  258975/1524 =  719.4 N 

Yield in strength 
𝐹𝑑𝑜

𝐹𝑘
=

54625

719.4
≈ 76 times 

Answer: Fk = 719.4 N. 
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Individual task 

(calculation) 

 

Task 3.4. Determine the force to be applied to the spanner when 

turning the nut (Fig. 3.13) so that the stress in the bolt rod reaches its yield 

point. Take the length of the handle of the spanner to be l = 15d, coefficient 

of friction at the end in the thread of the nut f = 0,15. The data to calculation 

is shown in Table 3.4. 
Table 3.4. Initial data for Task 3.4 

Var. 

no 

Diameter 

mm 
Thread type Re , MPa 

1 М8 metric 210 

2 M10 metric 230 

3 M12 metric 240 

4 М16 metric 260 

5 M20 metric 280 

6 M22 metric 320 

7 М30 metric 340 

8 M32 metric 360 

9 M36 metric 380 

10 М42 metric 220 

11 M16 metric 180 

12 М20 metric 210 

13 М22 metric 360 

14 M30 metric 400 

15 M10 metric 420 

16 М10 metric 460 

17 M12 metric 480 

18 M16 metric 500 

19 М20 metric 315 

20 M22 metric 215 

21 M30 metric 415 

22 М32 metric 435 

23 M36 metric 265 

24 M42 metric 245 

25 М16 metric 325 

26 M8 metric 235 

27 M10 metric 225 

28 М12 metric 185 

29 M16 metric 210 

30 M20 metric 200 
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Task 3.5. Determine the diameter of the flange coupling bolts 

(Fig. 3.21). Uncontrolled tightening. In the first case, the bolts are set without 

a gap, and in the second case with a gap. The initial data is shown in Table 3.5. 

 
Table 3.5. Initial data for Task 3.5 

Var. 

no 

Load 

kNm 

Number 

of screws 
D0, 

mm 

Bolt 

strength 

class 

The character 

of the load 
Т z 

1 0.5 4 220 3.6 Constant 

2 0.6 6 230 4.6 Variable 

3 0.7 8 240 4.8 Constant 

4 0.8 4 250 5.6 Variable 

5 0.9 6 260 5.8 Constant 

6 1 8 280 6.6 Variable 

7 1.2 4 290 6.8 Constant 

8 1.3 6 300 6.9 Variable 

9 1.4 8 310 8.8 Constant 

10 1.5 4 315 10.9 Variable 

11 1.6 6 320 3.6 Constant 

12 0.3 8 325 4.6 Variable 

13 0.6 4 330 4.8 Constant 

14 0.8 6 340 5.6 Variable 

15 0.5 8 350 5.8 Constant 

16 0.6 4 345 6.6 Variable 

17 0.7 6 360 6.8 Constant 

18 0.8 8 200 6.9 Variable 

19 0.9 4 210 8.8 Constant 

20 1 6 220 10.9 Variable 

21 1.2 8 230 3.6 Constant 

22 1.3 4 240 4.6 Variable 

23 1.4 6 250 4.8 Constant 

24 1.5 8 260 5.6 Variable 

25 1.6 4 280 5.8 Constant 

26 0.3 6 290 6.6 Variable 

27 0.6 8 300 6.8 Constant 

28 0.8 4 310 6.9 Variable 

29 0.5 6 315 8.8 Constant 

30 0.6 8 320 10.9 Variable 
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Task 3.6. Determine the diameter of the bearing unit cover screws 

(Fig. 3.20) and check the strength of the thread and screw head. The screws 

were set with a gap and tightened before the load was applied. The depth 

of the screw was taken to be Н = 1.2d. Consider two cases: case 1 – 

no tightening under load; case 2 - no tightening of screws under load. 

The data to calculations is shown in Table 3.6. 

 
Table 3.6. Initial data for Task 3.6 

Var. no 

Load 

kN 

Number 

of screws 
Bolt strength 

class 

The 

character 

of the load Fa z 

   1 10 4 5.6 Constant 

   2 11 6 5.8 Variable 

          3 12 8 6.6 Constant 

   4 12.5 10 6.8 Variable 

   5 14 4 6.9 Constant 

   6 14.5 6 8.8 Variable 

    7 15 8 10.9 Constant 

    8 16 10 3.6 Variable 

9 10.5 4 4.6 Constant 

10 11 6 4.8 Variable 

11 8 8 5.6 Constant 

12 10 10 5.8 Variable 

13 9 4 6.6 Constant 

14 10 6 6.8 Variable 

15 11 8 3.6 Constant 

16 12 10 4.6 Variable 

17 12.5 4 4.8 Constant 

18 14 6 5.6 Variable 

19 14.5 8 5.8 Constant 

20 15 10 6.6 Variable 

21 16 4 6.8 Constant 

22 10.5 6 6.9 Variable 

23 11 8 8.8 Constant 

24 8 10 10.9 Variable 

25 10 4 3.6 Constant 

26 9 6 4.6 Variable 

27 10 8 4.8 Constant 

28 11 10 5.6 Variable 

29 12 4 5.8 Constant 

30 12.5 6 6.6 Variable 
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3.3. Calculation of keyed and splined connections 

 

General information 

Keyed and splined connections are used to connect shafts and rotating 

axles (gears, pulleys, sprockets and other components), to transmit torque 

from the shaft to the hub of the mounted component and vice versa, 

and to move workpieces along shafts along an axis. 

Keyed connections (Fig. 3.23, а) comprise a shaft (2), a key (1) 

and a hub (3) (wheel, pulley or other component). The key is a steel wedge 

that is inserted into the grooves of the shaft and hub.  

 
 a b 

Fig. 3.23. Keyed (a) and splined (b) connections 

 

Spline connections (fig. 3.23, b) are formed by the specific shape 

of the projections (keys) on the shaft and the corresponding pits (splines) 

in the hub. The working surfaces are the sides of the keys. These connections 

can be considered splines if the grooves are made as a whole with the shaft. 

 

Basic calculation formulae 

Keyway connections 

The primary performance criterion for keyed connections is strength. 

From the strength condition, verification calculations can be carried out 

by determining the design stresses and comparing them with the allowable 

or determining allowable moment, and design calculations by determining 

the geometrical dimensions of the connections (usually the length 

of the keyway is determined). 

The prismatic keyway connection (Fig. 3.24) is calculated from 

the wedge compressive strength condition. 
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Fig. 3.24. Prismatic key connection 

  

Strength condition 

𝑐 =
12𝑇 ⋅ 103

(𝑏 + 6𝑓𝑑)𝑏 ⋅ 𝑙𝑟
≤ 𝑘𝑐 , 

where Т – torque, Nm;  

d – shaft diameter, mm;  

b – wedge width, mm;  

lr – length of the working part of the wedge, mm;  

f – coefficient of friction; for steel and cast iron 0.15 ÷ 0.2;  

kc – allowable compressive stresses, MPa (Table D.9). 

 

The complexity of making wedges and grooves, the occurrence 

of assembly stresses, radial displacement and skewing of products limits 

their use. 

The tenon groove connection (Fig. 3.25) is calculated from the wedge 

compressive strength condition. 

 
Fig. 3.25. Tenon groove connection 
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Strength condition: 

𝑐 =
4𝑇 ⋅ 103

𝑑𝑑𝑘𝑙𝑘
≤ 𝑘𝑐 , 

where d – shaft diameter, mm;  

dk – wedge diameter, mm;  

lk – key length, mm. 

 

The geometric dimensions of the key are either determined from 

the strength condition or taken from the relationship: 

Key diameter  
𝑑𝑘 = (0,13 ÷ 0,16)𝑑𝑤, 

where dw - shaft diameter, mm. 

 

The length of the wedge is taken as l = (3 ÷ 4) dk or determined 

by the length of the hub. 

Tenon wedges are manufactured by PN-EN ISO 2338:2003 and PN-EN 

ISO 8735:2003. For heavy loads, two 180 ° or three 120 ° keys are used. 

It is worth bearing in mind that this considerably weakens the cross-section 

of the shaft, especially under impact and fluctuating loads.  

The tangential keyway connection (Fig. 3.26) is also calculated 

from the compressive strength condition.  

 
Fig. 3.26. Tangential groove connection  

 

Strength condition for tangential keyway connection:  

𝑐 =
𝑇 ⋅ 103

(0.45 +
2
𝜋 𝑓)𝑑𝑙𝑟

(𝑡 − 𝑐)
≤ 𝑘𝑐 

where t – is the width of the working edge of the wedge, it is equal 

to the depth of the keyway on the shaft, mm;  

с – chamfer of wedge, mm. 
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In such connections, the keyway is subjected to compressive stresses, i.e. 

it operates under more favourable conditions than other wedges. 

The dimensions of the wedges and keys are selected according 

to ISO 3117:1977. The stress is applied by the relative axial displacement 

of the wedges. Ordinary wedges are positioned at an angle of 120 ÷ 135 °. 

 

Prismatic keyway connections (Fig. 3.27) 

For the transmission of torque, there are compressive stresses 

on the lateral surfaces of the wedges and keyways c  and shear stresses 

in the cross-section of the wedge c. Since the dimensions of the keyways 

and keys in the standard are selected according to the compressive strength 

condition, the primary calculation is a compression calculation. Shear 

calculations are in most cases not carried out. 

  
Fig. 3.27. Calculation diagram for a prismatic keyway connection 

 

With precise calculations, the strength condition is as follows: 

𝑐 =
2𝑇 ⋅ 103

𝑑(0,95ℎ − 𝑡)𝑙𝑟
≤ 𝑘𝑐 

where Т – torque, Nm;  

d – shaft diameter, mm;  

h – key height, mm; 

t – shaft keyawy depth, mm (h and t from the Table D.11);  

lr – working length of wedge, mm: 

- for wedges with rounded edges 𝑙𝑟 = 𝑙 − 𝑏 (Fig. 3.28, c); 

- for wedges with rounded edges 𝑙𝑟 = 𝑙 (Fig. 3.28, а); 

- for wedges with one flat end and one rounded end 𝑙𝑟 = 𝑙 −
𝑏

2
 

(Fig. 3.28, b), 

where l – total length of the wedge (Table D.12), mm; 

b – ker width, mm; 
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0.95 –reduction factor for the chamfer height of the working wedge, 

f  0,05h. 

 

With an average precision of calculation, the strength condition is as follows: 

𝑐 =
2𝑇 ⋅ 103

𝑑(ℎ − 𝑡)𝑙𝑟
≤ 𝑘𝑐 

 
Fig. 3.28. Basic types of prismatic inlets 

 

Shuttle keyway connection (Fig. 3.29) 

Such a joint is verified for compressive and shear strength because 

such a wedge is narrow (the height is significantly greater than the width 

of the wedge) and there is a danger of shearing.  

 
Fig. 3.29. Calculation diagram for shuttle keyway connection 

 

Compressive strength condition: 

𝑐 =
2𝑇103

𝑑(ℎ − 𝑡)𝑙
≤ 𝑘𝑐 , 

where h – key high, mm; t – shaft keyway depth, mm; l – wedge lenght, mm. 

 

Shear strength condition (can be also applied to prismatic wedges): 

𝜏𝑐 =
2𝑇103

𝑑𝑏𝑙
≤ 𝑘𝑡 , 

where b – wedge width, mm;  

kt – allowable shear stresses, MPa (Table D.9);  
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for prismatic wedges, l is used instead of lr – wedge working length, mm.  

 

The key sizes (including length) and grooves are selected according 

to shaft diameter PN 85008 (Table D.13). The working edges are the edges 

of the wedge. 

 

Spline connections (Fig. 3.30) 

The primary performance criterion for spline connections is strength. 

Spline connections fail due to damage to the working surfaces of the teeth: 

wear, crushing, galling and fracture of the spline shafts and teeth. The basic 

dimensions of the connection are selected from standardised tables 

depending on the shaft diameter and then checked by calculation. 

 
Fig. 3.30. Calculation scheme for spline connections 

 

The tooth dimensions in the standards are taken from the compressive 

strength condition, so the primary calculation to check spline joints 

is in compression. Spline joints are not checked in shear. When calculating 

for strength, it is assumed that the loads are distributed uniformly 

in the lateral surfaces of the splines, but due to manufacturing inaccuracies, 

0.75 of the total number of splines are involved in the work. 

Condition for the compressive strength of a splined connection: 

𝑐 =
2𝑇 ⋅ 103

0,75𝑧𝑑𝑎𝑣ℎ𝑙
≤ 𝑘𝑐 , 

where Т – torque, Nm;  

0.75 – uneven load factor between splines;  

z – number of inlets;  

dav – average diameter of the connection, mm: 

- for rectangular profile 𝑑𝑎𝑣 =
𝐷+𝑑

2
; 
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- for an involute profile 𝑑𝑎𝑣 = 𝑚 ∙ 𝑧; 

D – external diameter of wedges, mm;  

h – splines contact surface height, mm: 

- for rectangular profile ℎ =
𝐷−𝑑

2
− 2 ⋅ 𝑓; 

- for an involute profile 𝑓 = 𝑚; 

f – chamfering the wedge;  

l – length of the tooth contact surface, which is equal to the length of the hub, 

mm; 

𝑘𝑐 – allowable compressive stress of the wedge material, MPa 

(Table D.10). 

The dimensions D, d, z, m, and f are selected from Tables D.14 and D.15. 

 



203 
 

Examples of calculations 

 

Example 3.16. Check the strength condition in formed joints: 

1. tenon wedge (Fig. 3.25);  

2. prismatic wedge, with rounded edges (Fig. 3.27 and Fig. 3.28, c);  

3. shuttle wedge (Fig. 3.29);  

4. splines with rectilinear profile (Table D.14);  

5. splines with a revolute profile (Table D.15). 

If: torque Т = 1.2 kNm; shaft diameter d = 40 mm; hub width B = 60 mm; hub 

material – steel. Stationary connections, variable load; transition keyways; 

surfaces without heat treatment. 

 

Data: 

T = 1.2 kNm 

d = 40 mm 

B = 60 mm 

material – steel 

transition keyways 

variable load 

stationary connection 

Searched for: 

σc - ? 

τc - ? 

Solution  

1. Write down the strength conditions depending on the type 

of connection: 

(a) pivot key 

𝑐 =
4𝑇 ⋅ 103

𝑑𝑑𝑘𝑙𝑘
≤ 𝑘𝑐 

(b) prismatic key 

𝑐 =
2𝑇 ∙ 103

𝑑(ℎ − 𝑡)𝑙𝑟
≤ 𝑘𝑐 

(c) shuttle key 

𝑐 =
2𝑇 ∙ 103

𝑑(ℎ − 𝑡)𝑙
≤ 𝑘𝑐 

𝑐 =
2𝑇 ∙ 103

𝑑𝑏𝑙
≤ 𝑘𝑡 

(d) splined connection 

𝜎𝑐 =
2Т ⋅ 103

0,75𝑧𝑑𝑎𝑣ℎ𝑙
≤ 𝑘𝑐 
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2. Determine the unknown values necessary to calculate the strength 

condition. 

2.1. Determine the allowable stresses for the wedges: 

Taking into account the nature of the connections, the load and the hub 

material from Table D.10:  kc = 100 MPa; kt = 70 MPa. 

2.2. Determine the allowable stresses for spline connections: 

- taking into account the nature of the connection, the load, the hub 

material and the surface condition from Table D.10: kc = 60 MPa; 

2.3. Define the geometrical parameters of the keys:  

(a) pivot  

- the diameter of the gully is determined by the relationship:  
𝐷𝑘 = (0.13 ÷ 0.16)𝑑𝑤 = (0.13 ÷ 0.16) ∙ 40 = 5.0 ÷ 6.4 mm 

Taking into account the high load for such a shaft diameter, we adopt 

a keyway diameter to reduce the weakening of the shaft cross-section:  
𝑑𝑘 = 10 mm 

- the keyway length is assumed to be the width of the component hub:  
𝑙𝑘 = 𝐵 = 60 mm 

(b) prismatic with rounded edges 

- for shaft diameter d = 40 mm from the Table D.11 we take b = 12 mm; 

h = 8 mm; t = 5 mm. 

- the length of the keyway is taken into account about the hub width 

of the component for the standard length series in Table D.12: l = 56 mm.  

Given that the wedge has rounded edges, the working length will be 

𝑙𝑟 = 𝑙 − 𝑏 = 56 − 12 = 44 mm. 

(c) shuttle 

- for shaft diameter d = 40 mm from the Table D.13 we take: b = 12 mm; 

h = 19 mm, l = 59,1 mm; t = 16 mm.  

2.4. Determine the geometric parameters of the spline connection: 

(a) with a rectangular profile 

Given the heavy load for such a shaft diameter, we adopt a heavy series. 

For a shaft diameter of D = 40 mm (the external diameter of the spline 

connection is denoted by D), we take   
𝑧 · 𝑑 ∙ 𝐷 = 10 ∙ 32 ∙ 42 mm;  𝑓 =  0.4 mm.  

- the length of the keyways is assumed to be equal to the hub width 

l = В = 60 mm. 

- average diameter of connection: 

𝑑𝑎𝑣 =
𝐷 + 𝑑

2
=
40 + 32

2
= 36 mm 
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- height of wedge contact surface: 

ℎ =
𝐷 − 𝑑

2
− 2 ⋅ 𝑓 =

40 − 32

2
− 2 ⋅ 0.4 = 3.2 mm 

(b) with an evolvente profile 

For a shaft diameter of d = 40 mm from Table D.15 we take z = 18; 

m = 2 mm (taking into account the heavy load). We take the length 

of the wedges equal to the hub width l = В = 60 mm. 

- average diameter of connection: 
𝑑𝑎𝑣 = 𝑚 ∙ 𝑧 = 2 ∙ 18 = 36 mm 

- contact key surface height:  
ℎ ≈ 𝑚 = 2 mm 

3. We determine the design stresses and compare them with the allowable 

stresses:   

(а) pivot key 

𝑐 = 
4𝑇 ⋅ 103

𝑑𝑑𝑘𝑙𝑘
=
4 ⋅ 1.2 ⋅ 106

40 ⋅ 10 ⋅ 60
= 200

N

mm2
= 200 MPa > 𝑘𝑐 = 100 MPa  

condition is not met 

(b) prismatic key 

𝑐 =
2𝑇 ⋅ 103

𝑑(ℎ − 𝑡)𝑙𝑟
=

2 ⋅ 1.2 ⋅ 106

40 ⋅ (8 − 5) ⋅ 44
= 455

N

mm2
= 455 MPa > 𝑘𝑐  = 100 MPa 

condition is not met 

 (c) shuttle key 

𝑐 =
2𝑇⋅103

𝑑(ℎ−𝑡)𝑙
=

2⋅1.2⋅106

40⋅(19−16)⋅59.1
= 339 

N

mm2 = 455 MPa > 𝑘𝑐  = 100 MPa  

condition is not met 

𝑐 =
2Т ⋅ 103

𝑑𝑏𝑙
=
2 ⋅ 1,2 ⋅ 106

40 ⋅ 12 ⋅ 59.1
= 85 

N

mm2
= 85 MPa > 𝑘𝑡  = 70 MPa 

condition is not met 

 (d) spline connection 

- with a rectangular profile 

𝑐 =
2 ⋅ 1.2 ⋅ 106

0.75 ⋅ 10 ⋅ 36 ⋅ 3.2 ⋅ 60
= 46

N

mm2
= 46 MPa < 𝑘𝑐  = 60 MPa 

condition is met 

- with an involute profile 

𝑐 =
2Т ⋅ 103

0,75𝑧𝑑𝑎𝑣ℎ𝑙
=

2 ⋅ 1.2 ⋅ 106

0.75 ⋅ 18 ⋅ 36 ⋅ 2 ⋅ 60
= 41 

N

mm2
= 41 MPa < 𝑘𝑐 = 60 MPa 

condition is met 

Conclusion: Only spline connections can be used for the assumed load 

and operating mode. 
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Example 3.17. Determine the torque which can transmit the shuttle 

keyway connection (Fig. 3.29) with shaft diameter d = 25 mm. Hub material 

- steel, constant load. 

 

Data: 

d = 25 mm 

material – steel 

constant load 

Searched for: 

[T] - ? 

Solution  

1. Define the geometrical parameters of the connection. 

From Table D.13 for a shaft diameter of d = 25 mm we takey b = 8; 

h = 11 mm; l = 27.3 mm; t = 8 mm.  

2. Determine the permissible torque: 

(a) from the compressive strength condition: 

From Table D.9 we take kc = 150 MPa; i= 100 MPa; 

[𝑇] ≤
𝑑(ℎ − 𝑡)𝑙𝑘𝑐

2
=
25 ⋅ (11 − 8) ⋅ 27.3 ⋅ 150

2
= 153.5 ⋅ 103  = 153 Nm 

(b) from the shear strength condition: 

[𝑇] ≤
𝑑𝑏𝑙𝑘𝑡
2

=
25 ⋅ 8 ⋅ 27.3 ⋅ 100

2
= 273 ⋅ 103 Nmm = 273 Nm 

Answer: Largest torque that can be carried by a shuttle key connection 

[Т] ≤ 153.5 Nm (we assume lower). 

 

Example 3.18. From the strength condition, determine the length 

of a prismatic key with rounded edges (Fig. 3.28, a). Torque Т = 290 Nm, 

diameter d = 40 mm, hub material cast iron, variable load.  

 

Data: 

T = 290 Nm 

d = 40 mm 

material – cast iron 

variable load 

Searched for: 

l - ? 

Solution  

1. Define the geometrical parameters of the connection.  

From Table D.12 for a shaft diameter d = 40 mm, we assume 

b = 12; h = 11 mm; t = 7 mm. 

2. Determine the allowable stresses. 
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From Table D.9 we take kc = 60 MPa. 

3. From the compressive strength condition we determine the width 

of the keyway 

𝑙𝑟 ≥
2Т ⋅ 103

𝑑(ℎ − 𝑡)𝑘𝑐
=

2 ⋅ 290 ⋅ 103

40 ⋅ (11 − 7) ⋅ 60
= 60.4 mm 

The final value is taken with a standard length series, according 

to the form of the wedge edge, then  
𝑙 = 𝑙𝑘 + 𝑏 = 60.4 + 12 = 72.4 mm 

Taking into account the standard values for wedge lengths, we assume  
𝑙 = 80 m 

Answer: l = 80 mm. 

 

Example 3.19. Check the strength of a keyed joint with a flat-edged 

wedge (Fig. 3.24). Shaft diameter d = 80 mm, torque Т = 2000 Nm, hub length 

l = 50 mm, hub material cast iron, constant load. 

 

Data: 

T = 2000 Nm 

d  = 80 mm 

l = 50 mm 

material – cast iron 

constant load 

Searched for: 

σc - ? 

Solution  

1. We define the geometrical parameters of the connection. 

According to ISO/R 774:1996–80 for shaft diameter d = 80 mm, we 

assume b = 22 mm; h = 14 mm; the working length is assumed to be 5 mm 

less than the hub length lr = 45 mm. 

2. Determine the allowable stresses. 

From Table D.9 we assume kc = 90 MPa. 

3. We determine the design stresses and compare them with the 

permissible ones (friction coefficient of steel against cast iron f = 0,18): 

𝑐 =
12Т ⋅ 103

(𝑏 + 6𝑓𝑑)𝑏 ⋅ 𝑙𝑟
=

12 ⋅ 2 ⋅ 106

(22 + 6 ⋅ 0.18 ⋅ 80)22 ⋅ 45
= 224

N

mm2
= 224 MPa > 𝑘𝑐 = 90 MPa 

The strength condition is not met. 

 

Conclusion: the considered connection will not work under these 

conditions. 
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Individual tasks 

(calculation) 

 

Task 3.7. Check the strength of the keyway connection. The data 

for the calculations is shown in Table 3.7. 

 
 Table 3.7. Initial data for Task 3.7 

Var. 

no 

Shaft 

diameter  

d, mm 

Torque Т, 

Nm 
Key type 

Hub 

material 

Hub 

length  

l, mm 

The 

character 

of the load 

1 45 100 

Prismatic with 

rounded edges 

 

Steel 

60 

Constant 

2 55 128 70 

3 75 205 70 

4 60 145 50 

5 85 230 75 

6 30 95 

Round 

 
Cast iron  

- 

Variable 

7 50 125 - 

8 70 260 - 

9 60 300 - 

10 80 450 - 

11 15 75 

Dugout 

 
Steel 

40 

Constant 

12 20 80 50 

13 25 60 60 

14 32 110 40 

15 42 220 60 

16 115 400 

Prismatic with flat 

edges 

 

Cast iron 

80 

Variable  

17 52 163 60 

18 62 95 75 

19 20 80 40 

20 28 90 100 

21 18 65 

Dugout Steel 

40 

Constant 

22 44 85 50 

23 30 50 42 

24 35 145 38 

25 12 65 60 

26 165 620 
Prismatic with flat 

edges on one side 

and a rounded end 

on the other 

Cast iron 

75 

Variable  

27 100 530 110 

28 125 480 115 

29 90 280 130 

30 145 800 95 
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Taske 3.8. From the strength condition, determine the greatest 

moment that the given connection can transmit. The data for calculations 

is shown in Table 3.8. 

 
Table 3.8. Initial data for Task 3.8 

Var. 

no 

Shaft 

diameter 

d, 

mm 

Key type 
Hub 

material 

Hub 

length 

l, mm 

Load 

character 

Type 

of connection 

1 30 Prismatic with 

flat edges on one 

side and 

rounded end on 

the other 

Cart iron 

80 

Variable Stationary 

2 50 60 

3 70 75 

4 60 40 

5 80 100 

6 18 

 

Dugout 

 

Steel 

40 

Constant Stationary 

7 35 50 

8 44 60 

9 30 40 

10 12 60 

11 75 

 

Round 

 

Cart iron 

75 

Constant Stationary 

12 60 110 

13 85 115 

14 30 130 

15 50 95 

16 65 
 

Prismatic with 

flat edges 

 

Cart iron 

75 

Constant Stationary 

17 70 40 

18 85 100 

19 125 40 

20 115 50 

21 22 

 

Dugout 

 

Steel 

- 

Constant Stationary 

22 32 - 

23 42 - 

24 16 - 

25 20 - 

26 45 

Prismatic with 

rounded edges 
Steel 

40 

Variable Movable 

27 35 55 

28 95 65 

29 100 90 

30 125 85 
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Task 3.9. Check the strength of the splined connection. Operating 

conditions are good. The data for calculationa is shown in Table 3.9. 

 
Table 3.9. Initial data for Task 3.9 

Var. 

no 

Shaft 

diameter 

d, 

mm 

Torque 

Т, 

Nm 

Key 

profile 

Tooth 

surface 

Hub 

length 

l, mm 

Load 

character 

Type 

of connection 

1 11 70 

Straight 

line 

 

Without 

heat 

treatment 

 

60 

C
o

n
st

an
t 

St
at

io
n

ar
y 

2 82 110 70 

3 62 120 70 

4 32 130 50 

5 112 180 75 

6 120 190 

Evolvent 

 

With heat 

treatment 

 

75 

V
ar

ia
b

le
 

M
o

va
b

le
 

u
n

d
er

 lo
ad

 

7 200 800 110 

8 15 65 115 

9 70 230 130 

10 30 195 95 

11 21 300 

Straight 

line 

 

Without 

heat 

treatment 

 

40 
H

ig
h

-

fr
eq

u
en

cy
 

vi
b

ra
ti

o
n

  

St
at

io
n

ar
y 

12 16 135 50 

13 56 420 60 

14 92 220 40 

15 46 175 60 

16 170 330 

Evolvent 

 

With heat 

treatment 

 

40 

C
o

n
st

an
t 

St
at

io
n

ar
y 

17 22 115 50 

18 65 135 60 

19 12 85 40 

20 140 210 60 

21 13 100 

Straight 

line 

 

Without 

heat 

treatment 

 

60 

C
o

n
st

an
t 

St
at

io
n

ar
y 

22 16 110 70 

23 23 120 70 

24 72 145 50 

25 102 185 75 

26 45 165 

Evolvent 
With heat 

treatment 

40 

V
ar

ia
b

le
 

M
o

va
b

le
 

u
n

d
er

 lo
ad

 

27 50 140 50 

28 95 400 42 

29 130 620 60 

30 13 160 38 
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3.4. Calculation of kinematic and force parameters of gearboxes 

 

General information 

Gears are mechanisms that are used to transfer energy over a distance, 

usually with a transformation of the parameters and type of movement. 

Depending on the method of power transmission, a distinction is made 

between mechanical, electric, pneumatic, hydraulic and combination 

transmissions. 

Only mechanical transmissions are discussed in this script. 

A mechanical transmission is a mechanism that transforms the motion 

parameters of the motor and transfers the movement to the working parts 

of the machine. 

In simple terms, the mechanical transmission is the intermediate 

link between the motor and the machine's execution part (Fig. 3.31). 

 
Fig. 3.31. Gearbox location in the machine 

 

Basic calculation formulae 

Each mechanical transmission is characterised by geometric, force and 

kinematic parameters. 

Geometric parameters of a gearbox include the dimensions 

of its components (m, mm): diameters (d); lengths (l); widths – (b); inter-

axial distances (a) and others. 

Gear force parameters include forces (F, N); moments(Т(М), Nm); 

powers (N(Р), W). 

Gearbox kinematic parameters include linear velocity [m/s], 

circumferential velocity [m/s]; angular velocity (ω, rad/s or s-1); rotational 

speed (n, rpm or min-1).. 

The derivatives of the basic parameters are: 

Conversion efficiency- : 

Conversion efficiency shows the amount of loss in the gearbox and 

characterises its performance. 

 =
𝐴𝑢
𝐴𝑧

=
𝑁2
𝑁1
< 1 
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where Аu – useful work - work, transferred from the machine 

to the environment; 

Аz – work consumed - work used to do a specific job (including useful 

work and work to overcome resistance e.g. friction, air resistance etc.);  

N1 – power at the input to the gearbox, W; 

N2 – gearbox output power, W. 

 

The efficiency of multi-stage gearboxes or drives consisting of several 

widely connected gearbox elements or transmissions is determined 

by the formula: 
𝑔𝑒𝑛 = 1 ∙ 2…𝑛, 

where 1, 2, n – efficiency of a separate kinematic pair (pair of gears, 

sprockets, pulleys, etc.) or transmission (belt, gears, etc.) and other 

kinematic elements (bearings, couplings). 

 

The transmission ratio (i) is the ratio of the angular velocity 

of the driving element to the angular velocity of the driven element. The ratio 

can be greater than, less than or equal to unity. 

The ratio (u) of a gearbox is the ratio of the higher angular velocity 

to the lower angular velocity. The gear ratio must not be less than one. 

Gearboxes with i >1 and n1 > n2 are called reduction gearboxes. 

Gearboxes with i <1 and n1  n2 are called multipliers (accelerators). 

Reduction gears are the most common, as the speed of the moving 

parts of the machines is in most cases lower than the speed of the motor 

shaft. In this script, reduction gears are discussed.  

In reduction gears, the speed and power in the transfer of motion from 

the motor to the machine's execution part decreases and the torque increases. 

Power is reduced by the amount of loss, characterising efficiency. Speed 

decreases and torque increases by the value of the gear ratio.  

In reduction gears, the dimensions of the driving elements are smaller 

than the driven elements.  

The ratio and ratio for different reduction gears can be calculated 

individually or according to the relationship: 

𝑖(𝑢) =
𝑑2
𝑑1
;
𝑛1
𝑛2
;
𝜔1
𝜔2
;
𝑧2
𝑧1

∗

;
Т2
𝜂Т1

, 

where d1, d2 – diameters of the driving and driven elements 

of the transmission, mm (shafts, pulleys, gears, etc.);  
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* - the ratio of the number of teeth of the driving and driven chain 

of a sprocket transmission. For pinion gears for a pair of wheels, this 

number is called the ratio and is denoted by the symbol u;  

Т1, Т2 – torque of the driving and driven gear element respectively, Nm;  

 - kinematic pair efficiency. 

 

The transmission ratio of gearboxes or drives consisting of several 

series-connected gear elements is determined by the formula:  
𝑖𝑔𝑒𝑛 = 𝑖1 ∙ 𝑖2 ∙ … ∙ 𝑖𝑛 or 𝑢𝑔𝑒𝑛 = 𝑢1 ∙ 𝑢2 ∙ … ∙ 𝑢𝑛  

 

Basic calculation formulas and relationships  

for mechanical transmissions 

Dependence of angular velocity on rotational speed 

𝜔 =
𝜋𝑛

30
,  then 𝑛 = 30𝜔

𝜋
≈ 9,55𝜔,  

where 9.55 is the approximate value when dividing 30 by . 

 

Dependence of rotational speed on angular velocity  

𝑣 = 𝜔
𝑑

2 ⋅ 1000
 , then 𝜔 =

2 ⋅ 1000 ⋅ 𝑛

𝑑
, 

where d - the diameter of the gear element, mm (shaft, pulley, gear wheel, 

etc.); 1000 - is the millimetre-to-metre conversion factor. 

 

Dependence of peripheral speed on rotation frequency 

𝜐 =
𝜋𝑛𝑑

60⋅1000
, m/s then 𝑛 = 60⋅1000⋅𝜐

𝜋𝑑
, min−1  

Expression of power by rotational or linear force and rotational 

and linear speed  

𝑁 = 𝐹𝜐, then 𝐹 =
𝑁

𝜐
 , 

where F – force, N;  

 - rotational or linear speed, m/s. 

 

Expression of power by torque and angular velocity  

𝑁 = Т𝜔,W then 𝑇 =
𝑁

𝜔
,Nm, 

where Т – torque, Nm. 

Expression of power by torque and speed 

𝑁 =
𝑇𝑛

9.55
, then 𝑇 =

9.55𝑁

𝑛
 

Engine power in forward and rotary motion  
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𝑁𝑚 =
𝐹𝜐

𝜂𝑔𝑒𝑛
=
Т𝜔

𝜂𝑔𝑒𝑛
,  

where gen – the overall efficiency of the gearbox.  

 

Relationship of the power on the driving element to the power 

on the driven element when transferring motion from the motor 

to the machine actuator: 
𝑁2 = 𝑁1 ∙ 𝜂, 

where  - the kinematic efficiency of the gear pair. 

 

Relationship of the torque on the driving element to the torque 

on the driven element in the direction of power flow from the motor 

to the machine actuator: 

𝑇2 = 𝑇1 ∙ 𝑢 ∙ 𝜂, then  𝑇1 =
𝑇2
𝑢 ∙ 𝜂

 

Relationship between peripheral force and torque 

𝐹𝑡 =
2𝑇

𝑑
 then 𝑇 =

𝐹𝑡𝑑

2
  

here d  in [m], Т – [Nm]. 
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Examples of calculations 

 

Example 3.20. Determine the angular and rotational velocity of a shaft 

with a diameter of d = 80 mm which rotates at a speed of n = 600 mm-1.  

 

Data: 

d = 80 mm 

n = 600 min-1 

Searched for: 

υ - ?, ω - ? 

 

Solution 

Plot a calculation diagram (Fig. 3.32) 

 
Fig. 3.32. Calculation scheme for the shaft of example 3.20 

 

Determine the rotational and angular speed: 

𝜐 =
𝜋𝑛𝑑

60 ⋅ 1000
=
3.14 ⋅ 600 ⋅ 80

60 ⋅ 1000
= 2.5,m/s 

𝜔 =
𝜋𝑛

30
=
3.14 ⋅ 600

30
= 63, 𝑠−1 

Answer:  = 2.5 m/s;  =63 s-1. 

 

Example 3.21. Calculate the angular and rotational speed of the 

transmission pulleys if: pulley diameters D1 = 100 mm and D2 = 400 mm, 

drive pulley speed n1 = 100 min-1. 

 

Data: 

D1 = 100 mm 

D2 = 400 mm 

n1 = 100 min-1 

Searched for: 

υ1 - ?, υ2 - ? 

ω1 - ?, ω2 - ? 

 

Solution 

Plot a calculation diagram (Fig. 3.33) 
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Fig. 3.33. Calculation scheme for the belt transmission to Example 3.21 

 

1. Determine the rotational and angular velocity on the drive wheel:  

𝜐1 =
𝜋𝑛1𝐷1
60 ⋅ 1000

=
3.14 ⋅ 100 ⋅ 100

60 ⋅ 1000
= 0.52

m

s
, 

𝜔1 =
𝜋𝑛1
30

=
3.14 ⋅ 100

30
= 10.5 𝑠−1 

2. Determine the gear ratio: 

𝑢 =
𝐷2
𝐷1
=
400

100
= 4 

3. Determine the rotational and angular velocity on the driven wheel:  

𝜐2 = 𝜐1 = 0.52
m

s
, 

𝜔2 =
𝜔1
𝑢
=
10.5

4
= 2.63 𝑠−1 

Answer: 1 = 2 = 0.52 m/s; 1 =10.5 s-1; 2 = 2.63 s-1. 

 

Example 3.22. Determine the torque and power on the working shaft 

of the machine if: motor power Nm = 7.5 kW; torque Tm = 200 Nm; 

transmission ratio: belt transmission up.p = 2; pinion transmission up.z = 15; 

effiency: belt transmition p.p = 0.96; pinion transmition - p.z = 0.95; coupling 

s = 0.98. 

 

Data: 

Nm = 7.5 kN 

Tm = 200 Nm 

up.p = 2 

up.z = 15 

p.p = 0.96 

p.z = 0.95 

s = 0.98 

Searched for: 

Np – ? Tp - ? 

Solution 

1. Determine the power at the output shaft: 

- determine the power at the output shaft  
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- determine overall efficiency: 
𝜂𝑔𝑒𝑛 = 𝜂𝑝.𝑝 ∙ 𝜂𝑝.𝑧 ∙ 𝜂𝑠 = 0.96 ∙ 0.95 ∙ 0.98 = 0.89, 

- power at the machine's working shaft: 
𝑁𝑝 = 𝑁𝑚 ∙ 𝜂𝑔𝑒𝑛 = 7.5 ∙ 0.89 = 6.7 kW, 

which indicates that the power from the motor to the working shaft 

is reduced by the amount of loss that characterises efficiency.  

2. Determine the torque on the working shaft of the machine: 

- we determine the overall values: 
𝑢𝑔𝑒𝑛 = 𝑢𝑝.𝑝 ∙ 𝑢𝑝.𝑧 = 2 ∙ 15 = 30,  

- power at the machine's working shaft 
𝑇𝑝 = 𝑇𝑚∙𝑢𝑔𝑒𝑛 ∙ 𝜂𝑔𝑒𝑛 = 200 ∙ 30 ∙ 0.89 = 5340 Nm, 

which indicates that the power from the motor to the working shaft 

is reduced by the amount of loss that characterises efficiency.  

 

Answer: Np = 6.7 kW; Тp = 5340 Nm. 

 

Example 3.23. Determine the motor power if: rotational force 

Ft = 10 kN; d = 300 mm; rotation speed n = 750 min-1; overall efficiency 

gen = 0.9. 

 

Data: 

Ft = 10 kN 

d = 300 mm 

n = 750 min-1 

ηgen = 0.9 

Searched for: 

Nm - ? 

Solution 

1. Formula for determining the power of an engine in rotary motion:  

𝑁𝑚 =
Т𝜔

𝜂𝑔𝑒𝑛
  

2. Determine the unknowns in the formula:  

(a) we determine the torque: 
𝑇 = 0.5𝐹𝑡 ∙ 𝑑 = 0.5 ⋅ 10000 ⋅ 300 = 15 ⋅ 105 Nmm = 1.5 kNm, 

(b) we determine the angular velocity: 

𝜔 =
𝜋𝑛

30
=
3.14 ⋅ 750

30
= 78,5 min−1 

3. We determine the computing power in the engine: 
𝑁𝑚 =

1.5⋅78.5

0.9
= 131kW 

Round the specified values to the nearest largest normalized value.  
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We assume Nm = 150 kW. 

 

Answer: Nm = 150 kW. 

 

Example 3.24. Determine the rotational force and revolutions per 

minute if power N = 15 kW; diameter d = 80 mm; rotational speed  = 8 m/s. 

 

Data: 

N = 15 kW 

d = 80 mm 

 = 8 m/s 

Searched for: 

Ft - ? n - ? 

Solution 

1. Determine the angular velocity: 

𝜔 =
2 ⋅ 1000𝜐

𝑑
=
2 ⋅ 1000 ⋅ 8

80
= 200 min−1 

2. Determine the rotation per minute: 

𝑛 =
30𝜔

𝜋
≈ 9.55𝜔 = 9.55 ⋅ 200 = 1910 min−1 

3. From the power formula we determine the torque: 

𝑇 =
𝑁

𝜔
=
15000

200
= 75 Nm 

4. Determine the circular force: 

𝐹𝑡 =
2𝑇

𝑑
=

2⋅75

0,08
= 1875 N or 𝐹𝑡 =

𝑁

𝜐
=

15000

8
= 1875 N 

Answer: Ft =1875 N; n = 1910 min-1. 

 

 

Example 3.25. Select an electric motor. Carry out kinematic and force 

calculations for the transmission drive of a chain conveyor (Fig. 3.34), which 

consists of an electric motor; a belt transmission; a cylindrical single-stage gear; 

a clutch; a drive sprocket whose shaft is supported by plain bearings. 

Thepulling force of the chain Ft = 20 kN, the linear speed of the chain 

 = 1.2 m/s, the diameter of the drive sprocket Dз = 500 mm, and the diameters 

of the pulleys D1 = 100 mm and D2 = 400 mm respectively. 

 

Data: 

Ft = 20 kN 

D1 = 100 mm 

D2 = 400 mm 

Searched for: 

Nm - ? u - ? Ti - ? Ni - ? 
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Dз = 500 mm 

 = 1.2 m/s 

Solution 

Plot a kinematic diagram of a chain conveyor drive. 

 

1 – motor; 

2 – drive pulley; 

3 - driven pulley; 

4 - transmission; 

5 - clutch; 

6 - drive sprocket; 

7 - plain bearing 

Fig. 3.34. Kinematic diagram of a chain conveyor drive 

 

1. Determine the power of the chain conveyor drive motor 

- based on the drive diagram we determine the overall efficiency 

(Fig. 3.34) 
𝜂𝑔𝑒𝑛 = 𝜂𝑝.𝑝 ∙ 𝜂𝑝 ∙ 𝜂𝑠 ∙ 𝜂𝑠.𝑝

2  

From the Table D.17 we assume p.p = 0.96; p = 0.97; s = 0.98; 

s.p = 0.98, then 
𝜂𝑔𝑒𝑛 = 𝜂𝑝.𝑝 ∙ 𝜂𝑝 ∙ 𝜂𝑠 ∙ 𝜂𝑠.𝑝

2 = 0.96 ∙ 0.97 ∙ 0.98 ∙ 0.982 = 0.87 

𝑁𝑚 =
𝐹𝑡𝜐

𝜂𝑔𝑒𝑛
=
20 ⋅ 103 ⋅ 1.2

0.87
= 27586 W ≈ 28 kW 

2.  Selecting the motor. 

When selecting an electric motor, it is important to remember that 

the lower the speed of the motor shaft, the greater the size, weight and cost.  

High-speed motors, on the other hand, have smaller dimensions, weight and 

cost compared to low-speed motors of the same power. However, 

as the engine speed increases, the overall gear ratio and therefore the cost 

increases. Therefore, it is usually recommended to use motors 

withns = 1500 rpm for drives without shaft reversible rotation and 

ns = 1000 rpm with reversible rotation, where ns – synchronous motor speed, 

rpm. When selecting a low-speed electric motor, its power rating may differ 

from the required one. In such a case, two considerations must be taken into 

account: a large motor power reserve leads to reduced power losses 
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(recommended underloading of no more than 10 %) and overloading leads 

to motor overheating (permissible overloading of no more than 5 %). 

Motor selection condition 
𝑁𝑜𝑏.𝑚 ≤ 𝑁𝑛𝑜𝑚, 

where Nob.m. – calculated motor power, kW;  

Nnom – Normalized power of the selected motor, kW.  

 

In order to reduce the dimensions of the drive gears from the Table D.18, 

we adopt a motor of type 4А225M8U3 for wich Nm = 30 kW, synchronous 

speed  ns = 750 min-1, slip s = 1.8 %. Permissible overload Np. = 31.5 kW, 

permissible underload Nn = 27 kW. In further calculations we assume 

the calculated power.  

The nominal speed is determined from the formula: 

𝑛 = 𝑛𝑐 (1 −
𝑠

100
) = 750 (1 −

1.8

100
) = 736 min−1 

3. Define the kinematic parameters: 

(a) the angular velocity at the shaft of the electric motor (drive wheel): 

𝜔1 =
𝜋𝑛𝑚
30

=
3,14 ⋅ 736

30
= 77s−1 

(b) the angular velocity on the high-speed gear shaft (driven pulley): 

- determine the belt transmission ratio  

𝑢𝑝.𝑝 =
𝐷2
𝐷1
=
400

100
= 4 

𝜔2 =
𝜔2
𝑢𝑝.𝑝

=
77

4
= 19.3 𝑠−1 

(c) angular velocity of the drive wheel shaft (gearbox output shaft)  

𝜔3 =
2 ⋅ 1000 ⋅ 𝜐

𝐷з
=
2 ⋅ 1000 ⋅ 1.2

500
= 4.8 𝑠−1 

(d) transmission ratio 

𝑢𝑝 =
𝜔2
𝜔1

=
19.3

4.8
= 4 

(e) overall gear ratio 
𝑢𝑔𝑒𝑛 = 𝑢𝑝.𝑝 ∙ 𝑢𝑝 = 4 ∙ 4 = 16 

4. Determine the force parameters  

(a) motor shaft torque 

𝑇1 =
𝑁𝑚𝜂𝑔𝑒𝑛

𝜔1
=
28000 ⋅ 0.87

77
= 316 Nm 

(b) the torque on the high-speed shaft of the transmission 
𝑇2 = 𝑇1 ∙ 𝑢𝑝.𝑝 = 316 ∙ 4 = 1264 Nm 

(c) drive wheel shaft torque 
𝑇3 = 𝑇2 ∙ 𝑢𝑝 = 1264 ∙ 4 = 5056 Nm 
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o𝑟 𝑇3 = 𝑇1 ∙ 𝑢𝑔𝑒𝑛 = 316 ∙ 16 = 5056 Nm 

 

Answer: electric motor 4А225M8U3: Nm = 30 kW; ns = 750 min-1; 

 𝑛 = 736 min-1; 𝑁𝑚 = 28 kW; 1 = 77min-1; 2 = 19,3 min-1; 3 = 4,8 с-1; 

up.p = 4; up = 4; ugen = 16; 𝑇1 = 316 Nm; Т2 = 1264 Nm; Т3 = 5056 Nm. 
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Individual tasks 

(calculation) 

 

Task 3.10. Determine the motor power. The data for the calculations 

are shown in Table 3.10. 

 
Table 3.10. Initial data for Task 3.10 

Var. 

no 

Shaft working 

load, kN 

Working shaft 

diameter, mm 

Working shaft  

speed, min-1 

Overal 

efficiency 

Ft d n gen 

1 7 40 300 0.9 

2 6 45 315 0.93 

3 5 50 425 0.88 

4 8 55 520 0.95 

5 9 60 635 0.96 

6 10 65 552 0.97 

7 11 70 722 0.91 

8 12 75 433 0.75 

9 14 80 638 0.78 

10 16 85 551 0.82 

11 17 90 665 0.93 

12 13 95 530 0.94 

13 3 35 815 0.76 

14 4 55 918 0.80 

15 5 60 1116 0.81 

16 6 65 1114 0.85 

17 3.5 50 1213 0.92 

18 2.5 70 1344 0.93 

19 14 75 1432 0.96 

20 13 80 744 0.76 

21 15 85 548 0.75 

22 16 40 354 0.77 

23 17 45 462 0.88 

24 17.5 50 270 0.98 

25 10.5 55 335 0.76 

26 11.5 60 338 0.79 

27 8.5 65 241 0.89 

28 9.5 70 143 0.88 

29 7.3 75 560 0.92 

30 6.2 100 624 0.93 
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Task 3.11. Select the electric motor. Carry out kinematic (specify  ui, 

i) and force calculations of the belt conveyor drive (specify Ti, Ft of pulleys), 

which consists of: electric motor, belt transmission, two-stage cylindrical 

reducer, coupling, drive drum, shaft supported by plain bearings. The data 

for the calculations are shown in Table 3.11. 

 
Table 3.11. Initial data for Task 3.11 

Var. 

no 

Load 

of drums, kN 

Drum 

diameter, 

mm 

Belt speed, 

m/s 

Pulley diameter, 

mm 

Pulley 

transmition 

Ft Db l D2 up p 

1 7 400 0.315 250 1.4 

2 6 450 0.4 273 1.2 

3 5 500 0.5 285 1.3 

4 8 550 0.63 300 1.6 

5 9 600 0.8 410 1.8 

6 10 650 1 315 1.9 

7 11 700 1.25 320 2 

8 12 750 1.6 340 2.3 

9 14 800 2 360 2.4 

10 16 850 2.5 400 2.6 

11 17 900 3.15 450 2.8 

12 13 950 4 550 2.1 

13 3 650 5 480 3 

14 4 550 6.3 430 2.8 

15 5 600 0.63 365 2.6 

16 6 650 0.8 390 2.2 

17 3.5 500 1 410 3.1 

18 2.5 700 1.25 420 2.5 

19 14 750 1.6 430 2.9 

20 13 800 0.4 440 2.4 

21 15 850 0.5 460 1.8 

22 16 600 0.63 315 2 

23 17 750 0.8 340 2.5 

24 17.5 500 2.1 350 2.7 

25 10.5 550 2.8 360 2.9 

26 11.5 600 0.85 380 3.1 

27 8.5 650 0.65 400 3.3 

28 9.5 700 0.75 410 3.4 

29 7.3 750 2.8 420 3.6 

30 6.2 1000 3 480 3.8 
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3.5. Calculation of gears 
 

General information 

A gearbox is a mechanism that transmits or converts motion 

with a change in angular velocity and torque. 

All concepts and definitions related to the geometry and kinematics 

of gear spans are standardised. The standards specify definitions, terms 

and designations and methods for calculating geometrical parameters.  

A pinion gear consists of two wheels (Fig. 3.35) with teeth 

on the surface. The smaller of the gears is called a pinion, the larger a wheel. 

The definition of “pinion wheel” is generic. The parameters of the pinion are 

assigned index 1, those of the wheel are assigned index 2.  

 
Fig. 3.35. Gear 

 

There are the following types of gears: helical, bevel, worm, planetary, 

wave, wave with Wildhaber-Novikov gearing. Helical gears are the simplest, 

most reliable and most commonly used. Other gears are used when there is 

a need to transmit motion at an angle or when compactness of the drive is 

required.  

 

Selection of material and allowable stresses 

The choice of wheel material depends on the size, type, nature 

of the load, its operating conditions, dimensional and weight requirements, 

availability, price, means of obtaining semi-finished products and method 

of tooth processing.  
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The basic materials for gears are heat-treated steels. Cast iron 

and plastics are used less frequently, bronze and brass are used for worm 

gears.  

Depending on the hardness of the working surfaces, steel gears can 

be divided into two basic groups: 

(а) with hardness НВ  350 – normalized and tempered; 

(b) with hardness НВ  350 – hardened, carburised, nitrided, 

nitrocarburised. 

The mechanical properties of selected materials are shown 

in Tables D.19 and D.20. 

 

Helical and bevel gears  

The permissible contact stresses depending on the hardness 

of the tooth surfaces can be determined on the basis of gearbox application 

experience and research.  

For steel wheels with hardness  350НВ 
𝑘𝑘 = 2.75 ∙ HBmin𝐾HL 

The smallest value kk 

For steel wheels with hardness  350НВ 
𝑘𝑘 = 24.1 ∙ HRCmin𝐾HL 

where НВmin, НRСmin – minimum hardness of the material (Tables D.19 

and D.20). 

KHL – durability factor, taking into account the service life and load 

mode of the gearbox.  

For standardised and improved gears 1  KHL  2.6. 

For 350 НВ hardness and cast iron wheel is 0.585  KHL  1.8. 

For slanted wheels with  НВ1-  НВ2 > 50 
𝑘𝑘 = 0.45(𝑘𝑘1 + 𝑘𝑘2) 

Whereby:  

𝑘𝑘 ≤ 1.25𝑘𝑘2- for helical wheels with angled teeth; 

𝑘𝑘 ≤ 1.15𝑘𝑘2- for tapered wheels with uneven teeth.  

If 𝑘𝑘 ≤ 1.25𝑘𝑘2 then 𝑘𝑘 = 1.25𝑘𝑘2  

and if 𝑘𝑘 ≤ 1.15𝑘𝑘2 then 𝑘𝑘 = 1.15𝑘𝑘2.  

In other cases kk take lower permissible stresses  𝑘𝑘1 and 𝑘𝑘2 . 

Determination of the durability factor for tooth calculations based 

on contact stresses  
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𝐾HL = √
107

𝑁

6

 

where 107 – the basic number of cycles in determining the contact strength 

of steel; 

N – number of stress-change cycles over the service life (working time), h. 

 

Determination of the service life of the gearbox using formulas:  

for sprocket 𝑁1 = 573𝜔1𝐿ℎ;  

for wheel 𝑁2 = 573𝜔2𝐿ℎ,  

where 1,2 – angular velocity of the driving and propelling shafts, s-1;  

Lh – specified gearbox life. 

 

If the service life is not specified, the gearbox service life is assumed to be 

not less than 36 000 h  (according to PN-M-88561:1987, the service life 

of a general-purpose gearbox should be not less than 36 000 h and the service 

life factor KHL = 1 is assume). 

If the calculated KHL value is greater or less than the specified range, 

the minimum or maximum value within the specified range is taken.  

 

Determination of maximum permissible contact stresses 

In the calculations, the maximum permissible contact stresses are 

determined to prevent either plastic deformation or brittle fracture of the 

tooth surfaces.  

  

For steel 

at HB  350 𝑘𝑘 𝑚𝑎𝑥 = 2.5 ∙ 𝑘𝑘 

at HB  350 𝑘𝑘 𝑚𝑎𝑥 = 2 ∙ 𝑘𝑘 

 For cast iron  

at HB  350 𝑘𝑘 𝑚𝑎𝑥 = 1.8 ∙ 𝜎𝐻 

at HB  350 𝑘𝑘 𝑚𝑎𝑥 = 14 ∙ 𝐻𝑅𝐶 

 

Determination of allowable bending stresses 

- if the teeth operate unilaterally (from a zero stress cycle, no backward 

movement) 

𝑘𝑔 =
(1.4 ÷ 1.6) ⋅ 𝑅−1

𝐾𝐹 ⋅ [𝑛]
⋅ 𝐾𝐹𝐿 
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- if the teeth work bilaterally (symmetrical stress cycle, backward 

movement) 

𝑘−1𝑔 =
𝑅−1

𝐾𝐹 ⋅ [𝑛]
⋅ 𝐾𝐹𝐿 

where k0g permissible bending stress at the zero cycle, MPa;  

k-1g – allowable bending stresses at symmetrical cycle, MPa; 

R-1 – material strength limit at symmetric cycle, MPa; 

for carbon steel 𝑅−1 ≈ 0.43𝑅𝑚 

for alloyed steel 𝑅−1 ≈ 0.45𝑅𝑚 + (70 ÷ 120)
N

mm2
 

for cast iron 𝑅−1 ≈ 0.45𝑅𝑚 

KF – effective stress concentration factor at the base of the tooth.  

 

For design calculations for Normalized and tempered steel wheels 

KF  = 1.8; for steel wheels after surface hardening and cast iron wheels 

KF = 1.2; 

[n] – permissible safety factor. 

For forged normalized and tempered wheels [n] = 1.5; for forged 

hardened wheels [n] = 2.2; for cast Normalized and tempered wheels [n] = 1.8; 

KFL – durability factor when calculating the bending of teeth;  

at НВ  350   1  KFL  2 

at НВ  350              1  KFL  1.65 

  

Determination of durability coefficient for bending tooth calculations 

𝐾𝐹𝐿 = √
5⋅106

𝑁

9
, 

where 5  106 – number of stress cycles for all steel grades; 

N – number of stress cycles over the service life (working time), h. 

 

With continuously working gearbox (with an operating time 

of  36000 h) KFL = 1. 

If the project value of KFL is less than or greater than the specified interval, 

the minimum or maximum value in the interval is taken..  

The lower value kk  is used for further calculations. 

 

Determination of maximum bending stresses  

Maximum bending stresses are determined to prevent brittle fracture 

or plastic deformation of the teeth.  
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For steel wheels 

at HB  350 𝑘𝑔 𝑚𝑎𝑥 = 0.8 ∙ 𝑅𝑒 02 

at HB  350 𝑘𝑔 𝑚𝑎𝑥 = 0.36 ∙ 𝑅𝑚/𝐾𝐹/ 

Basic calculation formulae 

Geometry of helical gears (Fig. 3.36).

 
Fig. 3.36. The geometry of a helical gearbox 

 

Gear ratios and transmission ratios 

The parameter u = z2/z1 according to ISO/DIS 21771-2 is called 

the gear ratio and defines the ratio of the larger number of teeth 

to the smaller number.  

The gear ratio is only considered about a pair of wheels, in other cases 

the ratio is considered, but due to its more frequent use, the ratio is called 

the gear ratio and the designation u is used: 

𝑖(𝑢) =
𝑑2
𝑑1
;
𝑛1
𝑛2
;
𝜔1
𝜔2
, 

where d1, n1, 1 – pinion diameter, speed, pinion angular velocity, 

respectively;  
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d2, n2, 2 – wheel diameter, wheel speed, and wheel angular velocity 

respectively. 

Reduction gearboxes are more commonly used, in which: 

 

 

attachment module: 

 straight tooth,    oblique gear tooth (Fig. 3.37) 

 𝑚 =
𝑑

𝑧
=

𝑝

𝜋
;     𝑚𝑡 =

𝑚𝑛

𝑐𝑜𝑠 𝛽
, 

where d – pinion diameter, mm;  

z – number of teeth of the sprocket;  

р – step of attachment, mm;  

mt – module, mm;  

mn – normal module, mm. 

 

The straight-tooth gear is characterised by the fact that the end 

modulus is equal to the normal modulus; 

 = 8 ÷ 16 ° – tooth angle of gearboxes  = 25 ÷ 40 ° – tooth angle 

of chevron gearboxes.  

In a pair of related diagonal teeth with an external abutment, 

the angles  are equal in value but opposite in direction. One wheel is right-

handed, the other left-handed.  

 
Fig. 3.37. Schematic diagram of a gearbox with oblique teeth 

 

In practice, the module is often determined from the ratio:  
𝑚𝑛 = (0.01 ÷ 0.02)𝑎𝑤, 

where aw – the distance between axes from contact strength condition, mm.  
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Based on experience with gears, it is recommended to adopt a modulus 

mmin  1.5 mm. 

The modules are standardised by PN-ISO 54:2001 in the range 

of 0.05 ÷ 00 mm (Table D.24). 

 

Hitching step: 

straight tooth oblique tooth (Fig. 3.37) 

𝑝𝑛 = 𝜋 ∙ 𝑚 =
𝜋𝑑

𝑧
 𝑝𝑡 =

𝑝𝑛
cos𝛽

 

pn – normal step, mm; pt – lateral step, mm 

In a gearbox with a straight tooth, the normal steps are equal.  

 

For a pair of hitched wheels, the module should be the same.  

 

For non-corrected gears: 

  gearbox with  

straight tooth 

gearbox with 

oblique tooth 

Height of tooth head, mm ℎ𝑎 = 𝑚 ℎ𝑎 = 𝑚𝑛 

Height of tooth base, mm ℎ𝑓 = 1.25𝑚 ℎ𝑓 = 1.25𝑚𝑛 

Tooth height, mm ℎ = ℎ𝑎 + ℎ𝑓 = 2.25𝑚 ℎ = 2.25𝑚𝑛 

Radial gap, mm 𝑐 = 0.25𝑚 𝑐 = 0.25𝑚𝑛 

When cutting with a chisel 𝑐 = 0,35𝑚 𝑐 = 0,35𝑚𝑛 

 

Non-corrected wheel diameter, mm: 

 
gearbox with  

straight tooth 

gearbox with oblique 

tooth 

(a) distribution 

wheel 
𝑑 = 𝑚𝑧 𝑑 = 𝑚𝑡𝑧 =

𝑚𝑛𝑧

cos 𝛽
 

(b) vertices 𝑑𝑎 = 𝑑 + 2𝑚 = 𝑑 + 2ℎ𝑎 𝑑𝑎 = 𝑑 + 2𝑚𝑛 = 𝑑 + 2ℎ𝑎 

(c) tooth bases 𝑑𝑓 = 𝑑 − 2.5𝑚 = 𝑑 − 2ℎ𝑓 𝑑𝑓 = 𝑑 − 2.5𝑚𝑛 = 𝑑 − 2ℎ𝑓 

Inter-axial distance, 

mm 

𝑎𝑤 = 0.5(𝑑2 + 𝑑1) = 0.5𝑚(𝑧2 + 𝑧1) 

𝑎𝑤 = 0.5(𝑑2 + 𝑑1) = 0.5𝑚𝑠(𝑧2 + 𝑧1) 

𝑎𝑤 =
𝑚𝑛(𝑧2 + 𝑧1)

2 cos𝛽
 

Width of wheels, mm: 

wheel sprocket 
𝑏2 = 𝜓𝑎 ∙ 𝑎𝑤 𝑏1 = 𝑏2 + (5 ÷ 10) mm 
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where ψa – is the ratio of the width of the pinion rim to the inter-axial 

distance, determined from Table D.23. 

Tooth length, mm: 

gearbox with  

straight tooth 

gearbox with  

oblique tooth 

𝑙 = 𝑏 𝑙 =
𝑏

cos𝛽
 

Forces acting at the abutment 

Straight tooth gearbox (Fig. 3.38): 

peripheral force of sprocket and wheel 𝐹𝑡 =
2𝑇

𝑑
; 

radial force of pinion and wheel  𝐹𝑟 = 𝐹𝑡 ∙ 𝑡𝑔𝛼𝑊 

normal force 𝐹𝑛 = 𝐹𝑡 (𝑐𝑜𝑠 𝛼𝑊 ⋅ 𝑐𝑜𝑠 𝛽)⁄  

where Т – torque acting on the shaft, Nmm; 

d – diameter of the distribution wheel, mm;  

W = 20 ° – angle of engagement of non-corrected gear; 

On the driven wheel, the direction of the peripheral force coincides 

with the direction of rotation; on the driven wheel, it is opposite. 

 
Fig. 3.38. Forces acting in a straight helical gear mesh 

 

Gearbox with oblique tooth (Fig. 3.39): 

peripheral force 𝐹𝑡 =
2Т

𝑑
,  

radial force 𝐹𝑟 = 𝐹𝑡
𝑡𝑔𝛼𝑊

𝑐𝑜𝑠𝛽
, 

radial force 𝐹𝑎 = 𝐹𝑡 ⋅ 𝑡𝑔𝛽,  

normal force 𝐹𝑛 =
𝐹𝑡

(𝑐𝑜𝑠𝛼𝑊⋅𝑐𝑜𝑠𝛽)
. 
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Fig. 3.39. Forces acting in a gear mesh with bevel teeth  

 

Determination of the peripheral speed of the abutment 

𝑉 =
𝜔𝑑

2 ⋅ 1000 
 m/s 

where  – wheel rotastional speed, s-1;  

d – wheel diameter, mm.  

 

Formulae for calculating spur gears 

The basic performance criteria for helical gears are contact tooth 

strength and tooth bending strength. 

For helical gears, calculations are carried out for contact strength, 

bending strength, calculation of maximum load to prevent plastic 

deformation or brittle fracture as a result of short-term peak loads (e.g. when 

starting an electric motor), and thermal calculations for heavily loaded high-

speed gears. 

When designing gears, a distinction is made between design 

and verification calculations. 

In design calculations, the required gearbox dimensions are determined 

by the specified load and known allowable stresses. 

In the verification calculations, the actual stresses in the teeth 

are determined using the specified load and dimensions and compared with 

the permissible ones.  In addition, calculations at maximum load and, where 

necessary, thermal calculations are performed. 

Verification calculations are generally carried out for the teeth 

of the less hard wheel. When using materials of the 1st hardness group 

< 350 НВ, these are often the teeth of the wheel. For materials of the 2nd 
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hardness group  350 НВ, calculations are made for the teeth of the pinion 

and the wheel. 

For open gears, it is fundamental to calculate the teeth for bending 

due to the high wear in this type of gear. 

Straight tooth gearbox 

For design calculations: 

𝑚 = √
2𝑇1𝐾𝐹𝑌𝐹
𝑘𝑔𝜓𝑏𝑚𝑧1

3

 

For verification: 

𝜎𝐹 =
𝐹𝑡𝐾𝐹𝑌𝐹
𝑏𝑚

≤ 𝑘𝑔, 

where Ft – peripheral force, N; 

KF – load factor; 
𝐾𝐹 = 𝐾𝐹𝛽 ⋅ 𝐾𝐹𝛼 ⋅ 𝐾𝐹𝜐 

KF – coefficient of unequal loading across the width of the rim 

(Table D.27);  

KF – coefficient of uneven load between the teeth (Table D.27);  

КF – dynamic coefficient (Table D.28);  

YF – tooth form factor (Table D.29);  

b – wheel width, mm;  

m – module, mm;  

Т1 – torque on the sprocket, N·m;  

z1 – number of teeth on the sprocket; 

bm =b/m – wheel rim width ratio;  

[F ]– allowable bending stresses, MPa. 

 

Bevel tooth and chevron gearing 

For design calculations: 

𝑚 = √
2𝑇𝐾𝐹𝑌𝐹𝑌𝛽𝐾𝐹𝛼 𝑐𝑜𝑠 𝛽

𝑘𝑔𝜓𝑏𝑚𝑧

3

 

For verification: 

𝜎𝐹 =
𝐹𝑡𝐾𝐹𝑌𝐹𝑌𝛽𝐾𝐹𝛼

𝑏𝑚𝑛
≤ 𝑘𝑔, 

where  – tine angle;  

mn – normal module, mm;  

z – number of teeth of the pinion or wheel; 

Т – torque on the pinion or wheel, Nm; 
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Y  = 1 −
𝛽∘

140
 – tooth line inclination factor.  

 

For closed gear bars, calculations for the contact strength of the teeth 

are basic, and calculations for bending are carried out on verification.  

For design calculations: 

𝑎𝑤 ≥ 𝐾𝑎 ⋅ (𝑢 ± 1) ⋅ √
𝑇2⋅10

3⋅𝐾𝐻𝛽

𝛹𝑎⋅𝑢
2⋅𝑘𝑔

2

3 . 

where Kа – support factor. For gears with oblique teeth 

Kа = 43, with straight teeth Kа = 49.5; 

u – transmition ratio; 

the “–” sign when calculating the internal abutment; 

Т2 – torque on the free gear shaft, Nm;  

103 – conversion factor m in mm;  

KH – coefficient of uneven load distribution along the length 

of the tooth; 

а – ratio of gear rim width to inter-axial distance;  

kg – permissible or average contact stresses, MPa. 

The calculated value of the inter-axial distance is rounded to the nearest 

standardised one.  

For verification calculations against contact stresses: 

gearbox with straight teeth 

𝜎Н =
310

а𝑤
⋅ √

Т2⋅𝐾⋅(𝑢+1)
3

𝑏2⋅𝑢
2 ≤ 𝑘𝑔, 

gearbox with oblique tooth 

𝜎Н =
270

а𝑤
⋅ √

𝑇2⋅𝐾Н⋅(𝑢+1)
3

𝑏2⋅𝑢
2 ≤ 𝑘𝑔, 

where  аW – inter-axial distance, mm; 

Т2 – torque on low-speed gear shaft, Nmm; 

KН – load factor: 
𝐾𝐻 = 𝐾𝐻𝛽𝐾𝐻𝛼𝐾𝐻𝜐 

KH – coefficient of non-uniformity of load distribution over the width 

of the rim (Table D.25); 

KН – coefficient of unevenness of stress distribution between teeth 

(Table D.27);  

KН- dynamic factor (Table D.28); 

u – transmission ratio; 

b2 – wheel width, mm; 

kg – permissible contact stresses, MPa. 
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For verification calculations against bending stresses: 

𝜎𝐹 =
𝐹𝑡𝐾𝐹𝑌𝐹𝑌𝛽𝐾𝐹𝛼

𝑏𝑚𝑛
≤ 𝑘𝑔 

For verification calculations against limit stresses for open, closed gears, 

straight tooth and helical oblique gears: 

Relative to contact stresses: 

𝑘𝑔𝑚𝑎𝑥 = 𝜎Н√
𝑇1𝑚𝑎𝑥

𝑇1
≤ 𝑘𝑔 𝑙𝑖𝑚, 

where Н – calculated contact stresses, MPa; 

 kg lim– limit permissible contact stresses, MPa;  

Т1 – pinion torque, Nmm; 

Т1max – sprocket torque at maximum load, Nmm.  

𝑘𝑔𝑚𝑎𝑥 = 𝜎𝐹
Т1𝑚𝑎𝑥
Т1

≤ 𝑘𝑔 𝑙𝑖𝑚 

where F – calculated bending stress, MPa; 

k g lim– limit permissible wheel bending stress, MPa.  

 

Thermal calculations for gearboxes 

Thermal calculations for helical and bevel gears are performed 

as an additional calculation when operating at high loads and speeds. 

For worm gears, these are basic calculations, as they operate under 

conditions of strong heat generation that can lead to damage. Thermal 

calculations are performed for a fixed operating mode based on the heat 

balance, i.e. the equality of heat release and heat transfer: 

Qrel = Qtran 

In thermal calculations, the temperature of the lubricant is often 

specified, whereby the condition should be met:  

𝑡𝑆 = 𝑡0 +
(1 − 𝜂)𝑁1
𝐾Т𝐴(1 + 𝜓)

≤ [𝑡𝑆] 

where  – the overall efficiency of the gearboxs; 

N1 – power at the pinion, W;  

t0 – heat transfer coefficient from the surface of the enclosure (higher 

value with good air circulation at the ambient temperature) t0 = 20 °С; 

Kт = 8 ÷ 17 W/(m2 °С) – heat transfer coefficient from the surface 

of the enclosure (higher value with good air circulation at the ambient 

temperature);  

А – cooling area of the gearbox housing (not including the bottom), m2;  
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 – heat transfer coefficient through the bottom of the enclosure (0.3 

if the bottom is against the enclosure, 0 if the bottom is against 

concrete or brick);  

[tS] – permissible temperature of the lubricant in the housing. 

For common grease [tS] = 70 ÷ 90 °С, for aviation grease 

[tS] = 20 ÷ 100 °С. 

 

If the heat balance condition is not met QB   Q0, , then additional heat 

dissipation must be taken into account. This is achieved by the following 

means; increasing the cooling surface area А using cooling fins; blowing air 

into the housing using a fan mounted on the worm shaft; placing water 

cavities or a coil with running water in the housing; using grease circulation 

systems with special coolers.   
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Examples of calculations  

 

Example 3.26. For a helical gear with oblique teeth (Fig. 3.40), 

determine the pitch and inner diameter of the wheel, normal and final 

(circumferential) meshing modulus, tooth height, distance between axes 

and forces acting in the meshing. Take the necessary data from the drawing. 

 

Data: 

N1 = 10 kW 

n1 = 1000 min-1 

z1 = 20 

z2 = 80 

mn = 3 mm 

β = 10°  

Searched for: 

d1 - ? d2 - ?  

da1 - ? da2 - ?  

pt - ? h - ?  

aw - ? Ft - ?  

Fr - ? Fa - ? 

 
Fig. 3.40. Diagram of helical bevel gearbox 

Solution 

1. Define the unknowns. 

1.1. We determine the diameters of the wheel bores: 

sprocket wheel 

𝑑1 =
𝑚𝑛𝑧1
𝑐𝑜𝑠 𝛽

=
3 ⋅ 20

𝑐𝑜𝑠 10°
= 61.2245 mm 𝑑2 =

𝑚𝑛𝑧2
𝑐𝑜𝑠 𝛽

=
3 ⋅ 80

𝑐𝑜𝑠 10°
= 244.8979 mm 

 

1.2. Determining the outside diameter of the wheels. 

sprocket 
𝑑𝑎1 = 𝑑1 + 2𝑚𝑛 = 61.2245 + 2 ⋅ 3 = 67.225 mm 

wheel 
𝑑𝑎2 = 𝑑2 + 2𝑚𝑛 = 244.8979 + 2 ⋅ 3 = 250.898 mm 

1.3. Determining the pitch of the end gear. 

𝑝𝑡 = 𝜋
𝑑1
𝑧1
= 3.14 ⋅

61.2245

20
= 9.612 mm 

1.4. Determining the height of the tooth. 
ℎ = 2.25𝑚𝑛 = 2.25 ⋅ 3 = 6.75 mm 

1.5. Determine the distance between the axes 
𝑎𝑤 = 0.5(𝑑1 + 𝑑2) = 0.5(61.2245 + 244.8979) = 153 mm 

From the the Table D.26 we assume 𝑎𝑤=160 mm. 

1.6. Determine the forces acting in the mesh. 

First determine the pinion torque 

 𝑇1 = 9.55
𝑁1

𝑛1
= 9.55 ⋅

10⋅103

1000
≈ 96 Nm, then 
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Peripheral force 

𝐹𝑡1 =
2𝑇1
𝑑1

=
2 ∙ 96 ∙ 103

61.2245 = 3136 𝑁
 

Radial force 

𝐹𝑟1 =
𝐹𝑡1𝑡𝑔𝛼

cos𝛽
= 3136 ⋅

𝑡𝑔20∘

cos 10°
= 1159N 

where  – attachment angle,  = 20 °. 

axial force 
𝐹𝑎1 = 𝐹𝑡1𝑡𝑔𝛽 = 3136 ⋅ 𝑡𝑔10

∘ = 552 N 

 

Answer: d1 = 61.2245 mm; d2 = 244.8979 mm; da1 = 67.225 mm;                     

da2 = 250.898 mm; pt = 9.612 mm; h =6.75 mm; aw=160 mm; Ft1 = 3136 N; 

Fr1=1159 N; Fa1 =552 N. 

 

Example 3.27. Check the contact tooth strength of a helical bevel 

gearbox if: transmitted power N1 = 15 kW; rotational frequency of the high-

speed shaft n1 = 750 min-1; transmission ratio u = 3.5; number of pinion teeth 

z1 = 23; tooth inclination angle  = 12 °; mesh modulus mn = 3 mm; wheel 

material  - 40H steel Normalized, wheel width factor ba = 0.315; durability 

factor KНL = 1; load factor KН = 1.2. 

 

Data: 

N1 = 15 kW 

n1 = 750 min-1 

u = 3,5 

z1 = 23 

  = 12 ° 

mn = 3 mm 

ba = 0.315 

KНL = 1 

KН = 1.2 

40H normalized steel 

Searched for: 

σH - ? 

Solution 

1. Write the contact strength condition for a helical gear with bevel teeth: 

𝜎Н =
270

а𝑤
√
𝑇2⋅КН(𝑢 + 1)

3

𝑏2𝑢
2

≤ 𝑘𝑔 

2. Define the unknowns. 
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2.1. Determine pinion and wheel parameters 

𝑑1 =
𝑚𝑛𝑧1
𝑐𝑜𝑠 𝛽

=
3 ⋅ 23

𝑐𝑜𝑠 12°
= 70.54 mm 

𝑑2 = 𝑑1𝑢 = 70.542 ⋅ 3.5 = 246.895 mm 

2.2. Determine the distance between the axes 

𝑎𝑤 =
𝑑1 + 𝑑2
2

=
70.542 + 246.895

2
= 158.72 mm 

From the Table D.26 we assume 𝑎𝑤= 160 mm. 

2.3. Determine the permissible contact stresses for the wheel. 

Taking into account wheel diameter d2 ≈ 245 mm, material steel 40H and 

type of heat treatment from the Table D.19, material hardness is НВmin = 220, 

for steel wheels with hardness   350 НВ 
𝑘𝑔 = 2.75𝐻𝐵𝑚𝑖𝑛𝐾𝐻𝐿 = 2.75 ∙ 220 ∙ 1 = 605 MPa 

2.4. Define torques. 

pinion 

𝑇1 = 9.55
𝑁𝑚
𝑛𝑚

= 9.55 ⋅
15 ⋅ 103

750
= 191 Nm 

wheel  (because gear is helical  =0,98)  
𝑇2 = 𝑇1𝑢𝜂 = 191 ⋅ 3.5 ⋅ 0.98 = 655 Nm 

2.5. Determine wheel width. 
𝑏2 = 𝜓𝑏𝑎 ∙ 𝑎𝑤 = 0.315 ∙ 160 = 50,4 mm 

From the Table D.21 we assume b2 = 50 mm. 

3. We determine the contact stresses and assess the contact strength 

of the teeth  

𝜎Н =
270

а𝑤
√
𝑇2⋅𝐾Н(𝑢 + 1)

3

𝑏2𝑢
2

=
270

160
√
655 ⋅ 103 ⋅ 1.2 ⋅ (3.5 + 1)3

50 ⋅ 3. 52
= 577

𝑁

mm2
 = 577 MPa 

577 MPa < 𝑘𝑔 = 605 MPa 

Strength condition is met. 

 

Example 3.28. Check the temperature of the worm gearbox (Fig. 3.41), 

if: transmitted power N1 = 2.2 kW; worm speed z1 = 1; ambient temperature 

to = 20 °С; the gearbox is installed on a metal frame; heat transfer coefficient 

KТ = 15 W/(m2 · °C); permissible lubricant temperature range 

[ts] = 70 ÷ 90 °С; case dimensions are shown in Fig. 3.41.  
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Data: 

N1 = 2.2 kW 

z1 =1 

to = 20 °С 

KТ = 15 W/( m2·°C) 

[ts] = 70 ÷ 90 °С  

Searched for: 

ts-? 

Fig. 3.41. The worm gearbox 

Solution 

1. Write down the heat balance condition for the worm gearbox. 

𝑡𝑠 = 𝑡𝑜 +
(1 − 𝜂)𝑁1
𝐾𝑇𝐴(1 + 𝜓)

≤ [𝑡𝑠] 

2. Define the unknowns. 

2.1. Determine the efficiency of the worm gearbox. 

With rough calculations, the efficiency of a worm gearbox can be 

determined from the number of worm revolutions. 

z1  

1 0.72 ÷ 0.78 

2 0.78 ÷ 0.82 

3 0.82 ÷ 0.87 

4 0.87 ÷ 0.92 

For z1 = 1 we take  = 0.75. 

2.1. Determine the area of the gearbox housing through which heat 

penetrates. 
𝐴 = 2(𝐵 ∙ 𝐻) + 2(𝐿 ∙ 𝐻) + 𝐵 ∙ 𝐿 = 2(0.12 ∙ 0.46) + 2(0.42 ∙ .46) + 0.12 ∙ 0.42 = 0.55 m2 
2.1. Determine the coefficient, taking into account the heat dissipation 

through the lower part of the gearbox housing. 

If the gearbox body is installed on a concrete, reinforced concrete 

or stone foundation  =0, if on an iron frame -  = 0.2 ÷0.3. 

Assuming that the gears are installed on an iron frame,  = 0.2. 

3. Determine the temperature of the lubricant and determine 

the temperature mode of the gearbox  

𝑡𝑠 = 𝑡𝑜 +
(1 − 𝜂)𝑁1
𝐾𝑇𝐴(1 + 𝜓)

= 𝑡𝑜 +
(1 − 0.75)2.2 ⋅ 103

0.15 ⋅ 0.55(1 + 0.2)
= 65°С < [𝑡𝑠] =  70 ÷ 90°С  

the temperature of the gearbox is normal. 
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Individual tasks 

 (calculation)  

 

Task 3.12. For a helical bevel gearbox, determine the pitch and inside 

diameter of the wheel, the normal and end (circumferential) modulus 

of the mesh, the tooth height, the distance between axes and the forces acting 

in the mesh (Table 3.12).  

 
Table 3.12. Initial data for Task 3.12 

Var. 

no 

N 

kW 

n1 

min-1 
z1 u 

Normal step рn, 

mm 

, 

° 

1 4.5 250 18 2 6.28 9 

2 5.0 300 19 3 7.85 10 

3 5.5 250 20 4 9.42 11 

4 6.0 320 21 5 10.99 12 

5 6.5 300 22 6 12.56 13 

6 7.0 340 25 4 14.13 14 

7 7.5 180 26 2 15.7 15 

8 8.0 160 28 2 6.28 16 

9 8.5 150 30 3 7.85 9 

10 9.5 240 22 4 9.42 10 

11 10.0 260 20 5 6.28 11 

12 10.5 220 18 6 7.85 12 

13 11.0 200 18 4 9.42 13 

14 11.5 280 19 2 10.99 14 

15 12.0 300 20 2 12.56 15 

16 16.5 260 21 3 14.13 16 

17 12.5 240 22 4 15.7 9 

18 13.0 230 25 5 6.28 10 

19 13.5 260 26 6 7.85 11 

20 14.0 220 28 4 9.42 12 

21 14.5 250 30 2 6.28 13 

22 15.0 180 22 2 7.85 14 

23 16.0 240 20 3 9.42 15 

24 17.0 240 18 4 10.99 16 

25 17.5 150 18 5 12.56 9 

26 18.0 170 19 6 14.13 10 

27 19.0 180 20 4 15.7 11 

28 20.0 140 21 2 6.28 12 

29 21.0 300 22 2 7.85 13 

30 22.0 320 25 3 9.42 14 
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Task 3.13. Check the contact strength of the teeth of a helical gearbox 

with bevelled teeth. The data for the calculationas is shown in Table 3.13. 

 
Table 3.13. Initial data for Task 3.13 

Var. 

no 

N 

kW 

n1 

min-1 

mn, 

mm 
z1 u 

, 

° 
ba KНL KН Steel 

Heat 

treatme

nt 

1 4.5 750 2 18 2 9 0.25 1.1 1.1 C35 

N
o

rm
al

iz
in

g 2 5.0 800 2.5 19 3 10 0.315 1.0 1.05 C40 

3 5.5 900 3 20 4 11 0.4 1.12 1.0 C45 

4 6.0 950 3.5 21 5 12 0.25 1.14 1.12 C50 

5 6.5 1000 4 22 6 13 0.315 1.2 1.15 C55 

6 7.0 1050 4.5 25 4 14 0.4 1.4 1.11 30HGS 

7 7.5 1100 5 26 2 15 0.25 1.3 1.3 35H 

T
h

er
m

al
 

u
p

gr
ad

in
g 8 8.0 1200 1.5 28 2 16 0.315 1.5 1.4 40H 

9 8.5 1250 2 30 3 9 0.4 1.6 1.2 40HN 

10 9.5 1300 2.5 22 4 10 0.25 1.7 1.25 C35 

11 10.0 1400 3 20 5 11 0.315 1.8 1.35 C40 

12 10.5 1450 3.5 18 6 12 0.4 2.0 1.1 C45 

13 11.0 1500 4 18 4 13 0.25 2.1 1.05 C50 

N
o

rm
al

iz
in

g 14 11.5 750 4.5 19 2 14 0.315 1.25 1.0 C55 

15 12.0 800 5 20 2 15 0.4 1.35 1.12 30HGS 

16 16.5 900 1.5 21 3 16 0.25 1.1 1.15 35H 

17 12.5 950 2 22 4 9 0.315 1.0 1.11 40H 

18 13.0 1000 2.5 25 5 10 0.4 1.12 1.3 40HN 

19 13.5 1050 3 26 6 11 0.25 1.14 1.4 C35 
T

h
er

m
al

 

u
p

gr
ad

in
g 20 14.0 1100 3.5 28 4 12 0.315 1.2 1.2 C40 

21 14.5 1200 4 30 2 13 0.4 1.4 1.25 C45 

22 15.0 1250 4.5 22 2 14 0.25 1.3 1.35 C50 

23 16.0 1300 5 20 3 15 0.315 1.5 1.1 C55 

24 17.0 1400 1.5 18 4 16 0.4 1.6 1.05 30HGS 

25 17.5 1450 2 18 5 9 0.25 1.7 1.0 35H 

N
o

rm
al

iz
in

g 26 18.0 1500 2.5 19 6 10 0.315 1.8 1.12 40H 

27 19.0 750 3 20 4 11 0.4 2.0 1.15 40HN 

28 20.0 800 3.5 21 2 12 0.25 2.1 1.11 C35 

29 21.0 900 4 22 2 13 0.315 1.25 1.3 C40 

30 22.0 950 4.5 25 3 14 0.4 1.35 1.4 C45 
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3.6. Selection of reducers 
 

General information 

Reducers - are devices that are manufactured as separate units 

and are designed to reduce angular velocities and increase torques. 

Reducers are widely used in the drives of machines and mechanisms. 

A general criterion for the technical level of reducers is the specific 

weight - the ratio of the weight of the reducer to the torque on its low-speed 

shaft:  

𝛾 =
𝑚

𝑇2
, 

where m – weight, kg,  

T2 – torque, Nm. 

 

Its value is highly dependent on the hardness of the gears. For high-

tech reducers   = 0.03 ÷ 0.05. 

Gearboxes are very diverse in terms of kinematic schemes and design. 

Classification of reducers. By type of gearbox: spur gearboxes, bevel 

gearboxes, worm gearboxes, planetary gearboxes, wave gearboxes, 

combination gearboxes (bevel and helical gearboxes, worm gearboxes);  

- according to the arrangement of the teeth on the wheel rim: spur gears, 

helical gears, chevron gears, bow gears;  

- by several stages: single-stage and multi-stage. The number of gear 

stages can be defined as the number of shafts minus one. Typically, the 

number of stages exceeding three is rarely used due to the large size and cost 

of such reducers; 

- by location of shafts and wheels in space: horizontal, vertical, inclined; 

- according to the mounting method: on feet or plate (with base) – 

for mounting on foundations, floors, and frames; with flanges for mounting 

on housings, frames of machines and mechanisms; slip-on - low-speed 

mounted directly on the working shaft of the machine; combined – 

for various mounting; according to mounting diagram; 

- according to climatic requirements: the gearboxes are designed 

for operation in macroclimatic regions with temperate, tropical, moderately 

cold, cold climates, etc. 

- by location categories, which are regulated by the relevant standards. 
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Selection and calculation of reducers 

The selection of series reducers is made according to the transmitted 

torques from the manufacturers' catalogues. Preliminary data for gearbox 

selection are: the highest load value corresponding to normal gearbox 

operation; the operating mode; the speed of the high-speed shaft; the gear 

ratio; the location of the motor and the working body of the machine; and the 

operating conditions. 

 

Condition for selection of reducer 

𝑇𝑐𝑎𝑙𝑐 = 𝐾𝑟𝑇𝑛 ≤ 𝑇𝑡 , 𝑢𝑓 ≈ 𝑢𝑡 , 𝑛𝑟𝑧.𝑝.𝑜. ≤ 𝑛𝑚𝑎𝑥, 

where Kr – mode factor; 

Тr, Tn, Tt – calculation torque, nominal on the input shaft and tabular 

torque, Nm;  

uf, ut – factual and tabular translation; 

nrz.p.o – actual speed of the high-speed reducer shaft, min-1; 

nmax – maximum tabulated reducer shaft speed, min-1. 

The permissible overload is 10 %, and the permissible underload is 20 %. 

 

The calculation of gear reducers includes the calculation of components 

such as gears, shafts, bearings, and bolts close to the bearings, checking 

of keyway connections and thermal calculations (for high-speed worm 

gears).  

The design, calculation and selection of materials for gearbox 

components are described in design and technical manuals. 

When solving gearbox selection tasks, it is advisable to pay attention 

to the position of the shafts in the task diagrams. If the shafts are aligned 

parallel in the gearbox diagram, the gearbox will be cylindrical; if they are 

angled, it may be a worm or bevel. 
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Examples of calculations 

 

Example 3.29. Select from the catalogue a reducer for the electric 

drive of the winch (Fig. 3.42) indicating its type, number of stages, overall 

dimensions, weight and size of bolts for its attachment, if: motor shaft speed 

n1 = 945 min-1; winch lifting capacity Q = 1,5 t; load lifting speed vl = 1.2 m/s; 

drive shaft diameter Db = 500 mm; mode factor Kr = 1.3; permissible ratio 

deviation u ±4%. 

 

Data: 

n1 = 945 min-1 

Q = 1.5 t 

Vl = 1.2 m/s 

Db = 500 mm 

Kr = 1.3 

u ± 4 % 

 
 

Fig. 3.42. Electric winch drive 

Searched for: 

Reducer - ? 

 

 

 

Solution 

1. Reducer selection condition. 
𝑇𝑐𝑎𝑙𝑐 = 𝐾𝑟𝑇𝑛 ≤ 𝑇𝑡 , 𝑢𝑓 ≈ 𝑢𝑡, 𝑛𝑟𝑧.𝑝.𝑜. ≤ 𝑛𝑚𝑎𝑥 

2. Define the unknowns. 

2.1. Reduce the load capacity to a single designation and units. 
𝑄 = 𝐹𝑡 = 15000 N 

2.2.  Determining the rated torque of the slow-speed shaft. 

𝑇𝑧.𝑤.𝑤 =
𝐹𝑡𝐷𝑏
2

=
15 ⋅ 103 ⋅ 0.5

2
= 3750 Nm 

2.3. Determine torque. 
𝑇𝑐𝑎𝑙𝑐 = 𝐾𝑐𝑎𝑙𝑐𝑇𝑧.𝑤.𝑤 = 1.3 ⋅ 3750 = 4875 Nm 

2.4. Determine the rotational speed of the drum, which is equal 

to the speed of the slow-running shaft of the reducer. 

𝑛𝑏 = 𝑛𝑤.𝑤 =
60𝑣𝑙
𝜋𝐷𝑏

=
60 ⋅ 1.2

3.14 ⋅ 0.5
= 46 rpm 

2.5. Determining the gear ratio of the reducer. 

𝑢𝑝 =
𝑛𝑚
𝑛𝑏

=
945

46
= 20.5 

3. Selecting a reducer. 

Taking into account the condition for the selection of the gear reducer 

and the obtained values for the design torque and ratio, as well 
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as the parallel alignment of the gear shafts in the drive diagram from 

the catalogue in  Table D.33, a cylindrical two-stage gear reducer of size 

1C2U-250 is selected, for which: 

- rated torque Тz = 5000 Nm;  

- ratio uz = 20;  

Permissible ratio deviations 

∆𝑢 =
𝑢𝑓 − 𝑢𝑧

𝑢𝑧
∙ 100% = 2.5 % < 4 % 

Condition is met 

From Table D.33 we also extract the dimensions L = 825 mm; B = L4+L5 

=265+335= 600 mm; H = 515 m; weight of reducer m = 320 kg; diameter 

of the mounting screw holes d = 28 mm, we assume M24 screws. 

 

Answer: Reducer 1C2U-250. 
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Individual task 

(calculation) 

 

Task 3.14. Select a reducer for an electric winch drive from 

a catalogue, indicating its type, number of steps, overall dimensions, weight 

and the size of the bolts to attach it. The initial data are shown in Table 3.14. 

 
Table 3.14. Initial data for Task 3.14 

Var. 

no 

Ft, 

kN 

n1, 

min-1 

Dз, 

mm 

Vl, 

m/s 
Kr u Drive scheme 

1 4.5 750 500 0.2 1.0 4 

 

2 5.0 800 600 0.25 1.1 5 

3 5.5 900 700 0.3 1.2 6 

4 6.0 950 750 0.35 1.15 7 

5 6.5 1000 800 0.5 1.2 9 

6 7.0 1050 850 0.4 1.3 8 

7 7.5 1100 900 0.45 1.4 10 

8 8.0 1200 950 0.6 1.5 4 

9 8.5 1250 1000 0.7 1.6 5 

10 9.5 1300 1100 0.8 1.05 6 

11 10.0 1400 1200 1.0 1.12 7 

12 10.5 1450 500 1.1 1.0 9 

13 11.0 1500 600 1.2 1.1 8 

14 11.5 750 700 1.3 1.2 10 

15 12.0 800 750 1.25 1.15 4 

16 16.5 900 800 1.5 1.2 5 

 

17 12.5 950 850 1.4 1.3 6 

18 13.0 1000 900 1.45 1.4 7 

19 13.5 1050 950 0.2 1.5 9 

20 14.0 1100 1000 0.25 1.6 8 

21 14.5 1200 1100 0.3 1.05 10 

22 15.0 1250 1200 0.35 1.12 4 

23 16.0 1300 500 0.5 1.0 5 

24 17.0 1400 600 0.4 1.1 6 

25 17.5 1450 700 0.45 1.2 7 

26 18.0 1500 750 0.6 1.15 9 

27 19.0 750 800 0.7 1.2 8 

28 20.0 800 850 0.8 1.3 10 

29 21.0 900 900 1.0 1.4 4 

30 22.0 950 950 1.1 1.5 5 
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3.7. Graphical schemes of gearbox elements. Creation of kinematic 
diagrams of drives  

 

General information 

Conventional graphical representations of the elements of machines 

and mechanisms are special simplified images used for drawing up kinematic 

diagrams and showing the basic structure of the mechanism or machine and 

the interaction of the elements of machines and mechanisms. 

The conventional graphic symbols in kinematic diagrams and the rules 

for drawing up kinematic diagrams are governed by the relevant standards. 

Tables 3.2 and 3.3 below provide basic graphical representations 

of the kinematic elements of machines and machinery mechanisms. 

 

Rules for plotting kinematic diagrams  

As a rule, the kinematic diagram of the product is drawn up in the form 

of a summary drawing (Fig. 3.43). 

The kinematic diagrams show: 

- shafts, axles, connecting rods, cranks and others - basic continuous 

lines of thickness s; 

- components shown in simplified outline, gears, worms, pulleys, 

couplings, bearings, etc. - in continuous lines of thickness s/2; 

- the contour of the product (e.g. casing) into which the graph 

is inscribed - with continuous thin lines of thickness s/3.  

According to the standard, the thickness of the baselines on kinematic 

diagrams should be in the range of 0.5 ÷ 1.4 mm. When using computer 

graphics programs, it is recommended to set the following line thickness 

in the sheet: basic s = 0.6 mm, then s/2 = 0.3 mm and s/3 = 0.2 mm. 

Each kinematic component shown in the diagram is usually assigned 

a serial number, starting with the motor. Shafts are numbered in Roman 

numerals, other components are numbered in Arabic numerals only 

(Fig. 3.43). The serial number of the component is placed on a line. Below the 

line are the main features and parameters of the kinematic element, a list 

of which is given in Table 3.15. 
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Table 3.15. List of basic parameters and characteristics of kinematic elements 

 

Kinematic element Parameter, characteristics 

1. Motor Type; power N, W; rotation n, rpm 

2. Reducer, belt, chain and 

other gears 
Transmission ration u 

3. Pulleys Diameter , mm 

4. Sprocket 
Number of sprocked teeth z, chain step t, 

mm 

5. Gears, worm wheels 
Number of teeth z, module m, mm; tine 

angle  (for oblique teeth) 

6. Snails 
Screw type (if not Archimedean), number 

of screw coils z, module m, mm 

 
Table 3.16. Graphical symbols for machine elements and mechanisms in kinematic 

diagrams (ISO 5127:2017) 

Name Symbol 

Source of movement (motor) 

 
Shaft, axle, rod, connecting rod, etc.  

Fixed link (stand) 

 
Multistage pulley 

 
Friction gear:  

Helical 

 

oblique 
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Name Symbol 

oblique adjustable 

 

front adjustable 

 
Belt transmission:  

without specifying the type of belt 
 

With the type of belt identified (the belt 

profile is drawn alongside). There are the 

profiles of flat, V-belts, multiple V-belts and 

round belts. 
 

Chain :  

Without specifying the type of chain 
 

With the identification of the type of chain. 

There are the conventional chain 

designations: 1) plate, roller, sleeve; 2) 

calibrated, anchor; 3) toothed 
 

Spur gear:  

without specifying the type of tooth 

 

with an indication of the type of tooth: 

 

1) straight tooth; 2) oblique tooth;  

 
3) chevron  

Internal pinion gears  
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Name Symbol 

with an indication of the type of tooth: 

 

1) straight tooth; 2) oblique tooth;  

 

3) with round teeth  

Hypoid gearbox 

 

Worm gear with cylindrical worm: 

 

with top auger system 

 

with bottom auger system  

Worm gearbox  

Screw-nut gearbox:  

with one-piece guide 

 

integral with rolling elements  

sliding distributor 
 

Thread 

 

Plain and antifriction bearings without 

specification of type: 1) radial; 2) longitudinal 
 

Rolling bearings:  
1 2  
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Name Symbol 
Plain bearings: 1) radial; 2) radial 

longitudinal unilateral; 3) radial longitudinal 

bilateral; 4) longitudinal unilateral; 5) 

longitudinal bilateral  

Coupling without type designation 
 

Fittings with type designation: 

1) blind; 2) compensating; 3) flexible 
 

Brake (general designation) 
 

 
Table 3.17. Examples of kinematic diagrams some reducers  

Reducer Scheme  

Single-stage roller 

 
 

Single-stage vertical roller 

 

Conical single-stage 

 

Cylindrical two-stage gearbox made 

according to an enlarged scheme with oblique 

teeth 
 

Cylindrical two-stage gearbox with split 

spur teeth 
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Reducer Scheme  

Cylindrical two-stage coaxial 

 

Three-stage cylindrical gearbox with split 

intermediate shafts with bevel teeth 

 

Two-stage bevel and spur gear wheel with 

circular bevel stage teeth and spur teeth  
 

Single-stage auger with bottom auger 

system 

 

Two-stage worm gearbox 

 

Toothpick 
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Examples 

 

Example 3.30. Draw a kinematic diagram of the drive based on 

the structural diagram, indicating its components and main parameters. 

 

Initial data 

Motor  belt transmission cylindrical two-stage transmission made 

by the expanded diagram  compensating coupling  shaft of the working 

machine, supported on one side by a double-sided thrust bearing and 

on the other side by a single-sided thrust bearing. 

Implementation 

 
Fig. 3.43. Kinematic diagram of the drive: 

 

1 - motor; 2 - belt transmission; 3 - driving pulley; 4 - driven pulley; 5 - cylindrical two-

stage transmission made according to the extended scheme; 6 - first stage 

transmission; 7 - first stage wheel; 8 - second stage transmission; 9 - second stage 

wheel; 10 - compensating joint; 11 - double-sided thrust sleeve bearing; 12 - single-

sided thrust sleeve bearing; І - motor shaft; ІІІ - low-speed reducer shaft; ІІІ - 

intermediate reducer shaft; ІV - low-speed reducer shaft; V - working machine shaft. 
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Individual task 

(graphical) 

 

Task 3.15. Make a kinematic diagram of the drive based on 

the structural diagram (Table 3.18), indicating its components and main 

parameters.  

 
Table 3.18. Initial data for Task 3.15 

Var. 

no 
Structural scheme 

1 
Motor  wedge gearbox  two-stage helical gearbox made by the extended 

diagram  compensating coupling  working shaft of machines, supported 

by single-sided plain bearings.   

2 
Motor  coupling  bevel gear  coupling  shaft of the working machine, 

supported by tapered roller bearings. 

3 
 Motor  wedge-belt transmission  worm gearbox with upper worm 

position spring coupling  machine shaft supported by double-sided angular 

contact roller bearings. 

4 
 Motor  coupling  helical bevel gearbox  chain gearbox  machine 

working shaft supported by thrust ball bearings. 

5 
Motor  coupling  two-stage helical gearbox made according to the extended 

scheme with oblique teeth  chain transmission  the working shaft of the 

machine is supported by radial ball bearings. 

6 
 Motor  chain transmission  coaxial two-stage spur gear with oblique spur 

teeth  spring coupling  machine working shaft supported by roller bearings. 

7 
Motor  coupling  three-stage gearbox is made according to the split scheme 

with oblique teeth  compensating coupling  machine shaft supported by 

plain bearings. 

8 
Motor  chain transmission  two-stage worm gear  coupling  working 

shaft of the machine, supported by a roller bearing. 

9 
Motor  coupling two-stage worm gearbox  coupling  working shaft 

of the machine, supported by a roller bearing. 

10 
Motor  chain transmission  bevel gear with round teeth  coupling  

machine working shaft supported by radial roller bearings. 

11 
 Motor  chain transmission  bevel gear with round teeth  coupling  

machine working shaft supported by radial roller bearings. 

12 
 Motor  chain transmission  two-stage helical gearbox made according to 

the extended scheme on a low-speed shaft, on one side of which a brake is 

installed  coupling  machine working shaft based on sliding bearings. 
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Var. 

no 
Structural scheme 

13 
 Motor  spring coupling  vertical two-stage gearbox with spur gear  belt 

transmission with V-belt  machine working shaft supported by tapered roller 

bearings. 

14 
 Motor  coupling  bevel gear  coupling  shaft  belt transmission of the 

machine's working shaft, supported by roller bearings. 

15 
 Motor  coupling  two-stage helical gearbox made according to 

the extended scheme with bevel teeth  compensating coupling  working 

shaft of the machine, supported by plain bearings. 

16 
 Motor  wedge gear  spur gear with chamfered teeth  coupling  machine 

working shaft supported by ball roller bearings. 

17 
 Motor  chain transmission  worm gearbox with top worm arrangement  

coupling  machine working shaft supported by angular contact roller 

bearings. 

18 
 Motor  coupling  gearbox  coupling  the machine's working shaft is 

supported by roller bearings.  

19 
Motor  chain transmission  two-stage worm gearbox  coupling  

working machine shaft supported by slipping bearings. 

20 
 Motor  nipple  three-stage gearbox made by the division scheme 

of intermediate shafts with high- and low-speed helical teeth and chevron 

teeth  nipple  working shaft of the machine supported by roller bearings. 

21 
 Motor  gearbox with V-belt and two-stage pulley  bevel gearbox  

coupling  machine working shaft supported by roller bearings. 

22 
 Motor  coupling  spur gear with chamfered teeth  open gear  machine 

working shaft supported by roller bearings. 

23 
 Motor coupling  two-stage bevel gearbox  chain transmission  

machine working shaft supported by roller bearings. 

24 
Moto r coupling  vertical single-stage gearbox with bevel teeth  chain 

transmission machine working shaft supported by angular contact roller 

bearings. 

25 
 Motor  coupling  two-stage gearbox made according to an enlarged scheme 

with bevel teeth  chain transmission  working shaft of the machine 

supported by roller bearings. 

26 
Motor  chain transmission  spur gear with bevel teeth  open bevel gear  

machine working shaft supported by roller bearings. 

27 
 Motor  chain transmission  three-stage spur gear with bevel teeth  open 

bevel gear with machine working shaft supported by roller bearings. 

28 
 Motor  chain gearbox  worm gearbox  open helical gearbox with the 

machine's working shaft supported by double-row self-aligning roller bearings. 
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Var. 

no 
Structural scheme 

29 
 Motor  wedge gear  bevel gear with bevel teeth  coupling  

the machine's working shaft is supported on self-aligning roller bearings. 

30 
Motor  coupling  gearbox  coupling  the working shaft of the machine 

is supported by single-sided roller bearings. 
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3.8. Calculations of shafts and axles 
 

General information 

Shafts are the parts that are used to fix and support rotating parts 

(gears, pulleys, couplings, etc.) and transmit torque along their axes. 

Some shafts do not support rotating parts (gimbal shafts, torsion bars, 

etc.) During operation, bending and torsional and, in some cases, tensile and 

compressive forces act on the shaft. 

Axles are parts designed solely to hold and support the components 

on them. Unlike the shaft, the axle does not transmit torque and is only 

affected by bending forces. 

The axles can either rotate with the parts fitted for better-bearing 

performance or be stationary if bearings are required to be housed in the 

rotating part. 

Structural components of shafts and axles. The design, and surface 

quality of shafts and axles depend on their purpose, the nature and 

magnitude of the loads applied to them, the method of fixing the parts 

mounted on them, the assembly conditions of the assembly and their 

manufacturing technology. 

Shaft and axle design includes: bearing surfaces, seating surfaces, 

transition areas, shoulders, chamfers, bevels and other elements. 

Shaft and axle materials. Shaft and axle materials must be strong, rigid, 

easily machinable and have a high modulus of elasticity. Shafts and axles are 

mainly made from carbon and alloy steels, less frequently from cast iron. 

Steel grades used for shafts and axles without heat treatment S275, S315, 

C35, and C40; for shafts with heat treatment C45, 40H, 40HN, 40HN2MA, 

30HG. High-speed shafts running in plain bearings are made from C20, 20H, 

and 12HN3А steel. The journals of these shafts are carburised or nitrided 

to increase wear resistance. 

For steel shafts up to 150 mm in diameter, a round wire rod is usually 

used as the workpiece, while for larger diameter shafts and shaped shafts, 

forgings are used. The shafts are turned and the seating surfaces are further 

ground. Heavily loaded shafts are ground over the entire surface. 

The mechanical properties of some of the steels used for shafts and axles 

are given in Table D.41. 
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Basic calculation formulae 

Rotating shafts and axles are subject to cyclically varying stresses 

during operation. The main performance criteria are fatigue strength 

(durability) and stiffness. The failure of shafts and axles is mostly related 

to fatigue, so the main calculations concern fatigue strength. 

The main loads acting on the shafts and axles are those from the gears, 

the couplings and the working bodies of the machines or the mechanisms 

on them. As a result, shafts and axles undergo complex deformations: 

torsion, bending, tension, and compression. The effect of tensile 

and compressive forces is not significant and is not taken into account 

in most calculations. The dead weight of the shafts and axles, as well 

as the weight of parts on the shafts and axles, is only taken into account 

if their values are of the same order as the main loads. 

Shafts are calculated in two stages: design (preliminary) 

and verification (final). Design calculations of shafts are carried out for static 

torsional strength in one direction only to determine approximate diameters. 

Unaccounted bending stresses, stress concentrations, load patterns 

and other factors are compensated for by reducing the allowable torsional 

stresses ks. Design calculations usually specify the diameter of the output end 

of the shaft, which in most cases is only subjected to torsion. 

The intermediate shaft does not have an output end, so the diameter under 

the gear wheel is calculated for it. 

Torsional strength condition 

𝜏𝑠 =
𝑇

0.2𝑑3
≤ 𝑘𝑠, then 𝑑 ≥ √

𝑇

0.2𝑘𝑠

3

 

where Т – torque transmitted through the shaft, Nmm; 

𝑘𝑠  – permissible torsional stresses, MPa. For output shaft parts; 

𝑘𝑠 = 20 ÷ 30 MPa. For intermediate shafts when determining 

the diameter under the wheel 𝑘𝑠= 10 ÷ 20 MPa. 

 

The resulting value is rounded off to the nearest standard size 

(Table D.43). Other shaft diameters are determined during the design 

process, taking into account the design and dimensions of the parts 

on the shaft, manufacturing and assembly technology. 

When designing a gearbox, the diameter of the output end of the shaft 

can be assumed to be equal to the diameter of the shaft of the electric motor 

to which it will be connected by a coupling.  
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Shafts are checked for fatigue, static strength and stiffness, and in some 

cases for vibration (not discussed in the script). This is the final and basic 

calculation. It is carried out after the shaft and selected bearings have been 

designed when the diameters, lengths of shaft sections, roughness, fit, 

material, types of reinforcement, sizes of fillet passages and splines 

and keyways, etc. are known. Shaft verification calculations are carried out 

according to design diagrams. 

 

Shaft design schemes 

Based on a sketch of the shaft, a design scheme is developed in which 

the shafts are treated as beams fixed pivotally in rigid supports, one of which 

is movable. The loads acting on the shaft are reduced to two mutually 

perpendicular planes - horizontal and vertical. When selecting the type 

of support, it is assumed that if bearings transmit both radial and axial forces, 

they are considered as fixed supports, while bearings that transmit only 

radial forces are considered as mobile supports. In the calculation diagrams, 

acting continuous loads are replaced by concentrated loads for simplicity, 

and in approximate calculations, they are applied at the centre of the part on 

the shaft (Fig. 3.44). In more precise calculations, the points at which 

the loads are applied are determined as recommended, taking into account 

the structural features of the parts to be mounted on the shaft. 

 
Fig. 3.44. Diagrams of shafts 

 

Once the design diagram has been drawn up, the reactions 

of the supports are determined and transverse forces, bending, torsion 

and equivalent moments are plotted. 

Fatigue strength calculations for shafts can be simplified and exact. 

Precise calculations are carried out for potentially dangerous cross-sections, 
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pre-planned according to moment diagrams and the location of stress 

concentration zones. 

Simplified calculations are carried out assuming that the normal 

and tangential stresses vary in a symmetrical (most unfavourable) cycle. 

The strength condition takes the form of 

𝜎𝑟𝑒𝑑 =
𝑀𝑟𝑒𝑑
0.1𝑑3

≤ 𝑘−1𝑔 then 𝑑 = √
𝑀𝑟𝑒𝑑
0.1𝑘−1𝑔

3

 

where red – reduced stresses in the calculated section, MPa; 

Mred – reduced torque in section, Nmm; 

d – diameter of the shaft in the calculated section, mm;  

k-1g - allowable bending stress under symmetrical load cycle, MPa. 

The design values of the shaft diameter in the calculated cross-section 

are compared with the assumed design diameter. If the section 

to be calculated is weakened by a keyway, the design diameter is increased 

by 7 ÷ 10 %, if the fit is tight, by 5 %. The reduced moment is determined 

taking into account the simultaneous action of bending and torsional 

moments according to one of the strength hypotheses, for example, 

the highest shear stress hypothesis  

𝑀𝑟𝑒𝑑 = √𝑀𝑔
2 + 𝑇2, 

where М, Т – the respective bending and torsional moments, Nmm.  

 

Precise calculations are carried out assuming that bending stresses 

vary according to a symmetrical alternating cycle and torsional stresses 

according to a zero (pulsating) cycle, and aim to determine design safety 

factors at potentially hazardous cross-sections, taking into account 

the nature of stress variation, dimensional influence, stress concentration, 

surface roughness and hardening.  

The fatigue strength condition is of the form:  

𝑛 =
𝑛𝜎 ⋅ 𝑛𝜏

√𝑛𝜎
2 + 𝑛𝜏

2
≥ [𝑛] 

where n, n - safety factor for normal and tangential stresses respectively;  

[n] – permissible safety factor. Usually [n] = 1.2 ÷ 3 is adopted 

(a smaller value for accurate calculation schemes).  

 

A section for which the safety factor is minimum is unsafe. If the 

strength reserve is below the permissible one, the shaft configuration is first 
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changed to reduce the stress concentration. If these measures do not 

increase the strength to the required value, the diameter of the shaft 

is increased, the material is changed and the calculation is repeated. 

Static strength calculations. Static strength checks on shafts are 

carried out to prevent the occurrence of plastic (residual) deformation 

during the application of maximum stresses (for example during start-up). 

Static strength calculations are generally carried out for the section with 

the smallest fatigue strength reserve, where the probability of failure under 

overload is greatest.  

Using, for example, the stress-energy hypothesis, the reduced stress for 

a dangerous shaft section is given by the formula  

𝜎𝑟𝑒𝑑 = √𝜎𝑚𝑎𝑥
2 + 3𝜏𝑚𝑎𝑥

2 ≤ 𝑘𝑚𝑎𝑥, 

where max,max – the highest bending and torsional stresses in the section 

respectively, MPa. 
𝑘𝑚𝑎𝑥 ≈ 0.66𝑅𝑒 , 

where Re – the yield strength of the material, MPa. 

 

Stiffness calculations. Verifying calculations for the stiffness of shafts 

are carried out in those cases where their deformations have a significant 

effect on the operation of the associated components. Thus, for example, 

increased deflection f of the shafts of gears (Fig. 3.45) causes divergence 

of the wheel axes, concentrating the load along the length of the teeth and 

causing premature wear and even destruction, and the angle of rotation  - 

causing clamping in the rolling bearings, increased friction and their 

overheating. 

 
Fig.3.45. Deflection and rotation angles of shaft sections 

 

A distinction is made between flexural and torsional stiffness.  

The bending stiffness is assessed by the deflection f (у - another 

designation for bending used in the technical literature) and the angle 
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of rotation , which are determined by material strength methods. Then 

the bending stiffness condition will take the form: 
𝐹 ≤ [𝑓];  𝜃 ≤ [𝜃], 

where [f] and [] – permissible deflection [mm] and angle of rotation [rad] 

respectively, depending on the purpose of the shaft, determined 

at the design stage. Where gears are installed, [f]  0.01m, where т – 

the abutment modulus. For plain bearings recommended [] = 0.001 

rad, in ball bearings []  0.01 rad. 

 

Methods for determining deflections and angles are discussed 

in the chapter “Strength of materials”. For typical shaft loading schemes, 

the unit force method or the independent force principle is widely used, 

which allows calculations to be made using the ready-made formulas shown 

in Table 3.19. 

In most cases, gear shafts are not checked for stiffness because 

the safety factors are overestimated. The exception is worm shafts, which 

are always checked for bending stiffness due to the large distance between 

supports. 

With symmetrical support positions, the maximum deflection is 

𝑓 =
𝑙3√𝐹𝑡1

2 +𝐹𝑟1
2

48𝐸𝐽
≤ [𝑓], 

where l – is the distance between the auger support axes, mm; 

Ft1 and Fr1 – peripheral and radial force of the worm, N;  

Е – longitudinal modulus of elasticity (Young's modulus), MPa; for steel 

Е = 2,1  105 MPa; 

J – reduced moment of inertia of the worm shaft section with regard 

to the thread profile, mm4.  

𝐽 =
𝜋𝐷𝑓1

4

64
(0.375 + 0.625

𝐷𝑎1
𝐷𝑓1

), 

where Dа1 and Df1 – outer and inner diameter of the worm, mm.  

If the calculated shaft deflection f  [f], the worm diameter factor q is 

increased and the calculation is repeated. 
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Table 3.19. Formulae for the determination of deflection f and cross-sectional angles θ 

of shafts of constant cross-section 

Θ or f 

 

θA 
𝐹𝑎𝑏(𝑙 + 𝑏)

6𝐸𝐽𝑙
 −

𝐹1𝑐𝑙

6𝐸𝐽
 

θB −
𝐹𝑎𝑏(𝑙 + 𝑎)

6𝐸𝐽𝑙
 −

𝐹1𝑐𝑙

3𝐸𝐽
 

θC θB 
𝐹1𝑐(2𝑙 + 3𝑐)

6𝐸𝐽
 

θD 
𝐹𝑏(𝑙2 − 𝑏2 − 3𝑑2)

6𝐸𝐽𝑙
 

𝐹1𝑐(3𝑑
2 − 𝑙2)

6𝐸𝐽𝑙
 

θE 
𝐹𝑎(𝑙2 − 𝑎2 − 3𝑒2)

6𝐸𝐽𝑙
 - 

θH 
𝐹𝑎𝑏(𝑏 − 𝑎)

3𝐸𝐽𝑙
 - 

fD 
𝐹𝑏𝑑(𝑙2 − 𝑏2 − 𝑑2)

6𝐸𝐽𝑙
 −

𝐹1𝑐𝑑(𝑙
2 − 𝑑2)

6𝐸𝐽𝑙
 

fE 
𝐹𝑎𝑒(𝑙2 − 𝑎2 − 𝑒2)

6𝐸𝐽𝑙
 - 

fH 
𝐹𝑎2𝑏2

3𝐸𝐽𝑙
 - 

fC θBC 
𝐹1𝑐

2(𝑙 + 𝑐)

3𝐸𝐽
 

Comment: Е = 2,1  105  MPa – Young’s modulus for steel; 𝐽 =
𝜋𝑑4

64
 – axial moment of inertia 

of the circular section; l – length of the section between the transitions.  
 

To increase the bending stiffness of shafts and axles, it is recommended 

that components be placed closer to the supports.  

The torsional stiffness of shafts is assessed by the torsion angle φ0  

per unit length of shaft: 

𝜑0 =
𝑇

𝐺𝐽𝑏
≤ [𝜑0], 

where Т – section torsional moment, Nm;  

G – Kirchhoff modulus, MPa; for steel G = 8104 MPa;  

Jp – polar moment of inertia in the section, m4. For a fulll round section 

𝐽𝑝 =
𝜋𝑑4

32
;  
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[0] – permissible torsion angle of the shaft [rad] per 1 m length. 

The value depends on the purpose of the shaft and falls within a wide 

range 

[𝜑0] = (5.0 ÷ 22) ∙ 10
−3 rad/m. 

 

For many gear shafts, torsional stiffness is not relevant and such 

calculations are not carried out. 

 

Axles calculations 

Axles only support components and are therefore subject to bending 

stresses. For axles, as for shafts, design and verification calculations are 

carried out. Design (preliminary) calculations of the axles for static strength 

are carried out, as for beams with pinned supports, using conventional 

material strength methods, determining the lengths of the sections 

depending on the design of the node. Fixed axis calculations are based on the 

assumption that bending stresses vary according to a zipper cycle, the most 

unfavourable of all known fixed cycles, and moving axis calculations are 

based on the assumption that stresses vary according to a symmetrical cycle.  

The diameter in the calculated section is determined from the bending 

strength condition: 

𝜎𝑔 =
𝑀𝑔

0.1𝑑3
≤ 𝑘−1(0)𝑔 from where 𝑑 ≥ √

𝑀𝑔

0.1𝑘−1(0)𝑔

3

, 

where Mg – bending moment, Nmm; 

d – axle diameter, mm; 

 𝑘−1(0)𝑔 – permissible bending stresses for symmetric and zero cycle, 

respectively, MPa.  

For axles made of medium-carbon steels, allowable bending stresses are 

k0g = 100 ÷ 160 MPa. Lower values are recommended for sharp stress 

concentrators. The stresses in axles rotating in a symmetrical cycle assume      

k-1g = (0.5 ÷ 0.6)k0g. If the axle in the calculated section has a groove or veneer 

in the structural section, the resulting diameter is increased 

by approximately 10% and rounded to the nearest standard diameter. 

Verifying (final) axle calculations for fatigue strength and stiffness 

are carried out, as for shaft calculations, at T = 0. 
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Examples of calculations 

 

Example 3.31. The drive (Fig. 3.46) contains a motor, a belt 

transmission, and a reducer. From the strength condition, determine 

the diameter of the output end of the low-speed shaft if the motor power 

Nm = 10 W; motor shaft speed nm = 1000 min-1, pulley diameters D1 = 160 mm, 

D2 = 320 mm, transmission ratio up = 5, permissible torsional stress for the 

shaft material ks = 45 MPa. 

 

Data: 

Nm = 10 W 

Nm = 1000 min-1 

D1 = 160 mm  

D2 = 320 mm 

up = 5 

ks = 45 MPa. 
 

Searched for: 

dw.c. -? 

Fig. 3.46. Drive to the calculations 

 

Solution 

1. Write down the torsional strength condition for the low-speed shaft. 

𝜏𝑠 =
𝑇𝑤.𝑐

0.2𝑑𝑤.𝑐.
3 ≤ 𝑘𝑠 

2. Define unknowns. 

2.1. Determining the motor shaft torque. 

𝑇𝑚 = 9.55
𝑁𝑚
𝑛𝑚

= 9.55
10 ⋅ 103

1000
≈ 96Nm 

2.2. Determining the transmition ratio. 

𝑢𝑝𝑟𝑧 =
𝐷2
𝐷1
𝑢𝑝 =

320

160
⋅ 5 = 10 

2.3. Determining the efficiency of the drive. 

The drive consists of a belt drive and a gearbox, given that the ratio 

is 5, it will be a single-stage gearbox and the parallel arrangement 

of the shafts in the diagram indicates that it is a cylindrical gearbox. From 

Table D.17, we take the efficiency of the belt drive p.p = 0.96, the efficiency 

of the pinion gear p = 0.98, and then the efficiency of the drive. 
𝜂𝑛 = 𝜂𝑝𝑟𝑧 ∙ 𝜂𝑟𝑒𝑑 = 0.94 

2.4. Determining the torsional moment on the low-speed shaft. 
𝑇𝑤.𝑐 = 𝑇𝑚 ∙ 𝑢𝑝𝑟𝑧 ∙ 𝜂𝑝𝑟𝑧 = 96 ∙ 10 ∙ 0.94 ≈ 902 Nm 
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2.5. From the torsional strength condition we determine the diameter 

of the low-speed shaft 

𝑑𝑤.𝑐 ≥ √
𝑇𝑤.𝑐 ⋅ 10

3

0.2𝑘𝑠

3

= √
902 ⋅ 103

0,2 ⋅ 45

3

≥ 47 mm 

From Table D.43 we assume dw.c= 48 mm. 

 

Answer: dw.c. = 48 mm. 

 

Example 3.32. Determine the at the point of application of the load F1, 

if: transmitted power N = 10 kW; rotation shaft speed n = 500 min-1; F1 = 3 kN; 

shaft material C45 steel; a = 300 mm; b = 200 mm; section weakened 

by keyway. 

 

Data: 

N = 10 kW 

n = 500 min-1 

F1 = 3 kN 

a = 300 mm 

b = 200 mm 

material – C45 steel 

 

Searched for: 

d - ? 

Fig. 3.47. Diagram of forces acting on the 

shaft 

Solution 

1. Write down the strength condition for the shaft keep in mind 

the bending and torsional moments: 

𝜎𝑟𝑒𝑑 =
𝑀𝑟𝑒𝑑
0.1𝑑3

≤ 𝑘−1𝑔 

2. Define unknowns. 

2.1. Determine the permissible stresses for the shaft material. 

For C45 steel from Table D.41 we take  = 560 MPa (since the diameter 

of the shaft is unknown), for which we take the permissible stresses from 

the Table D.42 𝑘−1𝑔 = 50 MPa. 

2.2. We determine the torsional moment which the shaft transmits. 

𝑇 = 9.55
𝑁

𝑛
= 9.55

10 ⋅ 103

500
= 191 Nm 

2.3. Determine reactions in the supports. 

We adopt the sign rule. We take the counterclockwise moment as 

positive. 

𝛴МА = 0; 𝑅𝐵(𝑎 + 𝑏) − 𝐹1𝑎 = 0;𝑅𝐵 =
𝐹1𝑎

𝑎 + 𝑏
=
3000 ⋅ 0.3

0.3 + 0.2
= 1800 N 
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𝛴МВ = 0; −𝑅А(𝑎 + 𝑏) + 𝐹1𝑏 = 0;𝑅𝐴 =
𝐹1𝑏

𝑎 + 𝑏
=
3000 ⋅ 0.2

0.3 + 0.2
= 1200 N 

Verification 
𝛴𝐹𝑦 = 0. 𝑅𝐴 − 𝐹1 + 𝑅𝐵 = 0; 1200 − 3000 + 1800 = 0; 0 = 0 

Reactions were determined correctly. 

2.4. Determining the bending moment 
𝑀 = 𝑅𝐴𝑎 = 1200 ⋅ 0.3 = 360 Nm 

2.5. Determining the reduced moment 

𝑀𝑟𝑒𝑑 = √𝑀𝑔
2 + 𝑇2 = √3602 + 1912 = 408 Nm 

2.6. From the strength condition we determine the diameter of the shaft 

𝑑 = √
𝑀𝑟𝑒𝑑

0.1[𝜎−1]𝑔

3

= √
408 ⋅ 103

0.1 ⋅ 50

3

= 43 mm 

As the cross-section is weakened by the keyway, we increase the 

diameter by 10 %. 
𝑑 ∙ 1.1 = 43 ∙ 1.1 = 47.3 mm 

The resulting value is rounded up to the value in the Table D.43 d = 50 mm.  

Answer: d = 50 mm. 

 

Example 3.33. Check the strength of the axle at the point 

of application of the force F1, if the load value F1 = 10 kN, axle diameter 

d = 40 mm; а = 300 mm; b = 200 mm, fixed axle, section weakened 

by a keyway, permissible stress of the axle material k0g = 70 MPa. 

 

Data: 

F1 = 10 kN 

d = 40 mm 

а = 300 mm 

b = 200 mm 

k0g =70 MPa 

 

Searched for: 

σg - ? 

Fig. 3.48. Diagram of forces acting on the axle 

Solution 

1. Plot a calculation scheme (Fig. 3.48). 

2. Write the strength condition for the axis 

𝜎𝑔 =
𝑀𝑔

0.1𝑑3
≤ 𝑘0𝑔 

3. Define unknowns. 

3.1. Determining the value of the reaction in the supports. 

Adopt the sign rule. We take the counterclockwise moment as positive.  
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𝛴𝑀𝐴 = 0; 𝑅𝐵(𝑎 + 𝑏) − 𝐹1𝑎 = 0;𝑅𝐵 =
𝐹1𝑎

𝑎 + 𝑏
=
10000 ⋅ 0.3

0.3 + 0.2
= 6000 N 

𝛴𝑀𝐵 = 0; −𝑅А(𝑎 + 𝑏) + 𝐹1𝑏 = 0;𝑅𝐴 =
𝐹1𝑏

𝑎 + 𝑏
=
10000 ⋅ 0.2

0.3 + 0.2
= 4000 N 

Verification 
𝛴𝐹𝑦 = 0 

𝑅𝐴 − 𝐹1 + 𝑅𝐵 = 0; 4000 − 10000 + 6000 = 0; 0 = 0 
Reactions were determined correctly. 

3.2. Reactions were determined correctly. 
𝑀 = 𝑅𝐴𝑎 = 4000 ⋅ 0.3 = 1200 Nm 

3.3. Determine the bending stresses and assess the strength of the shaft. 

𝜎𝑔 =
𝑀𝑔

0.1𝑑3
=
1200 ⋅ 103

0.1 ⋅ 403
= 188 

N

mm2
= 188 MPa 

As the axle section is weakened by the keyway, we increase 

the calculated stresses by 10 %: 
𝜎𝑔 ∙ 1.1 = 188 ∙ 1.1 = 207 MPa > 𝑘0𝑔 = 70 MPa 

The strength condition is not met. In order to meet the strength 

condition, either the diameter has to be increased or a stronger material 

has to be chosen.  
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Individual tasks 

(calculation) 

 

Task 3.16. Determine the diameter of the shaft at the point 

of application of the load F1. The initial input data is shown in Table 3.20. 

 
Table 3.20. Initial data for Task 3.16 

Var. 

no 

F1, 

kN 

F2, 

kN 

N 

kW 

n1, 

min-1 

а, 

mm 

b, 

mm 

l, 

mm 

k-1g 

MPa 
Scheme 

1 4.5 3.0 – – 50 100 300 30 

 Section weakened by 

keyway 

2 5.0 4.0 – – 100 150 400 35 

3 5.5 5.0 – – 150 200 500 40 

4 6.0 2.0 – – 200 250 600 45 

5 6.5 4.0 – – 300 300 700 50 

6 7.0 5.0 – – 250 120 800 55 

7 7.5 2.5 – – 350 140 600 60 

8 8.0 3.0 – – 180 160 700 65 

9 8.5 5.0 – – 220 180 800 70 

10 9.5 6.0 – – 300 150 1000 75 

11 10.0 4.0 – – 180 240 600 80 

12 10.5 3.0 – – 150 125 700 85 

13 11.0 5.0 – – 100 140 500 90 

14 11.5 2.0 – – 200 160 650 30 

15 12.0 1.0 – – 250 180 750 35 

16 16.5 – 16.5 900 100 50 – 40 

 
Section non-weakened by 

keyway 

17 12.5 – 12.5 950 150 100 – 45 

18 13.0 – 13.0 1000 200 150 – 50 

19 13.5 – 13.5 1050 250 200 – 55 

20 14.0 – 14.0 1100 300 250 – 60 

21 14.5 – 14.5 1200 120 50 – 65 

22 15.0 – 15.0 1250 140 100 – 70 

23 16.0 – 16.0 1300 160 120 – 75 

24 17.0 – 17.0 1400 180 140 – 80 

25 17.5 – 17.5 1450 150 100 – 85 

26 18.0 – 18.0 1500 240 200 – 90 

27 19.0 – 19.0 750 125 50 – 30 

28 20.0 – 20.0 800 140 100  35 

29 21.0 – 21.0 750 160 120  40 

30 22.0 – 22.0 800 180 150  45 
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Task 3.14. Determine the diameter of the axis at the point 

of application of force F. The initial input data is shown in Table 3.21. 

 
Table 3.21. Initial data for Task 3.14 

Var. 

no 

F1, 

kN 

F2, 

kN 

а, 

mm 

b, 

mm 

с, 

mm 

l, 

mm 

k-1g 

MPa 
Scheme 

1 4.5 3.0 50 100 – 300 30 

 
Section non-weakened by 

keyway 

2 5.0 4.0 100 150 – 400 35 

3 5.5 5.0 150 200 – 500 40 

4 6.0 2.0 200 250 – 600 45 

5 6.5 4.0 300 300 – 700 50 

6 7.0 5.0 250 120 – 800 55 

7 7.5 2.5 350 140 – 600 60 

8 8.0 3.0 180 160 – 700 65 

9 8.5 5.0 220 180 – 800 70 

10 9.5 6.0 300 150 – 1000 75 

11 10.0 4.0 180 240 – 600 80 

12 10.5 3.0 150 125 – 700 85 

13 11.0 5.0 100 140 – 500 90 

14 11.5 2.0 200 160 – 650 30 

15 12.0 1.0 250 180 – 750 35 

16 16.5 5.0 100 50 50 – 40 

 
Section weakened by 

keyway 

17 12.5 2.5 150 100 100 – 45 

18 13.0 3.0 200 150 150 – 50 

19 13.5 5.0 250 200 200 – 55 

20 14.0 6.0 300 250 300 – 60 

21 14.5 4.0 120 50 250 – 65 

22 15.0 3.0 140 100 350 – 70 

23 16.0 5.0 160 120 180 – 75 

24 17.0 2.0 180 140 220 – 80 

25 17.5 1.0 150 100 300 – 85 

26 18.0 3.0 240 200 180 – 90 

27 19.0 4.0 125 50 150 – 30 

28 20.0 5.0 140 100 100 – 35 

29 21.0 2.0 160 120 200 – 40 

30 22.0 5.0 180 150 250 – 45 
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3.9. Calculation of plain bearings 
 

General information 

Plain bearings are supports for rotating shafts and axles that ensure 

their positioning in space, their ability to rotate or sway and to carry all 

the loads acting on them. 

Plain bearing system 

In the simplified version (Fig. 3.48), the plain bearing consists of insert 

1 installed in housing 2.  

 
Fig. 3.48. Slide bearing: 

1- insert; 2 - housing; 3 - lubricator 

 

The insert, housing, lubricator and seal form a bearing node, which is 

often referred to as a plain bearing. 

The operation of a plain bearing is associated with different modes 

of friction. 

Depending on the mode of operation of the bearing, the friction 

in the bearing can be dry, boundary, semi-dry, semi-fluid and fluid, 

transitioning from one mode to another when the angular velocity of the shaft 

is increased from zero to a certain value. The most favourable friction 

conditions for a plain bearing is the fluid friction mode, where the friction 

surfaces are completely separated by lubricant (Fig. 3.49), a thickness h 

which is greater than the sum of 1 + 2.  
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. 
Fig. 3.49. For calculation of the fluid friction mode: 

1 – insert; 2 – thrust surface of the shaft; 3 - layer of grease 

 

With fluid friction, there is no surface wear, minimal rotational 

resistance, heat release and high efficiency. Fluid friction only occurs 

in special bearings under certain conditions. With other friction modes, wear 

of the friction surface, significant heat release and reduced efficiency 

are observed.  

Most plain bearings operate under conditions of semi-fluid friction, 

and when starting and stopping, under conditions of semi-dry and boundary 

friction.  

Boundary, semi-dry and semi-fluid friction share a concept - friction 

with imperfect lubrication.  

Insert - is the plain bearing itself. They are used to avoid the need 

for housing made of expensive wear-resistant material so that they can be 

replaced after start-up. Inserts are non-detachable, detachable and, 

in the case of large-diameter shafts, take the form of a set of washers that 

form a bearing surface. 

The materials for the contributions are:  

a) metals and metal alloys - babbite, bronze, zinc-based alloys, 

aluminium-based alloys, anti-friction cast irons; 

b) bimetallic materials; 

c) non-metallic materials (plastics, wood, rubber, graphite materials); 

d) composite materials; 

e) metalloceramics. 

The choice of insert material depends on the load, speed and operating 

conditions. The most common insert materials and their properties are 

shown in Table D.44.  

 

 

 



274 
 

Basic calculation formulae 

The main performance criterion for plain bearings is wear resistance - 

resistance to wear and jamming. 

 

Calculation of bearings operating in imperfect lubrication mode 

As mentioned above, most plain bearings operate under imperfect 

lubrication conditions (semi-dry, boundary and semi-fluid friction). Due 

to the lack of calculation theory in the imperfect lubrication mode, bearings 

are calculated conventionally based on the average pressure p and the 

specific work of friction forces p. The calculation based on the average 

pressure р guarantees the absence of grease extrusion, while the calculation 

of p - guarantees the normal thermal mode and the absence of jamming.  

1. Transverse bearings (Fig. 3.50, а) 

average pressure 

𝑝 =
𝐹𝑟
𝑑𝑙
≤ [𝑝] 

proper work of friction forces 
𝑝𝜐 ≤ [𝑝𝜐] 

Angular velocity of the opposing shaft surface (sliding speed) 

𝜐 =
𝜔𝑑

2 ⋅ 1000
=

𝜋𝑛𝑑

60 ⋅ 1000
≤ 𝜐𝑚𝑎𝑥, 

where Fr – radial bearing force, N; 

 - peripheral speed of the journal surface (sliding speed); 

d and l – diameter and length of the bearing surface of the shaft, which 

are determined during the calculation and design of the shaft, mm. 

For most bearings l = (0.5 ÷ l.3)d; 

[р] and [p] – permissible pressure and specific work of friction forces, 

MPa. 

max – maximum sliding speed; 

1000 – conversion factor of millimetres into metres; 

n –rotation speed of the supporting surface, min-1; 

 – angular velocity of the bearing surface, s-1.  

 

The permissible values [р], [p], max depend on the material 

of the friction surface and are determined based on the operating experience 

of similar structures, selected from Table D.44.  
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Fig. 3.50. Diagram of occurrence of forces in sliding bearings 

with imperfect lubrication: 

a - thrust bearing; b - flange bearing, c - thrust ring bearing,  

d - thrust bearing with comb 

 

2. Flat thrust bearings (thrust bearings): 

(a) thrust bearing with solid foot (Fig. 3.50, b) 

average pressure 

𝑝 =
4𝐹а
𝜋𝑑2𝜑

≤ [𝑝], 

where  - coefficient taking into account the reduction in bearing area by 

lubrication grooves, 0.8 ÷ 0.9. 

 

The specific work of the frictional forces and the sliding speed are 

determined for radial bearings.  

(b) bearing with thrust ring (Fig. 3.50, b) 

average pressure 

𝑝 =
4𝐹а

𝜋(𝑑2 − 𝑑0
2)𝜑

≤ [𝑝] 

proper work of friction forces 
𝑝𝜐 ≤ [𝑝𝜐] 

average glide speed 

𝜐𝑎𝑣 =
𝜔𝜎𝑟𝑒𝑑
1000

=
𝜋𝑛𝜎𝑟𝑒𝑑
30 ⋅ 1000

≤ 𝜐𝑚𝑎𝑥, 

where d0 – internal diameter, is assumed (0.6 … 0.8)d, mm; 

𝜎𝑟𝑒𝑑 = 0,33
𝑑3−𝑑0

3

𝑑2−𝑑0
2– reduced foot radius, mm; 

(c) comb thrust bearing (Fig. 3.50, d) 

average pressure 

𝑝 =
4𝐹а

𝑧𝜋(𝑑2 − 𝑑0
2)𝜑

≤ [𝑝], 

where z – the numer of combs. 
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The specific work of frictional forces р and the average sliding speed 

υav are determined as for ring bearings. 

The values of [р] and [p] will decrease by 20 ÷ 40 %  compared to [р] 

and [p] for other bearings due to uneven axial load distribution Fa between 

the supporting surfaces of the combs.  

 

Dimensions of the flanged bearing insert (Fig. 3.51) 

 
Fig. 3.51. Diagram for determining the dimensions of a flanged insert 

 

Insert wall thickness 

Cast iron, bronze 
𝑠 = 0.03𝑑 + (2 ÷ 5) mm 

Flange feight 
𝐻 = 1.2𝑠 + (3 ÷ 5) mm 

Flange width  
𝑏 = 1.2𝑠 

Flange outer diameter  
𝐷 = 𝑑 + 2𝐻 

Radius of rounding∙ 
𝜌 = (0.03 ÷ 0.05)𝑑 
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Examples of calculation 

 

Example 3.34. Check the bogie axle bearing (Fig. 3.52) if the neck 

dimensions are d = 60 mm and l = 70 mm. Radial bearing load Fr = 16 kN 

at maximum angular velocity  = 30 s-1. Insert material – CuSn6Zn6Pb3. Axle 

material – normalized C45 steel. 

 

Data: 

Fr = 16 kN 

d = 60 mm 

l = 70 mm 

 = 30 s-1 

insert 

CuSn6Zn6Pb3 

axle -  

normalized C45 steel 
 

Searched for: 

υ– ? 

p – ? 

pυ – ? 

Fig. 3.52. Bearing to Example 3.34 

 

Solution  

1. For a given input material from Table D.44 we take   

[р] = 4 ÷ 6 MPa; [р] = 4 ÷ 6 MPam/s; max = 8 m/s. 

2. Determine the angular velocity (glide speed) and compare with 

the maximum: 

𝜐 =
𝜔𝑑

2 ⋅ 1000
=
30 ⋅ 60

2 ⋅ 1000
= 0.9 m/s <  max  =  8 m/s 

the condition is met. 

3. Check the average bearing pressure: 

𝑝 =
𝐹𝑟
𝑑𝑙
=
16 ⋅ 103

60 ⋅ 70
= 3.8

N

mm2
= 3.8 MPa < [𝑝] = 4 ÷ 6 MPa 

the condition is met. 

4. Check the bearing for heat and no jamming: 

𝑝𝜐 = 3.8 ⋅ 0.9 = 3.42 MPa ∙
m

s
< [𝑝𝜐] = 4 ÷ 6 MPa ∙

m

s
 

the condition is met. 

 

Conclusion: the bearing is suitable for the specified operating conditions. 
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Example 3.35. Select the material for the plain bearing if: acting radial 

load Qr = 7 T; pivot material d = 80 mm; rotation shaft speed n = 100 min-1; 

shaft material – hardened C45 steel. 

 

Data: 

Qr = 7 T 

d = 80 mm 

n = 100 min-1 

shaft 

hardened C45 steel 

 
Fig. 3.53. Slide bearing scheme 

to Example 3.35 

Szukane: 

l - ? 

υ - ? 

p - ? 

pυ - ? 

Insert material - ? 

Solution 

1. Plot a scheme (Fig. 3.53). 

2. Convert units: 
𝑄𝑟 = 𝐹𝑟 = 7 T = 70 ∙ 10

3N 
3. Determine the insole lenght: 

𝑙 = (0.5 ÷ 1.3)𝑑 = (0.5 ÷ 1.3) ∙ 80 = 40 ÷ 104 mm 
For design reasons, we assume l = 70 mm. 

4. Determine the pivot speed (sliding speed):  

𝜐 =
𝜋𝑛𝑑

60 ⋅ 1000
=
3,14 ⋅ 100 ⋅ 80

60 ⋅ 1000
= 0.42 m/s 

5. Determine the average bearing pressure:  

𝑝 =
𝐹𝑟
𝑑𝑙
=
70 ⋅ 103

80 ⋅ 70
= 12,5

N

mm2
= 12.5 MPa 

6. Determine the proper work of frictional forces: 

𝑝𝜐 = 12.5 ⋅ 0.42 = 5.25 MPa ∙
m

s
 

7. From Table D.44 taking into account the calculated values, we select 

the material of the plain bearing. We adopt CuAl9Fe4, for which: 

max = 8 m/s  >  = 0.42 m/s – condition is met;  

[р] = 15 MPa  > 12.5 MPa – condition is met;  

[p] = 12 MPam/s > p – 5.25 MPam/s – condition is met. 
 

 

Answer:  =0.42 m/s; р = 12.5 MPa; p = 5.25 MPam/s; insert material 

- CuAl9Fe4. 
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Example 3.36. Calculate the sliding bearing of a worm gear shaft 

(Fig. 3.54) if: bearing radial load Fr = 11 kN, axial load Fa = 4.4 kN, pivot shaft 

diameter d = 80 mm, rotational speed n = 115 rpm. 

 

Data: 

Fr = 11 kN 

Fa = 4.4 kN 

d = 80 mm 

n = 115 rpm 

 

Searched for: 

l – ? 

υ – ? 

p – ? 

pυ – ? 

insert material – ? 

 Fig. 3.54. Worm gear to Example 3.36 

 

Solution  

1. Determine the length of the insert: 
𝑙 = (0.5 ÷ 1.3)𝑑 = (0.5 ÷ 1.3) ∙ 80 = 40 ÷ 104 mm 

For design reasons, taking into account the chamfer in Table D.21, we 

assume a working insert length of l = 60 mm. 

2. Determine the speed of the pivot (sliding speed):  

𝜐 =
𝜋𝑛𝑑

60 ⋅ 1000
=
3.14 ⋅ 115 ⋅ 80

60 ⋅ 1000
= 0.48 m/s 

3. Determine the average bearing pressure due to the radial load Fr: 

𝑝 =
𝐹𝑟
𝑑𝑙
=
11 ∙ 103

80 ∙ 60
= 2.3

N

mm2
= 2.3 MPa 

4. Determine the proper work of frictional forces due to the radial load Fr: 
𝑝𝜐 = 2.3 ⋅ 0.48 = 1.1 MPa ∙ m/s 

5. The material of the insert is selected from Table D.44 - wear-

resistant cast iron EN-GJL-HB200, for which: 

at  = 2 m/s we have [р] = 0.05 MPa; [р] =0.1 MPam/s;  

at  = 0.2 m/s we have [р] = 9 MPa; [р] = 1.8 MPam/s. 

6. For the calculated sliding speed  = 0.48 m/s by interpolation we 

determine the values [р] = 1.54 MPam/s > 1.1 MPam/s, then  

[𝑝] =
[𝑝]


=
1,54

0.48
= 3.2 MPa > 2.3MPa 

the condition is met. 

7. Determine the dimensions of the cast iron insert: 

We assume the length of the insert 
𝑠 = 0.03𝑑 + (1 ÷ 3) mm = 0.03 ∙ 80 + 2.6 mm = 5 mm 

Flange height  
𝐻 = 1.2𝑠 + (3 ÷ 5)mm = 1.2 ∙ 5 + 4 = 10 mm 
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Flange thickness 
𝑏 = 1.2𝑠 = 1.2 ∙ 5 = 6 mm 

Diameter  
𝜌 = 0.03𝑑 = 0.03 ∙ 5 = 0.15 mm 

We assume  = 2 mm. 

Outer flange diameter D = d + 2Н = 80 + 210 = 100 mm. 

The inner diameter of the annular surface of the insert is determined 

taking into account the radius  = 2 mm  
𝑑0 = 𝑑 + 2𝜌 = 80 + 2 ∙ 2 = 84 mm 

8. Determine the reduced diameter of the lateral surface of the insert:  

𝜎𝑟𝑒𝑑 = 0.33
𝐷3 − 𝑑0

3

𝐷2 − 𝑑0
2 = 0.33

1003 − 843

1002 − 842
= 45 mm 

9. Determine the average sliding speed of the lateral surface 

of the insert:  

𝜐𝑎𝑣 =
𝜋 𝑛𝜎𝑟𝑒𝑑
30 ∙ 1000

= 0.54 m/s 

10. Determine the average pressure on the lateral surface of the insert 

under the action of the axial force Fa, assuming a coefficient that takes 

into account the reduction in the area of resistance by lubrication 

grooves  = 0,9: 

𝑝Т =
4𝐹а

𝜋(𝐷2 − 𝑑0
2)𝜑

=
4 ⋅ 4.4 ⋅ 103

3.14(1002 − 802) ⋅ 0.9
=  2.1 N/mm2 = 2.1 MPa 

11. Determine the specific work of the frictional forces on the lateral 

surface of the cartridge when the axial force Fa: 
𝑝𝜐𝑎𝑣 = 2.1 ⋅ 0.54 = 1.1 MPa ∙ m/s 

12. Determine the permissible values of [р] and [р] by linear 

interpolation at av = 0.54 values of [р] =1.48 MPam/s, so 

[𝑝] =
[р]


=
1.48

0.54
= 2.74 MPa 

Comparing the permissible values with the design values for the lateral 

contribution surface р = 2.1 MPa < [р] =2.74 MPa and  

рav = 1.1 MPam/s < [р]=1.48 MPa m/s- condition is met. 

 

Answer: l = 60 mm;  = 0.48 m/s; av = 0.54 m/s; р = 2.3 MPa;  

рТ = 2.1 MPa; рav = 1.1 MPam/s; insert material – wear-resistant grey 

cast iron EN-GJL-HB200. 
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Individual tasks 

(calculation) 

 

Task 3.18. Check the bogie axle bearing (Fig. 3.52). Axle material - 

normalized C45 steel, the data for the calculations are given in Table 3.22. 

 
Table 3.22. Initial data for Task 3.18 

Var. 

no 

Neck dimension, mm Load 
Angular 

velocity Insert material 

d l Fr, kN , s-1 

1 40 20 7 30 

CuSn6Zn6Pb3 

2 45 30 6 40 

3 50 35 5 25 

4 55 45 8 20 

5 60 55 9 35 

6 65 35 10 52 

7 70 40 11 22 

CuSn10F1 

8 75 43 12 33 

9 80 52 20 38 

10 85 62 16 51 

11 90 72 17 65 

12 95 60 19 30 

13 100 50 3 15 

EN-GJS-400-15 

14 55 23 4 18 

15 60 28 5 16 

16 65 33 6 14 

17 50 41 3.5 13 

18 70 35 2.5 44 

19 75 38 14 32 

CuAl9Fe4 

20 80 42 13 44 

21 85 44 15 48 

22 40 46 16 54 

23 45 60 17 62 

24 50 80 17.5 70 

25 55 64 10.5 35 

Babbit B16 

26 60 56 11.5 38 

27 65 46 8.5 41 

28 70 44 9.5 43 

29 75 34 7.3 60 

30 105 72 6.2 24 
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Task 3.19. Calculate the sliding bearing of the worm gear shaft 

(Fig. 3.54). The data for the calculations are given in Table 3.23. 

 
Table 3.23. Initial data for Task 3.19 

Var. 

no 

Load, kN 

Shaft 

diameter, 

mm 

Rotational 

speed 

Fr  Fa  d n, min-1 

1 7 3.6 40 100 

2 6 4 45 115 

3 5 2.5 50 125 

4 8 4.4 55 120 

5 9 5.6 60 135 

6 10 5.9 65 152 

7 11 6 70 122 

8 12 4.6 75 133 

9 14 7 80 138 

10 16 7.3 85 151 

11 17 8 90 165 

12 13 5.5 95 130 

13 3 2 35 115 

14 4 2.4 55 118 

15 5 2.8 60 116 

16 6 3.3 65 114 

17 3.5 2.3 50 113 

18 2.5 1.7 70 144 

19 14 7.4 75 132 

20 13 6.9 80 144 

21 15 7.5 85 148 

22 16 8 40 154 

23 17 8.3 45 162 

24 17.5 6.2 50 170 

25 10.5 5.8 55 135 

26 11.5 7.3 60 138 

27 8.5 6.4 65 141 

28 9.5 5.9 70 143 

29 7.3 4.7 75 160 

30 6.2 3.8 35 124 
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3.10. Selection of rolling bearings 
 

General information 

Rolling bearings are supports for rotating shafts and axles that ensure 

their specific position in space, their ability to rotate or sway and to absorb 

all loads acting on them.   

 

 
Fig. 3.55. Rolling bearing 

 

A rolling bearing (Fig. 3.55) is a finished assembly consisting 

of an outer (a) and an inner (5) ring, between which the rolling elements (2) 

- balls, and rollers - are placed. To prevent the rolling elements from moving 

against each other and colliding, they are separated from each other by 

a separator (3). During operation, the rolling elements roll on the raceways 

(4) of the rings, one of which, in most cases, is stationary. The load 

distribution between the load-bearing rolling elements is uneven and 

depends on the amount of radial clearance in the bearing and the accuracy 

of the geometrical shape of its elements.  

In some cases, to reduce the geometrical dimensions of the bearing, 

the rings are omitted and the rolling elements move directly on the journal 

and housing.  

In addition to the rolling bearings themselves, bearing assemblies 

include a housing with covers, bearing ring mounting devices and protective 

and lubricating devices.  

 

Basic parameters of rolling bearings 

The basic force parameters of rolling bearings are their static load 

capacity C0 [N] and dynamic load capacity С [N]. 
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The basic geometrical parameters are outer ring diameter, D [mm] 

inner ring diameter,  d [mm], bearing width B [mm] or height H [mm]. 

The basic kinematic parameter is the limiting speed ng.  

The values of these parameters are given in the tables for rolling 

bearings (Tables D.50 ÷ D.55).  

 

Basic calculation formulae 

The correct selection of the bearing with correct installation 

and handling, determines its reliable operation and the functioning 

of the mechanism and device as a whole.  

When selecting a rolling bearing, the following factors must be taken 

into account: the value and direction of the load; the nature of the additional 

load; the diameter of the shaft; the speed of one or both rings; the operating 

conditions (temperature) and other requirements arising from the design 

of the device.  

Bearings are selected for their dynamic load-carrying capacity 

to prevent fatigue fracture and their static load-carrying capacity to prevent 

plastic deformation.  

 

Selection of bearings based on dynamic load-carrying capacity 

The calculation method for the dynamic load capacity С 

(for the specified service life or durability) is performed at an assumed 

rotational speed n >1 min-1.  

If n = 1 ÷ 10 min-1  n =10 min-1 is used for calculations. 

Bearing selection condition:   
𝐶𝑆𝑎 ≤ 𝐶; 𝑛 ≤ 𝑛𝑙𝑖𝑚, 

where СSa – adjusted design dynamic bearing load capacity, N;  

С – assumed dynamic bearing load capacity, N;  

n – shaft or housing speed, min-1;  

nlim – limiting bearing speed, min-1 (selected from catalogue). 

 

Dynamic load-bearing capacity and durability (service life) are linked 

by an empirical relationship. 

The adjusted calculated bearing life (service life) in millions 

of revolutions or the calculated adjusted dynamic load carrying capacity 

are determined from the formulae:  
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𝐿𝑠𝑎 = 𝑎1𝑎23 (
𝐶

𝑃
)
𝑝

 or 𝐶𝑆𝑎 = 𝑃√
𝐿𝑆𝑎

(𝑎1𝑎23)

𝑝

 

then the bearing selection condition 
𝐿𝑆𝑎 ≥ 𝐿𝑆𝑎

′  or 𝐶𝑆𝑎 ≤ 𝐶; 𝑛 ≤ 𝑛𝑠𝑘 

The adjusted calculated bearing life (service life) [h] or the adjusted 

calculated dynamic load carrying capacity are determined from the formulae: 

𝐿𝑠𝑎ℎ = 𝑎1𝑎23
106

60 ⋅ 𝑛
(
𝐶

𝑃
)
𝑝

or 𝐶𝑠𝑎 = 𝑃 ⋅ √
𝐿𝑠𝑎ℎ ⋅ 60 ⋅ 𝑛

106(𝑎1𝑎23)

𝑝

 

then the bearing selection condition 
𝐿𝑠𝑎ℎ ≥ 𝐿𝑠𝑎ℎ

′  or 𝐶𝑆𝑎 ≤ 𝐶; 𝑛 ≤ 𝑛𝑠𝑘 

where С – specified dynamic bearing load capacity, N;  

Р – reduced dynamic load, N; 

р – step index; for ball bearings р = 3; for roller bearings р = 10/3; 

n – rotation speed of outer or inner ring, min -1;  

𝐿𝑠𝑎
′  – basic durability, mln rpm;  

𝐿𝑠𝑎ℎ
′  – basic bearing life (life expectancy), h; (this is either given or 

taken from tables);  

nlim – limiting bearing speed, min-1;  

а1 – reliability correction factor;  

a23 – material and lubricant correction factor. 

 

Instead of the index s in the designation of service life and dynamic 

load carrying capacity, s = 100-S is written, where S - bearing reliability 

(given in tables). Most bearings are made with a reliability of 90 % then 

s = 10 or L10ah. 

For the generally accepted reliability of 90 % at ordinary steel quality 

and lubrication conditions which condition the separation of working 

contact surfaces, the correction factors are а1 = 1; а23 = 1. For other reliability 

requirements, steel quality and lubrication modes, the values 

of the correction factors а1 ,а23 are selected from the bearing catalogues. 

 

Determination of the reduced dynamic load capacity  

Reduced dynamic load for radial and angular contact bearings  
𝑃 = (𝑋𝑉𝐹𝑟 + 𝑌𝐹𝑎) ⋅ 𝐾𝑏 ⋅ 𝐾Т 

Reduced dynamic load for radial thrust bearings  
𝑃 = (𝑋𝐹𝑟 + 𝑌𝐹𝑎) ⋅ 𝐾𝑏 ⋅ 𝐾Т 

Reduced dynamic load for thrust bearings 
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𝑃 = 𝐹𝑎 ⋅ 𝐾𝑏 ⋅ 𝐾𝑇 

where Fr – the highest radial load, N;  

Fa – the highest axial load, N;  

Х, Y – radial and axial load factors (indicated in the catalogues 

according to the ratio Fa/VFr);  

V – ring rotation factor (with inner ring rotation V=1, with outer ring 

rotation V =1.2);  

Kb – safety factor, taking into account the nature of the load (selected 

from tables); 

Kт – temperature coefficient selected from tables. For  t ≤ 100 °C Kт = 1. 

 

The above formulae are applied at continuous load and speed.  

Variable-mode bearings are selected on the basis of reduced load and 

conditional speed. If the load varies linearly from Рmax and Рmin (for example, 

supports with single-sided winding), the reduced load: 

𝑃 =
𝑃𝑚𝑖𝑛 + 2𝑃𝑚𝑎𝑥

3
 

If the change in load and speed follows a more complicated law, 

the load is reduced: 

𝑃 = √
𝑃1
3 ⋅ 𝐿1 + 𝑃2

3 ⋅ 𝐿2+. . . . +𝑃𝑛
3 ⋅ 𝐿𝑛

𝐿

3

 

where P1, P2, ..., Pn – constant loads, acting within L1, L2, Ln – milions of rpm;  

L – the total number of revolutions in millions during which 

the indicated loads operate. 

 

Characteristics of angular contact bearing selection 

In angular contact bearings, when radial loads are applied to them, 

there are axial components S, which are calculated from the formulae: 

𝑆 = 0,83𝑒𝐹𝑟 – for tapered roller bearings 

𝑆 = 𝑒𝐹𝑟  – for radial ball bearings 

where е – axial load influence factor (Tables D.48, D.51, D.52, D.55).  

 

The axial components are designed to reduce the external axial forces 

and spread the bearing rings in the axial direction. This is prevented by 

the thrust arms of the shaft and housing with reactions Fa1 i Fa2. For normal 

bearing operation, the axial force loading the bearing mustn't be less than 

the axial component of the radial force:  
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𝐹𝑎1 ≥ 𝑆1  and 𝐹𝑎2 ≥ 𝑆2  

In addition to this, the equilibrium condition of the shaft should be met 

- the sum of all axial forces should be zero. For the scheme in Fig. 3.56, а:  
𝐹𝑎1 + 𝐹𝑎 − 𝐹𝑎2 = 0 

The positive directions of the axial forces are those coinciding with 

the direction of the force Fa. The number 2 indicates the bearing which takes 

the axial load Fa. 

 
   а      b 

Fig. 3.56. Load patterns for angular contact bearings: 

а - "striping" scheme; b - "extending" scheme 

 

Table 3.24 shows the formulae for calculating the axial forces. 

 
Table 3.24. Formulae for calculating axial loads on angular contact bearings 

Load conditions 
Design axial loads 

support I support II 
𝑆1 ≥ 𝑆2;  𝐹𝑎 ≥ 0 𝐹𝑎1 = 𝑆1 Fa2= Fa+S1 

𝑆1 < 𝑆2;  𝐹𝑎 ≥ 𝑆2 − 𝑆1 𝐹𝑎1 = 𝑆2 − 𝐹𝑎 𝐹𝑎2 = 𝑆2 

 

Reduced dynamic loads Р are determined for each support, only 

instead of the axial load Fa  the corresponding axial load Fa1 or Fa2 is used. 

The design life is determined by the more heavily loaded support.  

When determining the radial reactions of angular contact bearings, it is 

worth remembering that the point of addition of this reaction is located 

at the intersection of the normal to the centre of the contact surface 

of the rolling body with the outer ring and the shaft axis, i.e. at a distance 

а from the lateral surface of the bearing ring (Fig. 3.57).  
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 a                        b 
Fig. 3.57. Diagram for calculating the addition points of the angular contact bearing 

support reactions: а - "striping" scheme; b - "extending" scheme 

 

The distance а can be determined either by a graphical method or by 

one of the following formulae:  

for single angular contact ball bearings   
𝑎 = 0.5 ⋅ [𝐵 + 0.5 ⋅ (𝑑 + 𝐷) ⋅ 𝑡𝑔𝛼] 

for single-row tapered roller bearings 
𝑎 = 0.5𝐻 + (𝑑 + 𝐷)𝑒/6 

where а – the distance from the lateral surface to the point of addition 

of the radial reaction; 

В, d, D, H – bearing dimentions; 

 - contact angle;  

е – axial load affect factor.  

 

Bearing selection based on static load-carrying capacity 

Bearings accepting loads at a standstill or n < 1 rpm (bearings 

for cranes, transport equipment and other equipment, for example, thrust 

bearings for slewing cranes, load hooks, elevators, rolling presses, bearings 

for rotating propeller blades of aircraft and helicopters, etc.) are selected by 

the static load rating С0. Bearings with increased requirements are selected 

based on dynamic load-carrying capacity and are additionally checked 

for static load-carrying capacity. 

Condition for checking and selecting bearings 
𝑃0 ≤ 𝐶0 

where Р0 – reduced static load, N;  

С0 – permissible static load rating of a rolling bearing, N (for each 

bearing type from Tables D.55 ÷ D.61). 
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Determination of the reduced static load 

For radial and angular contact ball and roller bearings, the reduced 

static load is defined as the greater of the two formulae:  
𝑃0 = 𝑋0𝐹𝑟 + 𝑌0𝐹𝑎 

If 𝑃0 < 𝐹𝑟   then 𝑃0 = 𝐹𝑟 , 

where Х0, Y0 – radial and axial load factors selected from Tables D.55 ÷ D.61. 

 

For radial roller bearings with short cylindrical rollers, the reduced 

static load is: 
𝑃0 = 𝐹𝑟 

Most rolling bearings are selected and calculated in terms of dynamic 

load-carrying capacity.  

If bearings of the same type are installed on the same shaft, but carry 

different loads, it is advisable to select the most heavily loaded bearing 

to reduce the range of bearings used in the product, and the second bearing 

should be the same size. 

 

Sequence of bearing selection based on dynamic load-carrying 

capacity 

1. Pre-determine the type and mounting scheme of bearings, taking 

into account loads, operating and mounting conditions.  

2. From the catalogue, taking into account the diameter of the bearing 

seat for the type of bearing envisaged, list its power, geometrical, kinematic 

parameters, e, Y, Y0 factors (for tapered, spherical). 

3. Make a conditional or full scheme of the shaft including the bearings 

on it and the approximate distance between supports. In this case, you need 

to know in advance which parts are on the shaft and what their dimensions are. 

4. Make a design load scheme for bearing supports.  

5. Determine the total reactions of each support and select the most 

heavily loaded bearing for which further calculations will be carried out. For 

radial thrust bearings, depending on the type of bearing and mounting 

scheme ("striping" or "extensile" Fig.s 3.56 and 3.57), determine:  

- points of application of radial reactions (dimension a) of each support; 

- determine the total reactions of each support;  

- determine the axial components S of the radial loads for each support; 

- determine the calculated axial loads using the formulae given in Table 3.5.  

6. Determine the reduced dynamic loads, whereby:  
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a) taking into account ring mobility, temperature conditions and 

the nature of the load on the bearing unit, the coefficients V, Kb, and KT should 

be selected (for thrust and radial thrust bearings the coefficient V- is not 

taken into account). 

b) taking into account the type of the planned bearing, determine 

the ratio F/Ca0, by which, using linear interpolation from the tables, 

determine the coefficient e (for angular contact and spherical bearings, 

the values of  e are indicated in the tables of their main parameters), 

determine the ratio Fa/VFr and compare it with the coefficient e, based on the 

results of the comparison Fa/VFr < or > e, determine the coefficients X, Y 

according to the tables; 

For angular contact bearings, the equivalent load is determined 

for each bearing (see specific features of angular contact bearing selection). 

7. Determine the design life Lsah adjusted based on the reliability level 

and operating conditions or the adjusted design dynamic load rating CSa 

for the most heavily loaded bearing. 

8. Evaluate the suitability of the intended bearing size under 

the following conditions:  
𝐿𝑠𝑎ℎ ≥ 𝐿𝑠𝑎ℎ

′  or 𝐶𝑆𝑎 ≤ 𝑐; 𝑛 ≤ 𝑛𝑔 
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Examples of calculations 

 

Example 3.37. Determine the life of the radial single row bearing 

NUP 412 M ZVL, which is subjected to the highest radial load Fr = 7 kN, loads 

with significant shocks, temperature mode t < 100 °C, rotational shaft speed 

n = 500 min-1, , inner ring rotates, no ring warping, lubrication conditions 

good.  

 

Data: 

Bearing NUP 412 M ZVL 

Fr = 7 kN 

t < 100 °C 

n = 500 min-1 

significant shocks 

Searched for: 

L10ah – ? 

 

Solutions 

1. From Table D.50 we take the basic force and geometric parameters 

for the ball bearing NUP 412 M ZVL:  

С = 108 kN; С0 = 70 kN; d = 60 mm; D = 150 mm; B = 35 mm. 

2. Determine the reduced dynamic load.  

From Table D.46, we take Kт =1; from Table D.45 Kb = 1.8 and, taking 

into account the mobility of the inner ring, V = 1. 

Since only the radial load acts on the bearing, the formula for reduced 

loads will take the form:  
𝑃 = 𝑉𝐹𝑟𝐾𝑏𝐾𝑇 = 1 ⋅ 7000 ⋅ 1 ⋅ 1.8 = 12600 N 

3. Determine the adjusted design life of the bearing.  

Taking into account the probability of continuous operation of 90 % 

(most bearings), the absence of ring warping and good lubrication 

conditions, from Tables D.53 and D.54 we take the corrective factors а1 

=1, а23 = 1, the grade index р for ball bearings р=3. 

𝐿10𝑎ℎ = 𝑎1𝑎23
106

60 ⋅ 𝑛
(
𝐶

𝑃
)
𝑝

= 1 ⋅ 1
106

60 ⋅ 500
(
108 ⋅ 103

12600
)

3

= 2100 h 

 

Answer: The service life of NUP 412 M ZVL bearing in the specified 

operating mode is h. 
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Example 3.38. Check the service life of a single-row SKF 210-2Z ball 

bearing placed on the low-noise shaft of a single-stage helical bevel gear 

reducer (Fig. 3.58) if: axial load Fa = 1.2 kN, highest radial load Fr =3.3 kN; 

rotational shaft speed n = 200 min-1. Gear operation mode - moderate shocks; 

required bearing life 95% reliability 𝐿5𝑎ℎ
′  = 20000 h, bearing junction 

temperature mode t < 100 °C, possible bearing warping, lubrication 

conditions poor.  

 

Data: 

Bearing 210-2Z SKF 

Fa = 1.2 kN 

Fr = 3.3 kN 

n = 200 min-1 

𝐿5𝑎ℎ
′  = 20000 h 

t < 100 °C 

moderate shocks 

reliability 95% 

 

Searched for: 

L5ah – ? 

Fig. 3.58. Bevel gear reduction gearbox 

 

Solution 

1. From Table D.50, we take the basic force and geometric parameters 

of the SKF 210-2Z ball bearing 210-2Z SKF: 

С =35.1 kN; С0 = 19.8 kN; d = 50 mm; D = 90 mm; B = 20 mm 

2. Determine the reduced dynamic load according to the formula: 
𝑃 = (𝑋𝑉𝐹𝑟 + 𝑌𝐹𝑎) ⋅ 𝐾𝑏 ⋅ 𝐾𝑇 

Define: 

a) ratio  
𝐹𝑎
𝑉𝐹𝑟

=
1.2 ∙ 103

1 ∙ 3.3 ∙ 103
= 0.3654 

b) ratio 
𝐹𝑎
𝐶0
=
1.2 ∙ 103

19.8 ∙ 103
= 0.061 

From Table D.48 we determine the axial load ratio e by linear 

interpolation. In Table D.48, the value of this ratio is in the range of 0.056 

and 0.084, for values of the coefficient е of 0.26 and 0.28. Let us denote 

the values of the ratios Fa/C0 and the coefficients е by any symbols, then 

mathematically: 
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0.056 – а 0.26 – e1 

0.061 – b x – е 

0.084 – с 0.28 – e2 

Then 

𝑒 = 𝑒2 − (𝑐 − 𝑏)
𝑒2 − 𝑒1
𝑐 − 𝑎

= 0,28 − (0.084 − 0.061)
0.28 − 0.26

0.084 − 0.056
= 0.264 

For е= 0.264 from Table D.48, in the same way, determine the axial load 

factor Y = 1.58. Compare Fa/VFr with е.  

Since the ratio Fa/VFr =0.3654 > e = 0.263, from Table D.48 we take 
𝑋 = 0.56 ∙ 𝑌 = 1.58 

c) we assume V=1 because the inner ring rotates; from the Table D.46 

we assume KT = 1; from the Table D.45 taking into account the bearing 

mode Kb = 1.3. From the formula determining the reduced load we obtain: 
𝑃 = (0.56 ∙ 3.3 ∙ 103 + 1.58 ∙ 1.2 ∙ 103) ∙ 1 ∙ 1.3 = 4867 𝑁 

3. Determine the adjusted design life of the bearing.  

We calculate a reliability of 95%, taking into account the possibility 

of ring warping and poor lubrication conditions, from Tables D.53 and D.54 

take the correction factorsа1=0.62, а23=0.75, degree index р for ball 

bearings р = 3. 

𝐿5𝑎ℎ = 𝑎1𝑎23
106

60 ⋅ 𝑛
(
𝐶

𝑃
)
𝑝

= 0.62 ⋅ 0.75
106

60 ⋅ 200
(
31.5 ⋅ 103

4867
)

3

= 14531 h 

4. Assess the suitability of the bearing. 

Taking into account the bearing selection condition, we have  
𝐿5𝑎ℎ = 14531 ℎ <  𝐿5𝑎ℎ

′ = 20000 ℎ 

The bearing given is not useful. 

 

Example 3.39. Carry out a bearing selection for a high-speed gear 

shaft (Fig. 3.58) if: acting radial forces are Fr1 = 4.2 kN and Fr2 = 5 kN; axial 

force Fa = 2 kN, direction - right support; diameter of the shaft under bearing 

d = 50 mm; shaft speed n= 975 min-1; gearbox operation mode - moderate 

shocks; operating temperature t < 1000 C; required bearing life 

𝐿10𝑎ℎ
′  = 18000 h, ring warping does not occur; lubrication conditions good.  

 

Data: 

Fr1 = 4.2 kN 

Fr2 = 5 kN 

Fa = 2 kN 

D = 50 mm 

Searched for: 

Bearing – ? 

L10ah – ? 
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n = 975 min-1 

t < 100 °C 

𝐿10𝑎ℎ
′  = 18000 h 

Solution 

1. Determine the type of bearing. 

When determining the type of bearing, it is important to consider 

the factors influencing the choice of bearing and to familiarise yourself 

with the characteristics of bearings. 

It is recommended to start with a deep groove ball bearing, which is not 

expensive, is not scarce and can carry axial loads. It is also possible to use 

recommendations which, derived from the ratio Fa/Frmax make it possible 

to tentatively determine the type of bearing from Table D.49. 

We tentatively assume a radial ball bearing NJ 310 E ZVL, for which we 

extract the force, kinematic and geometric parameters from Table D.50.  
𝐶 = 65.8 kN; 𝐶0 = 36 kN; 𝑑 = 50 mm;𝐷 = 110 mm; 

𝐵 = 27 mm; 𝑛𝑙𝑖𝑚 = 6,3 thousand min−1  
2. Determine the reduced dynamic load: 

𝑃 = (𝑋𝑉𝐹𝑟 + 𝑌𝐹𝑎) ⋅ 𝐾𝑏 ⋅ 𝐾𝑇 

The calculation is carried out for the most heavily loaded bearing. 

Determine the ratio 
𝐹𝑎
𝐹𝑚𝑎𝑥
⁄ =

2000

5000
= 0.4 

𝐹𝑎
𝐶0
⁄ =

2000

36000
= 0.055 

From the Table D.48, we determine the axial load influence factor  

е = 0.255 Y=1.75 by linear interpolation.  

Since Fa/VFrmax =0.4 > e = 0.255, from the Table D.48 the radial and axial 

load factors Х= 0.56 and Y = 1.75.  

We assume V = 1, because the inner ring rotates. From the Table D.46 

we take KT = 1; from the Table D.45, taking into account the gear mode, we 

take Kb= 1.3. From the reduced load formula:  
𝑃 = (0.56 ∙ 1 ∙ 5000 + 1.75 ∙ 2000) ∙ 1 ∙ 1.3 = 8190 N 

3. Determine the design-adjusted dynamic bearing capacity.  

Taking into account the probability of reliable operation of 90 % (most 

bearings), the absence of ring warping and good lubrication conditions, 

from Tables D.53 and D.54 we take the correction factors а1 = 1, а23 = 1, 

the degree index р for ball bearings р = 3. 
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𝐶10𝑎 = 𝑃 ⋅ √
𝐿10аℎ ⋅ 60 ⋅ 𝑛

106(𝑎1𝑎23)

𝑝

= 8190 ⋅ √
18000 ⋅ 60 ⋅ 975

106 ⋅ 1 ⋅ 1

3

= 3303 N 

4. Assess the suitability of the selected bearing. 

Considering the bearing selection condition based on dynamic load 

carrying capacity: 

СSa  С; n  nlim, we get С10a = 83 303 N  С = 65 800 N – the selected 

bearing does not suit.  

We accept the radial ball bearing of the NU-410 series, for which:  
𝐶 = 87. kN; 𝐶0 = 52 kN;𝑑 = 50 mm;𝐷 = 130 mm; 

𝐵 = 31 mm; 𝑛𝑙𝑖𝑚 = 5 thousand min−1  
Repeat calculations:  

𝐹𝑎
𝐶0
⁄ =

2000

52000
= 0.038 

From Table D.43, we determine the axial force influence coefficient 

е =  0.234 and Y = 1.81 by linear interpolation. 

Since the ratio Fa/VFrmax = 0.4 > e = 0.234, from Table D.48 the radial and 

axial load factors Х = 0.56 and Y = 1.81; V = 1; from Table D.45 and D.46 

KT = 1; Kb = 1.3. 

Reduced dynamic loads: 
𝑃 = (0.56 ∙ 1 ∙ 5000 + 1.81 ∙ 2000) ∙ 1 ∙ 1.3 = 8346 N 

Design adjusted dynamic bearing load capacity: 

𝐶10𝑎 = 𝑃 ⋅ √
𝐿10аℎ ⋅ 60 ⋅ 𝑛

106(𝑎1𝑎23)

𝑝

= 8346 ⋅ √
18000 ⋅ 60 ⋅ 975

106 ⋅ 1 ⋅ 1

3

= 4489 N 

We assess the suitability of the bearing 

 𝐶10𝑎 = 84 889 N < 𝐶 = 87 100 N 
𝑛 = 975 min−1 < 𝑛𝑙𝑖𝑚 = 5000 min−1 

5. Determine the adjusted life of the selected bearing: 

𝐿10𝑎ℎ = 𝑎1𝑎23
106

60 ⋅ 𝑛
(
𝐶

𝑃
)
𝑝

= 1 ⋅ 1
106

60 ⋅ 975
(
87.1 ⋅ 103

8346
)

3

= 9340 h > 𝐿10𝑎ℎ
′ = 18000 h  

A selected bearing with a spare will provide the required durability. 

 

Answer: Bearing NU-410; L10ah = 19430 h. 

 

Example 3.40. Carry out a bearing selection for a high-speed gear 

shaft (Fig. 3.59). Forces acting in the system: rotational force Ft = 3 kN; radial 

force Fr = 1 kN; axial force Fa = 0.5 kN; d = 40 mm, d1 = 100 mm, b1 = 45 mm, 

c1 = 85 mm, the working temperature of bearings 60 °С, load with moderate 
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run-out, required life of bearings 𝐿10𝑎ℎ
′  = 25000 h, rotational shaft speed 

n = 1475 min-1; normal work conditions. 

 

Data: 

Ft = 3 kN 

Fr = 1 kN 

Fa = 0.5 kN 

d = 40 mm  

d1 = 100 mm  

b1 = 45 mm  

c1 = 85 mm 

n = 1475 min-1 

T = 60 °С 

𝐿10𝑎ℎ
′  = 25000 h 

moderate beating  

Searched for: 

Bearing – ? 

L10ah – ? 

Fig. 3.59. Bearing to Example 3.40 

 

Solution 

1. Determine the type and dimensions of the bearing. 

Firstly a medium series tapered roller bearing with an angle  = 12 °. 

Designation of the angular contact tapered roller bearing 7308 B ZVL, for 

which from Table D.55:  

С = 66 kN, С0 = 47.5 kN; d = 40 mm; D = 90 mm; 

Т = 25.25 mm; with liquid grease nlim = 4000 min-1; 

е = 0.28; Y = 2.16; Y0 = 1.18.  

Placement diagram for the bearing - striping.  

2. Plot a diagram of the shaft loading and determine the reactions 

of the supports (Fig. 3.59). 

The distance from the lateral bearing surface to the point of addition 

of the radial reaction а is determined from the formula: 

𝑎 = 0.5𝑇 + [(𝑑 + 𝐷)/6] ⋅ 𝑒 = 0.525.25 +
(40 + 90)6

0.28
 19 mm 

Determine the dimensions с and b, which determine the position 

of the points of addition of the radial bearing reactions (Fig. 3.59) 
𝑐 = 𝑐1 + 𝑇 − 𝑎 = 85 + 25.25 − 19 = 91 mm 

𝑏 = 𝑏1 + 𝑇 − 𝑎 = 45 + 25.25 − 19 = 51 mm 
Determine the reactions of the supports in two mutually perpendicular 

planes: 
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Vertical plane (YZ) 

∑𝑀1 = 0; 𝑅𝑦2(𝑐 + 𝑏) − 𝐹𝑟𝑏 − 𝐹𝑎
𝑑1
2
= 0; 

𝑅𝑦2 =
𝐹𝑟𝑏 + 𝐹𝑎

𝑑1
2

𝑐 + 𝑏
=
1000 ∙ 51 + 500 ∙

100
2

91 + 51
= 535 N 

∑𝑀2 = 0; −𝑅1(𝑐 + 𝑏) + 𝐹𝑟𝑐 − 𝐹𝑎
𝑑1
2
= 0; 

𝑅𝑦1 =
𝐹𝑟𝑐 − 𝐹𝑎

𝑑1
2

𝑐 + 𝑏
=
1000 ∙ 91 − 500 ∙

100
2

91 + 51
= 465 N 

Verification 

∑𝑌 = 0; 𝑅𝑦2 − 𝐹𝑟 + 𝑅𝑦1 = 0; 

535 − 1000 + 465 = 0;  

0 = 0 – reactions determined correctly. 

Horizontal plane (XY) 

∑𝑀1 = 0; 𝑅𝑥2(𝑐 + 𝑏) − 𝐹𝑡𝑏 = 0; 

𝑅𝑥2 =
𝐹𝑡𝑏

𝑐 + 𝑏
=
3000 ∙ 51

91 + 51
= 1078 N 

∑𝑀2 = 0; −𝑅𝑥1(𝑐 + 𝑏) + 𝐹𝑡𝑐 = 0; 

𝑅𝑥1 =
𝐹𝑡𝑐

𝑐 + 𝑏
=
3000 ∙ 91

91 + 51
= 1922 N 

Verification 

∑𝑌 = 0; 𝑅𝑥2 − 𝐹𝑡 + 𝑅𝑥1 = 0 

1078 − 3000 + 1922 = 0 

0=0 – reactions determined correctly. 

Determine the summed reactions of the supports: 

𝑅1  =  𝐹𝑟1  =  √𝑅𝑥1
2 + 𝑅𝑦1

2 = √19222 + 4652 = 1978 N 

𝑅2  =  𝐹21  =  √𝑅𝑥2
2 + 𝑅𝑦2

2 = √10782 + 5322 = 1202 N 

3. Determine the axial components of the radial forces and the design 

axial forces acting on the bearings. 

Axial components (e = 0.28 – from Table D.55) 
𝑆1 = 𝑒𝐹𝑟1 = 0.28 ∙ 1978 = 554 N 

𝑆2 = 𝑒𝐹𝑟2 = 0.28 ∙ 1202 = 337 N 

Design axial forces  

Using the calculation scheme and formulae in the Table 3.5 we get: 
𝑆1 = 554 N > 𝑆2 = 337 N, 𝐹𝑎 = 500 N > 0,  

then 
𝐹𝑎1 = 𝑆1 = 554 N;𝐹𝑎2 = 𝐹𝑎 + 𝑆1 = 500 + 554 = 1051 N 

4. Determine the reduced dynamic loads Р1 and Р2 of bearings. 
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We assume V = 1 because only the inner ring rotates. From Table D.46, 

we assume KT = 1, from Table D.45 taking into account the gear mode 

we assume Kb = 1.3. 

Right-hand bearing 

Determing the ratio 
𝐹𝑎1
𝑉𝐹𝑟1

=
554

1 ∙ 1978
= 0.88 

which is greater than е = 0.28; so from Table D.55 Х = 0.4, Y = 2.16. 

Reduced dynamic radial load: 
𝑃1 = (𝑋𝑉𝐹𝑟1 + 𝑌𝐹а1) ⋅ 𝐾𝑏 ⋅ 𝐾𝑇 = (0.4 ⋅ 1 ⋅ 1978 + 2.18 ⋅ 554) ⋅ 1 ⋅ 1,3 ≈ 2599 N 

Left-hand bearing 

Determine the ratio 
𝐹𝑎2
𝑉𝐹𝑟2

=
1054

1 ∙ 1978
= 0.28 

Which is equal to е = 0.28; therefore from Table D.55 Х= 0.4, Y =2.16. 

Reduced radial dynamic forces  
𝑃2 = (𝑋𝑉𝐹𝑟2 + 𝑌𝐹а2) ⋅ 𝐾𝑏 ⋅ 𝐾𝑇 = (0.4 ⋅ 1 ⋅ 1202 + 2.18 ⋅ 1054) ⋅ 1 ⋅ 1.3 ≈ 3612 N 

5. We determine the calculated corrected life for the more heavily 

loaded bearing (the left). 

Considering 90% bearing life and normal operating conditions 

and grease, from Tables D.53 and D.54 we assume а1 = 1, а23 = 0.65. Degree 

index р for roller bearings р = 10/3.  

𝐿10𝑎ℎ = 𝑎1𝑎23
106

60 ⋅ 𝑛
(
𝐶

𝑃
)
𝑝

= 1 ⋅ 0.65
106

60 ⋅ 1475
(
66 ⋅ 103

3612
)

10
3

= 116883 h >  

𝐿10𝑎ℎ   =  25000 h  
The selected bearing significantly exceeds the specified life. It is 

recommended to change the series and type of bearing and repeat 

the calculation (by yourself).  

6. Check the selected bearing based on the static load carrying capacity 

including an overload of 1.5 (input data and Table D.55). 

Reduced static loads: 

From the Table D.55 X0 = 0,5,Y0 =1.18. 
𝑃01 = (𝑋0𝐹𝑟1 + 𝑌0𝐹𝑎1)1.5 = (0.5 ⋅ 1978 + 1.18 ⋅ 554) ⋅ 1.5 = 2464N < 𝐶0  = 47500 N   

 condition Р0  С0 is met. 
Р02 = (Х0𝐹𝑟2 + 𝑌0𝐹𝑎2)1.5 = (0.5 ⋅ 1202 + 1.18 ⋅ 1054) ⋅ 1.5 = 2767N <  𝐶0  = 47500 N  

condition Р0  С0 is met. 

 

Asnwer: 𝐿10𝑎ℎ  = 116883 h; bearing 7308 B ZVL. 
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Individual task 

(calculation) 

Task 3.20. Select a bearing for the given operating conditions 

(Table 3.25). 

 
Table 3.25. Initial data for Task 3.20 

Var. 

no 
d, mm 

Load 

D
ir

ec
ti

o
n

 o
f 

ax
ia

l 

lo
ad

 

n,  

min-1 

T
ar

ge
t 

li
fe

ti
m

e 
   

 

L
0

h
, t

h
. h

 

R
in

g 
m

o
v

em
en

t 

T
em

p
er

at
u

re
 

co
n

d
it

io
n

s 

C
h

ar
ac

te
r 

o
f 

lo
ad

 

Radial, kN 

A
xi

al
, 

k
N

 
Fr1 Fr2 Fa 

1 40 3.0 3.2 1.0  750 12.0 

In
te

rn
al

 

8
0

 °
С

 

M
o

d
er

at
e 

b
ea

t 

2 45 2.5 2.0 0.8  930 16.0 

3 50 3.56 3.6 1.3  975 18.0 

4 55 7.0 4.2 1.5  1200 20.0 

5 60 4.5 3.62 1.6  860 10.0 

6 70 2.0 2.25 0.85  730 8.0 

G
en

tl
e 

b
ea

t 

7 75 2.5 2.2 0.9  600 12.0 

8 80 3.2 4.0 1.6  650 18.0 

9 85 3.6 4.2 1.5  700 20.0 

10 90 3.8 4.5 1.43  800 5.0 

11 100 4.2 4.6 1.6  960 2.5 

M
o

d
er

at
e 

b
ea

t 

12 40 4.6 5.0 1.8  950 10.0 

13 60 5.0 5.5 2.0  1110 12. 

14 45 5.6 4.8 1.65  1255 8.0 

15 55 5.8 6.2 1.  1300 6.0 

16 75 6.0 6.2 1.2  500 10.0 
G

en
tl

e 
b

ea
t 

17 85 6.25 6.5 1.8  400 8.0 

18 90 6.6 5.68 2.4  300 20.0 

19 100 1.2 1.0 0.5  200 25.0 

20 50 6.8 7.0 2.6  450 12.0 

21 55 7.0 6.85 2.55  620 8.0 

M
o

d
er

at
e 

b
ea

t 

22 65 7.25 7.86 2.65  750 12.0 

23 75 7.5 8.0 3.0  550 16.0 

24 85 8.5 8.65 3.2  950 12.0 

25 45 8.67 8.5 3.15  1050 16.0 

26 40 9.0 8.57 3.3  1000 10.0 

G
en

tl
e 

b
ea

t 

27 60 9.28 8.77 3.4  1250 12.0 

28 80 9.53 8.64 2.8  1100 8.0 

29 50 10.0 8.67 1.2  735 22.0 

30 70 12.5 10.0 4.0  620 8.0 

Additional data for variants 

Bearing arrangement diagram striping 
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3.11. Selection of connectors 
 

General information 

In the modern engineering industry, most machines consist 

of assemblies and mechanisms. To ensure kinematic and force coupling, 

the shafts of the components are connected by couplings. 

Connectors are mounting units that, depending on their purpose 

and design, can perform several primary and secondary functions.a 

The main purpose of connectors is to connect the ends of composite 

shafts or the shaft ends of individual machines and mechanisms; to transmit 

torque without changing its value along the axis.  

Additional functions of the connectors are compensation of minor shaft 

misalignments that may occur as a result of inaccurate workmanship, 

installation, thermal deformation, loads and design features of the machine 

or mechanism; reduction of dynamic and vibration loads; protection 

of machines and mechanisms from overloads; switching on and off 

of machines and mechanisms. 

 Modern machines use a large number of connectors, many of which 

are standardised. 

 

Connectors selection 

Standard and standardised connectors are not calculated. As a rule, 

they are selected, like rolling bearings, according to tables in reference books 

or catalogues. 

The selection of standard and standardised connectors consists 

of selecting the required connector size from the catalogue according to 

the torque.  

The main characteristic of the connectors is the transmitted torque T. 

The specific size of the connector is selected according to the intended use, 

the design features of the drive and the operating conditions as follows 

𝑇𝑐𝑎𝑙𝑐 = 𝐾𝑟 ∙ 𝑇𝑧𝑛 ≤ 𝑇𝑡𝑎𝑏 , 

where Tcalc is the design torque transmitted through the fitting, Nm;  

Kr – operating mode factor, assumed Kr = 1.0 ÷ 1.5 – for machines 

of small weight and insignificant load (conveyors, machine tools), 

Kr = 1.5 ÷ 2.0 – for machines of medium weight and medium load 

(compressors, pumps, woodworking machines), Kr = 2.0 ÷ 3.0 – 
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for heavy and significantly loaded machinery (breakers, crushers, 

rollers, cranes);  

Тzn – rated torque at constant mode of operation on the corresponding 

shaft, Nm;  

Тtab – nameplate torque, for this type of connector. 

 

When selecting a connector, it is also necessary to consider the diameters, 

lengths and shapes of the ends of the shafts to be connected, the mode 

of operation, the application of the machine or mechanism, the nature of the 

movement (reversible, non-reversible), speed, weight requirements, 

dimensions, design features of the drive and the characteristics of  the connector. 

The standard provides for the production of two types of connectors, 

with cylindrical and conical holes, in two versions: for long and short shaft ends, 

and also allows couplings with different d-hole diameters and shapes to be 

combined. 

Before selecting a fitting, it is important to familiarise yourself with its 

design and characteristics.  

All connectors used in machinery are subject to strength, stiffness and 

wear resistance calculations. 

The selection of connectors is usually a complex task, as it is often 

necessary to determine the shaft diameter using shaft calculations, as well as 

determining the kinematic and force parameters.  
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Examples of calculations 

 

Example 3.41. Write down the selection condition and select 

the connector that connects the low-speed machine shaft (Fig. 3.60) if: 

the drive and the working body of the machine are mounted on a common 

rigid frame; motor power Nm = 15 kW, motor shaft angular velocity 

m = 102 s-1; reducer ratio ured = 10; permissible torsional stress of the shaft 

material ks = 70 MPa; mode factor Kr = 1.5. 

 

Data: 

Nm = 15 kW 

Ωm = 102 s-1 

ured = 10 

ks = 70 MPa 

Kr = 1.5  

Searched for: 

Connector – ? 

 Fig. 3.60. Scheme to Example 3.41  

Solution 

1. Write down the condition for the selection of the fitting including the shaft  
𝑇𝑐𝑎𝑙𝑐,𝑙−𝑠 = 𝐾𝑟 ∙ 𝑇𝑧𝑛,𝑙−𝑠 ≤ 𝑇𝑡𝑎𝑏 

2. Define unknowns. 

2.1. Determining the moment on the high-speed shaft 

𝑇ℎ−𝑠 =
𝑁𝑚
𝜔𝑚

=
15000

102
= 147 Nm 

2.2. Determining the rated torque on the low-speed shaft 
𝑙 − 𝑠 = 𝑇ℎ−𝑠 ∙ 𝑢𝑟𝑒𝑑 = 147 ∙ 10 = 1470 Nm 

2.3. Determining the design moment on the pulley shaft 

𝑇𝑐𝑎𝑙𝑐,𝑙−𝑠 = 𝐾𝑟 ∙ 𝑇𝑧𝑛.,𝑙−𝑠 = 1.51470 = 2205 Nm 

In addition to the calculated torque, it is important to know the diameter 

of the shaft for which the connector is selected when selecting the connector. 

2.4. From the torsional strength condition, we determine the diameter 

of the low-speed shaft.  

Torsional strength condition 

𝜏𝑠 =
𝑇103

0.2𝑑3
≤ 𝑘𝑠 then 

𝑑𝑙−𝑠 ≥ √
Т𝑐𝑎𝑙𝑐.𝑙−𝑠10

3

0.2𝑘𝑠
 

3

= √
2205103

0.270

3

= 54 mm 
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3. Select the connector. 

Given that the drive and the working body of the machine are on 

a common frame, it is possible first to try to select a sleeve and plug 

coupling according to Table D.56, taking into account the selection 

condition, the calculated torque on the low-speed shaft and its diameter. 

From Table D.56 it can be seen that for the closed higher torque value 

Тtab = 4000 Nm,  the shaft diameter should be in the range d = 80 ÷ 95 mm, 

which is significantly larger than the design diameter of the low-speed 

shaft dl-s = 54 mm. 

We will try to select a connector from Table D.57. From the data in 

the table, you can see that the most suitable connector is a 3 mm, 

the parameters of which 
𝑇𝑡𝑎𝑏  =  3150 Nm > 𝑇𝑐𝑎𝑙𝑐.𝑙−𝑠 = 2205 Nm 

The shaft diameter can be in the range d = 40 ÷ 60 mm, within which 

the calculated diameter of the low-speed shaft falls.  

 

Answer: Connector 3 mm with Тtab = 3150 Nm; d = 40 ÷ 60 mm. 
 

Example 3.42. Evaluate the feasibility of using a sleeve-and-plug fitting 

to connect the output shaft of a drive reducer to the working shaft of a machine 

(Fig. 3.61) if: motor power Nm = 5.5 kW; nm = 960 min-1; permissible torsional 

stress on shaft material ks = 50 MPa; transmission ratio of belt reductor up.p = 2; 

transmition ratio ured = 3; dynamic coefficient Kr = 1.8; torque Тtab = 500 Nm; 

diameter dtab = 40 mm. 

 

Data: 

Nm = 5.5 kW 

nm = 960 min-1 

ks = 50 MPa 

up.p = 2 

ured = 3 

Kr = 1.8 

Тtab = 500 Nm 

dtab = 40 mm 
 

Searched for: 

Connector – ? 

 Fig. 3.61. Scheme to Example 3.42  
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Solution 

1. Write down the condition for the selection of the connector including 

the shaft 
𝑇𝑐𝑎𝑙𝑐,𝑙−𝑠 = 𝐾𝑟 ∙ 𝑇𝑧𝑛,𝑙−𝑠 ≤ 𝑇𝑡𝑎𝑏 

2. Define the unknowns. 

2.1. Determining the motor shaft torque  

𝑇𝑚 = 9.55
𝑁𝑚
𝑛𝑚

= 9.55
5500

960
≈ 55 Nm 

2.2. Determining the rated torque on the low-speed shaft of the reducer  

𝑇𝑧𝑛,𝑙−𝑠 = 𝑇𝑚𝑢𝑝.𝑝 𝑢𝑟𝑒𝑑 = 5523 = 330 Nm 

2.3. Determining the design moment on the low-speed shaft 

Т𝑐𝑎𝑙𝑐,𝑙−𝑠 = 𝐾𝑟 ∙ 𝑇𝑧𝑛.,𝑙−𝑠 = 1.8330 = 594 Nm 

2.4. From the torsional strength condition, we determine the design 

diameter of the low-speed shaft. 

Shaft torsion strength condition 

𝜏𝑠 =
𝑇103

0.2𝑑3
≤ 𝑘𝑠 , 𝑡ℎ𝑒𝑛 

𝑑𝑙−𝑠. ≥ √
𝑇𝑐𝑎𝑙𝑐.𝑙−𝑠10

3

0.2𝑘𝑠
 

3

= √
594103

0,250

3

= 39 mm 

Assume dl-s = 40 mm. 

3. Assess the feasibility of a connector. 

Comparing the calculated values and the values in the table, we obtain: 

𝑇𝑐𝑎𝑙𝑐,𝑙−𝑠 = 594 Nm > 𝑇𝑡𝑎𝑏 = 500 Nm – condition is not met 

𝑑𝑤.𝑐 = 40 mm = 𝑑𝑡𝑎𝑏 = 40 mm – condition is met 

Conclusion: the connector does not fit because the computational moment 

is greater than the moment in the Table. 
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Individual tasks 

(calculation) 

 

 Tasks 3.21. Select the connector that connects the low-

speed coupling shaft to the working shaft of the machine 

(Fig. 3.62). The data for the calculations is shown in 

Table 3.26. 

 
Table 3.26. Initial data for Task 3.21 

Var. 

no 

Nm, 

kW 

nm,  

min-1; 

D1, 

mm 

D2, 

mm 
ured 

ks, 

MPa 
Kr 

1 10 750 100 300 3 35 2.0 

2 11 850 120 360 4 40 1.5 

3 15 950 140 420 5 45 1.2 

4 17 1000 160 480 6 50 1.3 

5 20 1100 180 360 8 60 1.4 

6 5 1200 200 600 10 75 1.6 

7 7 1500 250 500 3 80 1.8 

8 10 750 100 300 3 35 2.2 

9 11 850 120 360 4 40 2.0 

10 15 950 140 420 5 45 1.5 

11 10 1000 160 480 6 50 1.2 

12 5 1100 180 360 8 60 1.3 

13 8 1200 200 600 10 75 1.4 

14 5 1500 250 500 3 80 1.6 

15 11 750 100 300 3 35 1.8 

16 10 850 120 360 4 40 2.2 

17 15 950 140 420 5 45 2.0 

18 18 1000 160 480 6 50 1.5 

19 20 1100 180 360 8 60 1.2 

20 10 1200 200 600 10 75 1.3 

21 5 1500 250 500 3 80 1.4 

22 15 750 100 300 3 35 1.6 

23 10 750 100 300 3 35 2.0 

24 11 850 120 360 4 40 1.5 

25 5 950 140 420 5 45 1.2 

26 10 1000 160 480 6 50 1.3 

27 15 1100 180 360 8 60 1.4 

28 5 1200 200 600 10 75 1.6 

29 20 1500 250 500 3 80 1.8 

30 15 750 100 300 5 35 2.2 

Supplementary data 

Variants 1 ÷ 5, 11 ÷ 15, 21 ÷ 25  
The drive and accessories are mounted on the same frame. 

Variants 6 ÷ 10, 16 ÷ 20, 26 ÷ 30  
The drive and accessories are mounted on different frames. 

 
Fig. 3.62 
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Task 3.22. Evaluate the feasibility of using a connector to connect 

the gearbox output shaft to the working shaft of the machine (Table 3.27). 

 
 a b 

Fig. 3.63. Machine gearbox schemes: 

а – impact drum; b – worm mixer; 1– motor; 2 – belt transmission; 3 – reducer;  

4, a – compensating connector – gear; 4, b – elastic connector;  

5, a – impact drum; 5, b – mixer; 6 – plain  

Table 3.27. Initial data for Task 3.22 

Var. 

no 
Nm, kW 

nm,  

min-1 
up.p ured 

ks, 

MPa 
Kr 

Тtab, 

Nm 

dtab 

mm 

Fig. 

3.63 

1 10 750 2 3 35 1.4 710 40 

a 

2 11 850 3 4 40 1.6 1400 40÷50 

3 15 950 2.5 5 45 1.8 3150 40÷60 

4 17 1000 4 6 50 2.2 5600 45÷75 

5 20 1100 3 8 60 2.0 8000 50÷90 

6 5 1200 2.5 10 75 1.5 500 40÷45 

b 

7 7 1500 3 3 80 1.2 710 45÷55 

8 10 750 3.5 3 35 1.3 1000 50÷70 

9 11 850 2 4 40 1.4 2000 63÷85 

10 15 950 3 5 45 1.4 4000 80÷95 

11 10 1000 2.5 6 50 1.6 710 40 

a 

12 5 1100 4 8 60 1.8 1400 40÷50 

13 8 1200 3 10 75 2.2 3150 40÷60 

14 5 1500 2.5 3 80 1.4 5600 45÷75 

15 11 750 3 3 35 1.6 8000 50÷90 

16 10 850 3.5 4 40 1.8 500 40÷45 

b 

17 15 950 2 5 45 2.2 710 45÷55 

18 18 1000 3 6 50 2.0 1000 50÷70 

19 20 1100 2.5 8 60 1.5 2000 63÷85 

20 10 1200 4 10 75 1.2 4000 80÷95 

21 5 1500 3 3 80 1.3 710 40 

a 

22 15 750 2.5 3 35 1.4 1400 40÷50 

23 10 750 3 3 35 1.4 3150 40÷60 

24 11 850 3.5 4 40 1.6 5600 45÷75 

25 5 950 2 5 45 1.8 8000 50÷90 

26 10 1000 3 6 50 2.2 500 40÷45 

b 

27 15 1100 2.5 8 60 2.0 710 45÷55 

28 5 1200 4 10 75 1.5 1000 50÷70 

29 20 1500 3 3 80 1.2 2000 63÷85 

30 15 750 2.5 5 35 1.3 4000 80÷95 
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APPENDIX 
Appendix А (recommended) 

Order of performance and requirements for the practical task  

 

1. Select the task variant based on the number on the group list. If the table 

is missing a number, then the task number is equal to the sum 

of the numbers in the number on the list (e.g. for number "15" 1 + 5 = 6). 

2. Write down the task conditions in the short form "Data". On the right-

hand side, write down the values you are looking for "Searched for".  

When writing down the task conditions, the given and sought values are 

converted to letters (Appendix B).  

3. Plot a drawing or a schematic diagram (if not attached to the task), with 

the necessary and sufficient number of types, sections, markings, 

dimensions, acting forces and other parameters. Drawings and diagrams 

are made by hand. When determining the dimensions, forces and other 

parameters on a drawing or diagram, the letter designations of the 

relevant values must be used. Dimensions are measured in millimetres 

without units at the end.  

4. A centred "Solution" is written underneath the drawing or diagram, 

under which the formulae are written and the calculations are 

performed. The order in which the solution is performed can vary, 

for example, all calculation formulas are written down first and then 

the unknowns are determined, or a formula is written down and 

the desired value is determined immediately. The procedure for 

performing the calculation is as follows: first, the formula is written in 

alphabetical notation, then their numerical values are replaced by letters 

without specifying the units of measurement, and the result 

of the calculation is written with SI units of measurement. The letter 

designation of the values must be the same within the calculation. 

Intermediate calculations are not performed. The calculations must be 

accompanied by brief explanations of the adopted coefficients, values, 

design decisions, references, etc. 

5. At the end of the task, the answer is written if it is a design calculation 

or the conclusion if it is a verification calculation. It is permitted to write 

the conclusion immediately after the calculation while solving the task. 

The sequence of practical tasks is shown in the script examples. 
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Appendix B (recommended) 
 

Designation of certain values 

Q  – concentrated force; 

F  – Force (general designation); load; area; 

Ft – peripheral force; tangential force; 

Fr – radial (strut) force; 

Fn – normal force; 

Р  – force; load; 

М  – moment of force (general designation); 

Т  – torque; 

Mg – bending moment in the beam cross-section; 

Мх, My 

 

– bending moment in the cross-section of the beam about the 

x or y axis; 

Мred – the reduced moment according to the adopted strength 

hypothesis; 

N  – power; longitudinal force in the transverse section 

of the beam; 

 – normal stresses (general designation); 

r;c;g – stresses normally in tension, compression, and bending 

respectively;  

red  – reduced stresses according to the strength hypothesis; 

Rm  – strength limit (general designations); 

Re  – yield point; 

R-1 – bending strength limit under symmetric stress cycling; 

R0  – bending strength limit under pulsating stress cycling; 

k, σH  – contact stresses; 

k – permissible normal stresses (general designation); 

kr; kc; 

kg; 

– allowable stresses in tension, compression, and bending 

respectively; 

 kk – permissible contact stresses; 

 – tangential stresses (general designations); 

c – shear stress; 

p – torsional yield strength; 

-1 – torsional strength limit under a variable stress cycle; 

0 

 

– torsional strength limit under pulsating stress cycle; 
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ks – allowable tangential stresses (general designations); 

kt – allowable shear stresses; 

р – pressure; thread pitch; 

q 

 

– continuous force intensity, load per unit length of contact 

line; 

[q] – distributed permissible stresses; 

[n] – permissible strength reserve factor; 

Е – longitudinal modulus of elasticity; 

G – shear modulus; mass; gravity; 

 – linear speed, rotational speed; 

 – speed; 

n – speed (ob./min); strength factor; number of products; 

g  – acceleration of free fall; 

L, l – length; 

H, h – altitude; 

B, b – width; 

D, d – diameter; 

r – radius; cycle asymmetry factor; 

 – thickness; 

S, s – thickness; thread step; 

A, а – distance between gear axes (toothed, belt, etc.); area; 

т – the teeth hooking module; 

тп – normal tooth attachment modulus; 

ms (m)t – spur gear module; worm gear axial module; 

Jх, Jу – centrifugal moment of inertia of the cross-section about 

the x or y axis respectively; 

Jp – polar moment of inertia of the beam cross-section; 

Wх, Wу – centrifugal strength index relative to the x or y axis, 

respectively; 

Wp – polar strength index; 

z – number of products; number of teeth; 

i – gear transmision ratio; the number of products;  

the number of spring coils; 

u – the gear ratio of a pair of gears; 

з – index of cylindrical threaded spring; 

НВ – Brinell hardness; 
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HRCе – Rockwell hardness (C scale); 

НV – Vickers hardness; 

HSh – Shore hardness; 

 – coefficient of linear expansion; angle of attachment, angle 

of thread profile, tooth; angle of belt pulley 

circumference;  

 – tine angle; 

 – linear deformation; slip factor; ratio overlap factor; scale 

factor; 

 – efficiency; 

f – coefficient of sliding friction; 

 – Poisson's ratio; dynamic viscosity; 

 – friction angle; tightness; radius of curvature in gears; 

 – angle of ascent of the thread line; angle of turn. 

 

 Comments:  

1. The designations of the values within the calculation should be the same. 

2. Unpresented designations you can find while discussing the topics 

of the theoretical and practical parts of the disciplines.
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Appendix C (informative) 
Table C1. Greek alphabet 

Symbol 
Pronunciat

ion 
Symbol 

Pronunci
ation 

Symbol 
Pronunciati

on 
А а 
B β 
Γ γ 
Δ δ 
Ε ε 
Ζ ζ 
Η η 
Θ θ 

alpha 
beta 

gamma 
delta 

epsilon 
dzeta 

eta 
theta 

І ι 
Κ κ 
Λ λ 
Μ μ 
Ν ν 
Ξ ξ 
Ο ο 
Π π 

jota 
kappa 

lambda 
mi 
ni 
ksi 

omicron 
pi 

Ρ ρ 
Σ σ 
Τ 

Υ υ 
Φ φ 
Χ χ 
Ψ ψ 
Ω ω 

R(h)o 
sigma 

tau 
ipsilon 

fi 
chi 
dog 

omega 
 

Nowadays, the International System of Units (SI) is used in all fields 
of science, technology, economy and education. 
 

Table C2. Selected SI units 

Size name Unit Designation 

Core values 
Length Metre m 

Mass Kilogram kg 

Time Seconds S 

Thermodynamic temperature Kelvin K 

Additional values 
Obtuse angle Radian rad 

Derived values 
Surface area Square metre m2 

Volume Cubic metre m3 

Static moment and moment 

of resistance of a plane section 

Cubic metre m3 

Moment of inertia of a plane section One metre to the power of four m4 

Density Kilogram per cubic metre kg/m3 

Speed Metre per second m/s 

Speed Radian per second rad/s, s-1 

Power Newton N 

Stress (mechanical pressure) Pascal (Niuton per square 

metre) 

Pa (N/m )2 

Power Watt W 

Specific gravity Niuton per cubic metre N/m3 

Moment of inertia (dynamic) Kilogram per square metre kg·m2 

Comment: In addition to Kelvin temperature, it is acceptable to use Celsius temperature (t), 
expressed in degrees Celsius (С).  
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Table C3. Multipliers and their names and symbols currently used to form multiple 
and sub-multiple units 

 

Name Symbol Multiplier Name Symbol Multiplier 

Mega M 106 Decy d 10-1 

Kilo k 103 Centy c 10-2 

Hekto h 102 Nice m 10-3 

Deka da 10 Micro μ 10-6 

Comment: 1. It is not permitted to use two prefixes for a simple unit name, e. g., 
mega-kiloton; 

Comment 2. Prefixes may not be used for the names of the following units, which 
denote a multiple or a unit of value, for example, in tonnes to centres. 
 

Table C4. Conversion of some old and non-SI units to SI units 

Units outside the SI system SI units 

Units of length 
1 millimetre, mm 10-3 m 

1 centimetre, cm 10 m-2  

1 micrometre, μm 10 m-6  

1 m =1000 mm = 100 cm; 1 cm = 10 mm; 1 μm = 0.001 mm (10-3 mm)* 

Units of area 
1 mm2 10-6 m2 

1 cm2 10 m-4 = 100 mm2 

Units of static moment and moment of resistance of a plane section  
1 cm3 10-6 m3 =1000 mm3 

Units of the moment of inertia of a flat section  
1 cm4 10-8 m4 = 10000 mm4 

Mass units 
1 tonne, t 1000 kg 

1 kg = 1000 g* 

Speed units 
1 rpm (min )-1 /180 rad/s 

1 rpm 2 rad/s 

Units of force, load, mass 
1 kG (kgf) 9.80665  9.81  10 N 

1 T (tf) 9806.65  9810  104 N 

Force moment units, force pairs 
1 kGm (kgfm) 9.80665  9.81  10 Nm 

1 kGcm (kgfcm) 0.0980665  0.0981  0.1 Nm 

1 Nm = 1000 Nmm* 
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Units outside the SI system SI units 

Unity of labour, Energy 
1 kGm (kgfm) 9.80665  9.81  10 J 

1 kWh = 3.6 106 J* 

 Power units 

1 kGm m/s; kG cm/s 9.80665 W  9.81 W  10 W 

1 HP 735, 499 W  735.5 W  736 W 

Mechanical stress units, pressure 
1 kG/cm2  (kgf/cm )2 98066.5  9.81 104 Pa  0.1 MPa 

1 kG/mm2  (kgf/mm )2 9806650  9.81 106 Pa  10 MPa 

1 at 98066.5  9.81 10 4  Pa  0.1 MPa 

1 at = 1 kgf/cm2 ; 1 N/mm2 = 1 MPa* 

Dynamic viscosity units 
1 pause P 0.1 Pas 

1 centipauz cP 0.001 Pas 

Kinetic viscosity units 
1 stokes, St 1.0·10-4 m2/s 

1 centistokes, cSt 1.0·10-6 m2/s 

1 cSt = 1 mm2 /s = 1.0·10-6 m2/s* 

Heat transfer units and heat transfer coefficients 
1 kcal/m2 · h · step 1.163 W/m2 · °С 

Units of thermal conductivity coefficient  
1 kcal/m · degree 1.163 W/m · °С 

Heat rate unit 
1 kcal  4.187103  4103 J 

Units of volume 
1 l 10-3 m3 

1000 l = 1 m *3 

Comment: * - additional coefficients are often used in calculations 
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Appendix D (informative) 
 

Table D.1. Е, G, ,  values for selected materials at 20 °С. 

 

Material 

E-modulus 

of elasticity, 

MPa 

Kirchhoff 

modulus  

G 104 , MPa 

Poisson's ratio 

 

Temperature 

coefficient 

of linear 

expansion 

 10 -6  oC-1 

Density 

m, 

kg/m3 

Steel (1.90 ÷2.15) 105 7.8 ÷ 8.30 
0.25 ÷ 0.3 

0.33 
10 ÷ 13 7.7 ÷ 7.8 

Grey cast 

iron 
(0.78 ÷ 1.47) 105 4.42 0.23 ÷ 0.27 8.7 ÷ 11 7.0 ÷ 7.1 

Tin bronze (0.74 ÷ 1.22) 105 4.2  0.32 ÷ 0.35 17 ÷ 22 8.6 ÷ 8.8 

Tinless 

bronze 
(1.03 ÷ 1.18) 105 4.0 ÷ 4.2  0.36  17 ÷ 22 8.6 ÷ 8.8 

Aluminium 

brass 
(0.98 ÷ 1.08) 105 3.63 ÷ 3.92 0.32 ÷ 0.34 17 ÷ 22 8.2 ÷ 8.5 

Aluminium 

alloys 
(6.87 ÷ 7.07) 104 2.65 0.33 22 ÷ 24 2.6 ÷ 2.7 

 

 
Table D.2. Mechanical properties of selected steel grades 
 

Steel 
Re , 

MPa 

k, 

MPa 

R-1, 

MPa 

Е, 

MPa 

C10, S195 210 140 160 

2  105 

C20, S215 240 160 170 

S235 260 175 180 

C25 280 190 210 

C30, S275 300 200 225 

C35, S315 320 210 240 

C45 360 240 275 

C50 380 250 290 

09G2S 310 205 240 

Comment. Re - yield point, k - allowable stress,  
Е - elastic modulus, R-1 - flexural strength limit 
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Table D.3. Permissible stresses for welded joints 

Welding 

Permissible stresses for welded joints 

stretching 

kr 

bending 

kg 

shearing 

kt 

Automatic, semi-automatic with self-

consuming wire (flux), manual, with E42A 

and E50A electrodes, in the protective gas 

environment, contact welding 

kr kr 0.65 kr 

Manual welding with electrodes E42, and 

E50 (usual quality), gas welding 
0.9 kr kr 0.6 kr 

Manual with E34 electrodes 0.75 kr 0.6 kr 0.6 kr 

Contact point   0.5 kr  

Comment 1. The accepted stress standards apply to low and medium carbon and low alloy steels 
(types 14GS, 09G2S, 09G2, 15GS, 15HSND and others). 

Comment 2. kr = Re/n - permissible stresses for the material of the elements to be joined under static 
loading. For metal structures, the safety factor is n = 1.4 ÷ 1.6. The higher value applies to heavy loading 
modes.  

Under variable loads, the strength of welded joints decreases (influence of thermal zones, 
technological defects). The calculation of joints under variable loads is carried out using the formulae for the 
calculation of static loads, the permissible weld stress under static load is multiplied by the variable load 
factor  . For variable loads, it is recommended to calculate the strength not only of the weld but also of the 
components to be joined in the weld zone. The permissible stresses in the weld zone are multiplied by 
the factor calculated from the formula:  

𝛾 =
1

(0,6𝐾𝑒𝑓 + 0,2) − (0,6𝐾𝑒𝑓 − 0,2)𝑅
 

where R = min/max  or  min /max  - stress cycle asymmetry factor;  
 Kef - effective stress concentration factor (from Tables D.4 and D.5). 

 
 

Table D.4. Effective stress concentration factor (for welds and welded 
components) 

 
 

Calculation element 

Kef - electric arc welding 

Low-headed 

steel 
Low-alloy steel 

Element at the transition to the butt joint  1.5 1.9 

Element at the transition to the butt weld 2.7 3.3 

Element at the transition to the side weld 3.5 4.5 

Fully remelted butt welds 1.2 1.4 

Angle butt welds 2.0 2.0 

Angled side welds 3.5 4.5 
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Table D.5. Effective stress concentration factor (for welds and welded pieces) 
in contact welding 

 

Steel brand Sample condition 
Thickness, 

mm 

Kef in points 

Links Working 

C10 steel Normalization 3 + 3 1.4 (1.25) 7.5 (5) 

30HGSA steel  Stress relieving 1.5 + 1.5 1.35 12 

Titanium alloy 

Grade2 
Delivery 1.5 + 1.5 2.0 (1.3) 10 (5) 

Aluminium alloy 

2024 (PA7) 
Delivery 1.5 + 1.5 2.0 (1.3) 5 (2.25) 

 Comment. In brackets, the factor for butt welding and welding  

 
Table D.6. Permissible safety factors for threaded connections 

 

[n] in case of uncontrolled screwing on 

Steel 

Fixed loads Variable loads 

Thread diameter d, mm Thread diameter d, mm 

6 to 16 
from 16 

to 30 

from 30  

up to 60 
6 to 16 

from 16 

to 30 
30 to 60 

Carbon 5 ÷ 4 4 ÷ 2.5 2.5 ÷ 1.6 10 ÷ 6.5 6.5 6.5 ÷ 5 

Alloy  6.6 ÷ 5 5 ÷ 3.3 3.3 7.5 ÷ 5 5 5 ÷ 4 

[n] = 1.5 ÷ 2.5 for controlled turning 

 

Table D.7. Permissible stresses for threaded connections, MPa 

 

Type of load Recommended value 

External tensile forces: 

Without tightening the screw kr = 0,6Re 

External lateral forces:  

Bolts without backlash  
kt = 0.4Rm (static) 

kt = 0,2 ÷ 0,3Rm (variable) 

Element strength at the joint 

 kc = 0,8Rm - steel 

kc = (0.4 ÷ 0.5)Re - cast iron 

kc = 1.2 Re  - concrete 

kc = 2.4 Re - wood 

Wear-resistant propellers and load screws 

steel+bronze 
steel+cast 

iron 
steel+steel nut-steel 

screw-

bronze 
nut-iron 

kc = 10 ÷ 13 kc = 4.5 ÷ 8 kc = 7.5 ÷ 13 kt = 0.2Rm kt = 20 ÷ 25 kt = 20 ÷ 30 
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Table D.8. Metric threads (PN-ISO 261:2001), mm 
 

Nominal thread 

diameter d 

Coarse thread Fine thread  

р d1 d2 p d1 d2 

M6 1 4.918 5.350 0.75 5.188 5.513 

M8 1.25 6.647 7.188 1 6.918 7.350 
M10 1.5 8.376 9.026 1.25 8.647 9.188 
M12 1.75 10.106 10.863 1.25 10.647 11.188 

(M14) 2 11.835 12.701 1.5 12.376 13.026 
M16 2 13.835 14.701 1.5 14.376 15.026 

(M18) 2.5 15.294 16.376 1.5 16.376 17.026 
М20 2.5 17.294 18.376 1.5 18.376 19.026 

(М22) 2.5 19.294 20.376 1.5 20.376 21.026 
М24 3 20.752 22.051 2 21.835 22.701 

(М27) 3 23.752 25.051 2 24.835 25.701 
М30 3.5 26.211 27.727 2 27.835 28.701 

(М33) 3.5 29.211 30.727 2 30.835 31.701 
М36 4 31.670 33.402 3 32.752 34.051 

М(39) 4 34.670 36.402 3 35.752 37.051 
М42 4.5 37.129 39.077 3 38.752 40.051 

М(45) 4.5 40.129 42.077 3 41.752 43.051 
М48 5 42.587 44.752 3 44.752 46.051 

(М52) 5 46.587 48.752 3 48.752 50.051 
М56 5.5 50.046 52.428 3 52.752 54.051 

(М60) 5.5 54.046 56.428 3 56.752 58.051 
М64 6 57.505 60.103 3 60.752 62.051 

(М68) 6 61.505 64.103 3 64.752 66.051 
Warning. Values in brackets should not be used if possible.  

 
 

Table D.9. Permissible stresses kt of keyway connections, MPa 
 

Type of connection Hub material 
Nature of the load 

Fixed Variables 

Immobile 
Steel 150 100 

Cast iron 90 60 
Mobile Steel 50 30 

kt = 70 ÷ 100 
The higher value is taken at a constant load  
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Table D.10. Permissible stresses kc of spline connections, MPa. 
 

 

Type of connection 
Operating 
conditions 

Tooth surface 
Without heat 

treatment 
After heat 
treatment 

Immobile 
a 35 ÷ 50 40 ÷ 70 
b 60 ÷ 100 100 ÷ 140 
c 80 ÷ 120 120 ÷ 200 

Moving without load (e.g. 
gearbox)  

a 15 ÷ 20 20 ÷ 35 
b 20 ÷ 30 30 ÷ 60 
c 25 ÷ 40 40 ÷ 70 

Moving with load (e.g. 
cardan shaft in cars) 

a – 3 ÷ 10 
b – 5 ÷ 15 
c – 10 ÷ 20 

Comment: a – heavy operating conditions - loads with run-out, high-frequency and 
amplitude vibration, poor lubrication conditions in moving joints, low manufacturing 
accuracy; b -– medium operating conditions; c –  good operating conditions. Smaller 
values for light load modes.  

 

 
Fig. D.1. Prismatic inlets 
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Table D.11. Prismatic inlets (PN 85005), mm 
 

Shaft 
diameter 

Dimensions 
Groove 
depth Length L Radius r 

Chamfering 
c 

from to b h 
shaft hub 

t t1 from to from to from to 
8 10 3 3 1.8 1.4 6 36 

0.08 0.16 0.16 0.25 
10 12 4 4 2.5 1.8 8 45 
12 17 5 5 3 2.3 10 56 

0.16 0.25 0.25 0.4 17 22 6 6 3.5 2.8 14 70 
22 30 8 7 4 3.3 18 90 
30 38 10 8 5 3.3 22 110 

0.25 0.4 0.4 0.6 
38 44 12 8 5 3.3 28 140 
44 50 14 9 5.5 3.8 36 160 
50 58 16 10 6 4.3 45 180 
58 65 18 11 7 4.4 50 200 
65 75 20 12 7.5 4.9 56 220 

0.4 0.6 0.6 0.8 
75 85 22 14 9 5.4 63 250 
85 95 25 14 9 5.4 70 280 
95 110 28 16 10 6.4 80 320 

110 130 32 18 11 7.4 90 360 
130 150 36 20 12 8.4 100 400 

0.7 1.0 1.0 1.2 150 170 40 22 13 9,4 100 400 
170 200 45 25 15 10,4 110 450 

 Comment: An example of the designation and a standard series of values are 
shown in the Comments to Table D.12.  

 
 

 
Fig. D.2. High prismatic drains (PN 85001) 
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Table D.12. High prismatic inlets (PN 85001), mm 
 

Shaft 
diameter 

Dimensi
ons 

Groove 
depth 

Length L 
 

Radius r 
 

Chamfering 
c 
 

from to b h 
shaft hub 

t t1 from to from to t t1 
30 38 10 9 5.5 3.8 22 110 

0.25 0.4 0.4 0.6 38 44 12 11 7 4.4 28 150 
44 50 14 12 7.5 4.9 36 160 
50 58 16 14 9 5.4 45 180 

0.4 0.6 0.6 0.8 
58 65 18 16 10 6.4 50 200 
65 75 20 18 11 7.4 56 220 
75 85 22 20 12 8.4 63 250 
85 95 25 22 13 9.4 70 280 
95 110 28 25 15 10.4 80 320 

0.7 1.0 1.0 1.2 
110 130 32 28 17 11,4 90 360 
130 150 36 32 20 12,4 100 400 
150 170 40 36 22 14,4 100 400 
170 200 45 40 25 15,4 110 450 

Comment 1. Material - drawn steel for drains with an instantaneous strength limit 

of not less than 500 ÷ 600 MPa.  
Comment 2. Length series l by PN 85001: 6, 8, 10, 12, 14, 16, 18. 20, 22, 25, 28, 32, 

36, 40, 45. 50, 56, 63, 70, 80. 90, 100, 110, 125, 140, 160, 180, 200, 220, 250, 280. 320, 
360, 400, 450.  
 
 

 
 

Fig. D.3. Spigot drains (PN 85008) 
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Table D.13. Spigot drains (PN 85008), mm 
 

Shaft diameter d Dimensions of drains 

W
ei

gh
t,

 k
g Groove 

depth 

Communicating 
the moment  

Setting 
elements  

b h d1 l 
c or r shaft hubs 

max min t t1 

6 to 8 10 to 12 
2 2.6 7 6.8 

0.16 0.25 

0.204 1.8 
1.0 2 3.7 10 9.7 0.414 2.9 

2.5 3.7 10 9.7 0.510 2.9 

8 to 10 12 to 17 3 
3.7 10 9.7 0.612 2.5 

1.4 5 13 12.6 1.05 3.8 
6.5 16 15.7 1.60 5.3 

10 to 12 17 to 22 4 

5 13 12.6 1.40 3.5 

1.8 
6.5 16 15.7 2.12 5 
7.5 19 18.6 3.24 6 
9 22 21.6 4.10 7.5 

12 to 17 22 to 30 5 

6.5 16 15.7 

0.25 0.4 

2.68 4.5 

2.3 
7.5 19 18.6 4.04 5.5 
9 22 21.6 5.66 7 

10 25 24.5 6.90 8 

17 to 22 30 to 38 6 

9 22 21.6 6.78 6.5 

2.8 
10 25 24.5 8.48 7.5 
11 28 27.3 10.3 8.5 
13 32 31.4 14.5 10.5 

22 to 30 38 to 44 8 
11 28 27.3 13.8 8 

3.3 13 32 31.4 19.3 10 
15 38 37.1 25.4 12 

30 to 38 44 to 50 10 

13 32 31.4 

0.4 0.6 

24.1 10 

3.3 
15 38 37.1 32.3 12 
16 45 43.1 39.5 13 
17 55 50.8 45.2 14 

38 to 44 50 to 58 12 19 65 59.1 62.1 16 3.3 
   

 

   
 

Fig. D.4. Parallel spline connections (PN-M 85017): 
a - alignment outline on d; b - alignment outline on D or B; c - hole outline 
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Table D.14. Parallel spline connections (PN-M 85017), mm  
 

Nominal 
size 

z  d  D 
z d D b 

d1 a f 
r 
 

No less Size 
nom. 

tol. 
No 

more 
than 

Lightweight series 
6  23  26 6 23 26 6 22.1 3.54 0.3 +0.2 0.2 

6  26  30 6 26 30 6 24.6 3.85 0.3 +0.2 0.2 

6  28  32 6 28 32 7 26.7 4.03 0.3 +0.2 0.2 

8  32  36 8 32 36 6 30.4 2.71 0.4 +0.2 0.3 

  8  36  40 8 36 40 7 34.5 3.46 0.4 +0.2 0.3 

8  42  46 8 42 46 8 40.4 5.03 0.4 +0.2 0.3 

8  46  50 8 46 50 9 44.6 5.75 0.4 +0.2 0.3 

8  52  58 8 52 58 10 49.7 4.89 0.5 +0.3 0.5 

8  56  62 8 56 62 10 53.6 6.38 0.5 +0.3 0.5 

8  62  68 8 62 68 12 59.8 7.31 0.5 +0.3 0.5 

10  72  78 10 72 78 12 69.6 5.45 0.5 +0.3 0.5 

10  82  88 10 82 88 12 79.3 8.62 0.5 +0.3 0.5 

10  92  98 10 92 98 14 89.4 10.08 0.5 +0.3 0.5 

10  102  
108 

10 102 108 16 99.9 11.49 0.5 +0.3 0.5 

10  102  
120 

10 112 120 18 108.8 10.72 0.5 +0.3 0.5 

Medium series 

6  13  16 6 13 16 
3.
5 

12.0 
–  

0.3 +0.2 0.2 

6  16  20 6 16 20 4 14.54 –  0.3 +0.2 0.2 

6  18  22 6 18 22 5 16.7 –  0.3 +0.2 0.2 

6  21  25 6 21 25 5 19.5 1.95 0.3 +0.2 0.2 

6  23  28 6 23 28 6 21.3 1.34 0.3 +0.2 0.2 

6  26  32 6 26 32 6 23.4 1.65 0.4 +0.2 0.3 

6  28  34 6 28 34 7 25.9 1.70 0.4 +0.2 0.3 

8  32  38 8 32 38 6 29.4 – 0.4 +0.2 0.3 

8  36  42 8 36 42 7 33.5 1.02 0.4 +0.2 0.3 

8  42  48 8 42 48 8 39.5 2.57 0.4 +0.2 0.3 

8  46  54 8 46 54 9 42.7 – 0.5 +0.3 0.5 

8  52  60 8 52 60 10 48.7 2.44 0.5 +0.3 0.5 

8  56  65 8 56 65 10 52.2 2.5 0.5 +0.3 0.5 

8  62  72 8 62 72 12 57.8 2.4 0.5 +0.3  0.5 

10  72  82 10 72 82 12 67.4 – 0.5 +0.3 0.5 

10  82  92 10 82 92 12 77.1 3.0 0.5 +0.3 0.5 

10 92 102 10 92 102 14 87.3 4.5 0.5 +0.3 0.5 
10  102   112 10 102 112 16 97.7 6.3 0.5 +0.3 0.5 
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Nominal 
size 

z  d  D 
z d D b 

d1 a f 
r 
 

No less Size 
nom. 

tol. 
No 

more 
than 

10  112  125 10 112 125 18 106.3 4.4 0.5 +0.3 0.5 
Heavy series 

10  18  23 10 18 23 3 15.6 –  0.3 +0.2 0.2 

10  21  26 10 21 26 3 18.5 –  0.3 +0.2 0.2 

10  23  29 10 23 29 4 20.3 –  0.3 +0.2 0.2 

10  26  32 10 26 32 4 23.0 –  0.4 +0.2 0.3 

10  28  35 10 28 35 4 24.4 –  0.4 +0.2 0.3 

10  32  40 10 32 40 5 28.0 –  0.4 +0.2 0.3 

10  36  45 10 36 45 5 31.3 –  0.4 +0.2 0.3 

10  42  52 10 42 52 6 36.9 –  0.4 +0.2 0.3 

10  46  56 10 46 56 7 40.9 –  0.5 +0.3 0.5 

16  52  60 16 52 60 5 47.0 –  0.5 +0.3 0.5 

16  56  65 16 56 65 5 50.6 –  0.5 +0.3 0.5 

16  62  72 16 62 72 6 56.1 –  0.5 +0.3 0.5 

16  72  82 16 72 82 7 65.9 –  0.5 +0.3 0.5 

20  82  92 20 82 92 6 75.6 –  0.5 +0.3 0.5 

20  92  102 20 92 102 7 85.5 –  0.5 +0.3 0.5 

20  102  115 20 102 115 8 98.7 –  0.5 +0.3 0.5 

20  112  125 20 112 125 9 104 –  0.5 +0.3 0.5 
Comment. For centring on the inside diameter, use designs a and 3, for centring on 

the outside diameter and spline side surfaces, use design B.   
 

  
a b 
Figure D.5. Spline connections of the involute: 

a - S alignment; b - D alignment 

     
Table D.15. Convoluted spline connections (PN-ISO 4156:1999), mm  
 

Outer D 
m = 1 m = 1.5 m = 2 m = 2.5 m = 3.5 m = 5 m = 10 

z x z x z x z x z x z x z x 

30 28 0.5 18 0.75 14 0 – – – – – – – – 

32 30 0.5 20 0.25 14 1 – – – – – – – – 

35 34 0 22 0.25 16 0.5 12 1.25 – – – – – – 

38 36 0.5 24 0.25 18 0 14 0.25 – – – – – – 

40 38 0.5 26 -0.25 18 1 14 1.25 – – – – – – 
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42 – – 26 0.75 20 0 16 -0.25 – – – – – – 

45 – – 28 0.75 22 -0.5 16 1.25 – – – – – – 

50 – – 32 0.25 24 0 18 1.25 – – – – – – 

55 – – 36 -0.25 26 0.5 20 1.25 14 1.25 – – – – 

60 – – 38 0.75 28 1 22 1.25 16 0.25 – – – – 

65 – – – – 32 -0.5 24 1.25 18 -0.75 – – – – 

70 – – – – 34 0 26 1.25 18 1.75 12 2.5 – – 

75 – – – – 36 0.5 28 1.25 20 0.75 14 0 – – 

80 – – – – 38 1 30 1.25 22 -0.25 14 2.5 – – 

85 – – – – – – 32 1.25 24 -1.25 16 0 – – 

90 – – – – – – 34 1.25 24 1.25 16 2.5 – – 

95 – – – – – – 36 1.25 26 0.25 18 0 – – 

100 – – – – – – 38 1.25 28 -0.75 18 2.5 – – 

110 – – – – – – 42 1.25 30 0.75 20 2.5 – – 

120 – – – – – – 46 1.25 34 -1.25 22 2.5 – – 

130 – – – – – – 50 1.25 36 0.25 24 2.5 – – 

140 – – – – – – – – 38 1.75 26 2.5 – – 

150 – – – – – – – – 42 -0.25 28 2.5 14 0 

160 – – – – – – – – 44 1.25 30 2.5 14 5 

170 – – – – – – – – 48 -0.75 32 2.5 16 0 

180 – – – – – – – – 50 0.75 34 2.5 16 5 

190 – – – – – – – – – – 36 2.5 18 0 

200 – – – – – – – – – – 38 2.5 18 5 

  Comment. х - displacement of the initial rail contour, f = 0.1 m – value of chamfer. 
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Table D.16. Recommended ratio values for different gearboxes 
 

Gearbox 
u 

Closed Opened 
Toothed single-stage: 

cylinder 2 ÷ 6.3 3 ÷ 6.3 
conical 2 ÷ 4 – 

Toothed two-stage: 
cylinder  6.3 ÷ 40 – 

Planetary   
single row  3.15 ÷ 6.3 – 

split  6.3 ÷ 18 – 

Closed worm  8 ÷ 60 – 

Chain 2 ÷ 6 – 

Belt – – 

flat  – 2 ÷ 4 
wedge – 2 ÷ 5 
spline  – 2 ÷ 8 
 
Table D.17. Approximate efficiency values 
 

Transmission, assembly  
Efficiency 

Closed Opened 
Toothed single-stage   

cylidry 0.96 ÷ 0.98* 0,93 ÷ 0,95 
conical 0.95 ÷ 0.97* 0,92 ÷ 0,94 

Planetary   
single row  0.9 ÷ 0.95* - 
split  0.85 ÷ 0.92* - 

Wave 0.8 ÷ 0.92* - 
Snail 0.95(1-i/200)* - 
Belt 0.97* 0,92 ÷ 0,95* 
Flat, spline - 0,97* 
Wedge-belt - 0,96* 
With roller bearing 0.99 ÷ 0.995 
With plain bearing 0.98 ÷ 0.99 
Coupling 0.98 
 Comment. * - values including loss of supports  
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Table D.18. 4А closed type asynchronous electric motors (PN-M-88561:1987) 
 

P
o

w
er

, k
W

 Synchronisation speed, rpm  
3000 1500 1000 750 

Size  s, 
% 

Т𝑟
Т𝑧

 Size s, 
% 

Т𝑟
Т𝑧

 Size s, 
 % 

Т𝑟
Т𝑧

 Size s, 
 % 

Т𝑟
Т𝑧

 

0.55 63В2 8.5 

2.0 

71A4 7.3 

2.0 

71B6 10 

2.0 

80B8 9 

1.6 0.75 71А2 5.9 71B4 7.5 80A6 8.4 90LA8 8.4 
1.1 71В2 6.3 80A4 5.4 80B6 8.0 90LB8 7.0 
1.5 80А2 4.2 80B4 5.8 90L6 6.4 100L8 7.0 
2.2 80В2 4.3 90L4 5.1 100L6 5.1 112MA8 6.0 

1.8 
3.0 90L2 4.3 100S4 4.4 112MA6 4.7 112M8 5.8 
4.0 100S2 3.3 100L4 4.7 112MB6 5.1 132S8 4.1 
5.5 100L2 3.4 112M4 3.7 132S2 3.3 132M8 4.1 
7.5 112M2 2.5 132S4 3.0 132M6 3.2 160S8 2.5 

1.4 
11.0 132M2 2.3 1.6 132M4 2.8 160S6 2.7 

1.2 

160M8 2.5 
15 160S2 2.1 

1.4 

160S4 2.3 

1.4 

160M6 2.6 180M8 2.5 

1.2 
18.5 160M2 2.1 160M4 2.2 180M6 2.7 200M8 2.3 
22 180S2 2.0 180S4 2.0 200M6 2.8 200L8 2.7 
30 180M2 1.9 180M4 1.9 200L6 2.1 225M8 1.8 
37 200M2 1.9 200M4 1.7 225M6 1.8 250S8 1.5 

Comment 1. Example of designation of an 11 kW electric motor, synchronous speed 
1500 rpm 

Electric motor 4A132M4U3 
Comment 2. The values of the symbols in the designations: the number 4 indicates 

the serial number; the letter a - asynchronous motor, the values after the letter - the height 
of the axis of rotation, mm; the letters L, S and M indicate the setting values after the 
length; the numbers 2, 4, 6 and 8 indicate the number of poles. The last two symbols U3 
show that the motor is designed for use in a temperate climate.  

Comment 3. The s column indicates slip in %; the Тr/Тz column indicates the ratio 
of starting torque to rated torque.  
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Table D.19. Mechanical properties of selected steels used for gears with hardness 
< НВ 350 

 

Steel 
grade 

Batch 
diamete

r, mm 

Strength limit, 
MPa 

Yield stress, 
MPa 

Hardness  
HB 

Heat treatment 

C35 

up to 100 
100÷300 
300÷500 
500÷750 

510 
590 
470 
450 

270 
260 
240 
230 

140 ÷ 187 
Normalized 

 

C40 

up to 100 
100÷300 
300÷500 
500÷700 

550 
530 
510 
490 

280 
270 
260 
250 

152 ÷ 207  

C45 

up to 100 
100÷300 
300÷500 
500÷700 

590 
570 
550 
530 

300 
290 
280 
270 

167 ÷ 217  

C45 

40÷60 
60÷90 

90÷120 
180÷250 

780÷880 
730÷830 
680÷780 
640÷740 

540 
440 
390 
340 

223 ÷ 250 
207 ÷ 236 
194 ÷ 222 
180 ÷ 207 

Tempered 

C50 

up to 100 
100÷300 
300÷500 

610 
590 
570 

320 
300 
290 

180÷229 Normalized 

up to 200 790 540 258÷310 Tempered 

C55 
up to 100 
100÷300 
300÷500 

650 
630 
610 

330 
320 
310 

185 ÷ 229 Normalized 

30HGS 
up to 60 
100÷160 
160÷250 

980 
890 
790 

840 
690 
640 

215 ÷ 229 Normalized 

35H 
up to 60 
60÷100 

100÷200 

940 
740 
690 

740 
490 
440 

190 ÷ 241 Normalized 

40H 

up to 60 
100÷200 
200÷300 
300÷600 

980 
760 
740 
690 

790 
490 
490 
440 

200 ÷ 230 Normalized 

40H 

up to 120 
120÷150 
150÷180 
180÷250 

880÷980 
830÷ 930 
780÷880 
730÷830 

690 
590 
540 
490 

257 ÷ 285 
243 ÷ 271 
230 ÷ 257 
215 ÷ 243 

Tempered 

40HN 

up to 60 
60÷ 100 
100÷300 
300÷500 

980 
840 
790 
740 

790 
590 
570 
550 

220 ÷ 250 Normalized 

40HN 
up to 150 
150÷180 
180÷250 

880÷980 
830÷930 
790÷880 

690 
590 
540 

265 ÷ 295 
250 ÷ 280 
235 ÷ 265 

Tempered 

Cast alloyed and unalloyed steel 
L35 
L40 

- 
- 

490 
520 

270 
290 

 145  
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Steel 
grade 

Batch 
diamete

r, mm 

Strength limit, 
MPa 

Yield stress, 
MPa 

Hardness  
HB 

Heat treatment 

L45 
L50 
L55 

L40G 

- 
- 
- 
- 

540 
570 
590 
630 

310 
330 
340 
320 

 147 
 153 
 174 

155-217 
 174 

 
 

Normalized 

L35G 
L35HGS 
L35HN 
L40G2 

- 
- 
- 
- 

590 
790 
690 
630 

340 
590 
490 
320 

 174 
 202 

219÷269 
190÷225 

Tempered 

 
 

Table D.20. Mechanical properties of selected steels used for gears with hardness 
НВ≥350. 

 

Steel grade Heat treatment 
HRC tooth 

surface hardness 

Mechanical 
characteristics 

of the tooth material  
Rm Re 

MPa 
C20 
20G 

12HN2 
15H 

18HGT 
20H 

Carburising 

58 ÷ 63 
58 ÷ 63 
56 ÷ 58 
58 ÷ 63 
58 ÷ 60 
54 ÷ 62 

410 
450 
780 
690 
980 
780 

240 
270 
590 
490 
830 
640 

C40 
C45 
C50 
40H 

40HN 

Surface hardening 

38 ÷ 52 
45 ÷ 55 
50 ÷ 57 
50 ÷ 55 
51 ÷ 57 

550 
590 
620 
740 
790 

270 
330 
340 
490 
490 

38HA 
38HMA 

Nitrogenation 
50 ÷ 65 
50 ÷ 65 

880 
980 

740 
830 

35H 
40H 

40HN 
Carbonitriding 

48 ÷ 55 
48 ÷ 56 
50 ÷ 54 

830 
880 
900 

590 
640 
690 
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Table D.21. Standardised linear dimensions (ISO 286-1:2010), mm 

Rows Rows Rows 
Ra5 Ra10 Ra20 Ra40 In. Ra5 Ra10 Ra20 Ra40 In. Ra5 Ra10 Ra20 Ra40 In. 
10 10 10 10 10.2 40~ 40 40 40 41 160 160 160 160 165 
– – – 10.5 10.8 – – – 42 44 – – – 170 175 
– – 11 11 11 – – 45 45 46 – – 180 180 185 
– – – 11.5 11.8 – – – 48 49 – – – 190 195 
– 12 12 12 12.5 – 50 50 50 52 – 200 200 200 205 
– – – 13 13.5 – – – 53 55 – – – 210 215 
– – 14 14 14.5 – – 56 56 58 – – 220 220 230 
– – – 15 15.5 – – – 60 62 – – – 240 240 

16 16 16 16 16.5 63 63 63 63 65 250 250 250 250 270 
– – – 17 17.5 – – – 67 70 – – – 260 290 
– – 18 18 18.5 – – 71 71 73 – – 280 280 310 
– – – 19 19.5 – – – 75 78 – – – 300 315 
– 20 20 20 20.5 – 80 80 80 82 – 320 320 320 330 
– – – 21 21.5 – – – 85 86 – – – 340 350 
– – 22 22 23 – – 90 90 92 – – 360 360 370 
– – – 24 24 – – – 95 98 – – – 380 390 

25 25 25 25 27 100 100 100 100 102 400 400 400 400 410 
– – – 26 26 – – – 105 108 – – – 420 440 
– – 28 28 29 – – 110 110 112 – – 450 450 460 
– – – 30 31 – – – 120 115 – – – 480 490 
– 32 32 32 33 – 125 125 125 118 – 500 500 500 515 
– – – 34 35 – – – 130 135 – – – 530 545 
– – 36 36 37 – – 140 140 145 – – 560 560 580 
– – – 38 39 – – – 150 155 – – – 600 615 

Comment. When selecting sizes, rows with a higher gradation should be preferred (row Ra5), row 

Ra10 should be preferred, etc.) When selecting sizes larger than 600, the Ra value should be taken from the 

same rows but an order of magnitude higher. For example: the calculated value is 73.5 mm using the table, 

we take the value from row Ra 20 ÷ 71 mm. 

 

Table D.22. Recommended combinations of steel grades for pinion and gear 
at hardness below HB 350 

 

Gearbox Gear wheel Gearbox Gear wheel Gearbox Gear wheel 

C45 

C35 
L35 
L40 
C40 
C45 

50G 

C45 
L50 
L55 
50G 

(S315) 

30HGS 
35H 
40H 

L40G 

C50 
C35 
L45 

(S275) 
– – – – 

C55 
C45 
L55 

(S315) 

35H or 
40H 

C50 
C55 
L55 

L35G 
L40G 

40HN 

35H 
40H 
L55 

L40G 

 
 



330 
 

Table D.23. values of the gear width ratio relative to the inter-axial distanceа 
(ISO 6336-1:2019). 

 

а 0.1 0.125 0.16 0.2 0.25 0.315 0.4 0.5 0.63 0.8 1.0 1.25 

Straight tooth gearboxes а = 0.125 ÷ 0.25 
Bevel gearboxes  а = 0.25 ÷ 0.4 
Chevron gearboxes а = 0.5 ÷ 1.25 

  
Table D.24. Values of the involute gear modulus (PN-ISO 54:2001) 
 

Module mn , mm 
Row 1 0.5 0.6 0.8 1.0 1.25 1.5 2.0 2.5 3.0 4.0 
Row 2 0.55 0.7 0.9 1.125 1.375 1.75 2.25 2.75 3.5 4.5 
Row 1 5.0 6.0 8.0 10.0 12.0 16.0 20.0 25 32 40 
Row 2 5.5 7.0 9.0 11.0 14.0 18.0 22.0 28 36 45 
Comment. Second-order values are preferred 

 
 

Table D.25. values of the coefficient of uneven load distribution along the length 
of the tooth, KH , KF 

 

𝑇𝑏𝑑 =
𝑏

𝑑1
 

For pinion or wheel 
hardness < 350НВ  

With hardness  
pinion and wheel > 350НВ 

I II III I II III 
0.2 1.08 1.01 1.00 1.10 1.02 1.00 
0.4 1.22 1.05 1.02 1.24 1.06 1.02 
0.6 1.40 1.08 1.03 1.46 1.10 1.04 
0.8 1.70 1.12 1.05 1.80 1.15 1.07 
1.0 2.03 1.17 1.09 2.10 1.23 1.10 
1.2 – 1.22 1.11 – 1.36 1.14 

 

Comment. I - cantilever gear arrangement; II - asymmetrical arrangement; 
III - symmetrical arrangement; Tbd - the ratio of the wheel width to its diameter  

 
Table D.26. Inter-axial distance values of cylindrical gears (ISO 6336-1:2019) 

 

Inter-axial distance аW , mm 
Row 1 40 50 63 80 100 125 160 200 250 315 

Row 2 – – 71 90 112 140 180 225 280 355 

Row 1 400 500 630 800 1000 1250 1600 2000 2500 – 

Row 2 450 560 710 900 1120 1400 1800 2240 – – 

Comment. Values for Row 2 are preferred  
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Table D.27. Values of KН and KF for bevel gears and chevron gears  
 

Degree 
of precisio

n 

Circular velocity V, m/s 

to 1 5 10 15 20 

6 1 1.02 1.03 1.04 1.05 
7 1.2 1.05 1.07 1.10 1.12 
8 1.06 1.09 1.13 – – 
9 1.1 1.16 – – – 

Comment. For wheels with straight teeth KН , КF  = 1. 

 
Table D.28. KН -values 
 

Gearbox 
Hardness НВ 

Tooth surfaces 

Circular velocity V, m/s 
to 5 10 15 20 

Degree of accuracy 
8 7 

About straight teeth  
350 1.05 – – – 

>350 1.10 – – – 
With oblique teeth 

and chevron  
350 1.0 1.01 1.02 1.05 
>350 1.0 1.05 1.07 1.10 

 
 

Table D.29. Values of tooth form factors YF for uncorrected external abutment 
(ISO 6336:2019) 

 
z or ze  17 20 25 30 40 50 60 70 80 over 100 

YF 4.28 4.09 3.90 3.80 3.70 3.66 3.62 3.61 3.61 3.60 

 
Table D.30. KF -values 
 

Degree 
of accuracy 

Hardness 
НВ 

tooth 
surfaces 

Circular velocity V. m/s 

3 3 ÷ 8 8 ÷ 12.5 

6 
 350 1/1 1.2/1 1.3/1.1 
> 350 1/1 1.15/1 1.25/1 

7 
 350 1.15/1 1.35/1 1.45/1.2 
> 350 1.15/1 1.25/1 1.35/1.1 

8 
 350 1.25/1.1 1.45/1.3 -/1.4 
> 350 1.2/1.1 1.35/1.2 -/1.3 

Comment. The numerator contains the value of KF for gears with 
straight teeth, and the denominator - for gears with oblique teeth. 
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Table D.31. Basic technical characteristics of single-stage cylindrical gearboxes 
 

Technical characteristics 
Gearbox type 

1CU-100 1CU-160 1CU-200 1CU-250 

Transmission  2; 2.5; 3.15; 4; 5; 6.3 

Permissible radial 
load on the 
bracket, N  

 

on a high-speed 
shaft 

630 1250 2800 4000 

on a low-speed 
shaft 

2240 4500 6300 9000 

Rated torque on low-speed shaft, Nm 315 1250 2500 5000 

High-speed shaft speed (no more), min-1 1500 

Efficiency 0.98 

Weight, kg 27 78 135 250 

 

 
Fig. D.6. Single-stage cylindrical gear 1CU 

 
Table D.32. Overall and connection dimensions of gearbox 1CU 
 

Gearbox Aw А A1 В В1 Н Н1 h L L1 L2 L3 L4 L5 d 

1CU-100 100 224 95 140 132 224 112 22 315 265 85 132 136 155 15 

1CU-160 160 355 125 185 175 335 170 28 475 405 136 195 218 218 24 

1CU-200 200 437 165 212 200 425 212 36 670 580 165 236 230 265 24 

1CU-250 250 545 185 265 250 530 265 40 710 615 212 290 280 315 28 
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Table D.33. Cylindrical two-stage gearboxes 
 

Technical characteristics 
Gearbox type 

1C2U-100 1C2U-125 1C2U-160 1C2U-200 1C2U-250 

Transmission 8; 10; 12.5; 16; 20; 25; 31.5; 40 

Permissible 
radial load on 
the bracket, N 
 

on a high-speed 
shaft 

500 750 1000 2240 3150 

on a low-speed 
shaft 

4500 6300 9000 12500 18000 

Rated torque on low-speed 
shaft, Nm 

315 630 1250 2500 5000 

High-speed shaft speed (no 
more), min-1 

1500 

Efficiency 0.97 

Weight, kg 20 32 95 170 320 

 
 

 
Fig. D.7. Cylindrical two-stage transmission1C2U 

 
Table D.34. Overall and switching dimensions of gearbox 1C2U 

Gearbox AwT AwB A1 В В1 Н Н1 h L Ll L2 L3 L4 L5 d 

1C2U-100 100 80 290 145 109 225 112 20 386 325 85 132 136 165 15 

1C2U-125 125 80 335 165 125 270 132 22 440 375 106 155 145 206 19 

1C2U-160 160 100 425 195 140 335 170 24 545 475 135 195 170 224 24 

1C2U-200 200 125 515 230 165 420 212 30 670 580 165 236 212 280 24 

1C2U-250 250 160 670 280 218 515 265 32 825 730 212 290 265 335 28 
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Table D.35. Cylindrical two-stage gearboxes (with inter-axial distance of the low-
speed stage up to 500 mm) 

 

Technical characteristics 
Gear types 

1C2U-315 1C2U-355 1C2U-400 1C2U-450 1C2U-500 

Transmission 8; 10; 12.5; 16; 20; 25; 31.5; 40; 50 

Permissible 
radial load on 
the bracket, N  
 

on a high-
speed shaft 3500 4200 4800 8200 10000 

on a low-
speed shaft 

30000 40000 45000 71000 10000 

Rated torque on the low-
speed shaft, Nm 

14000 20000 28000 40000 56000 

High-speed shaft speed 
(no more), min-1 

1500 

Efficiency  0.98 0.97 

Weight, kg 510 700 930 1530 2090 

 

 
Fig. D8. Cylindrical two-stage gearboxes 1C2У, 1C2N 

 
Table D.36. Overall and connection dimensions of gearbox 1C2U 
 

Gearbox AwT AwB A1 В В1 Н Н1 h L Ll L2 L3 L4 L5 d 

1C2U-315 315 200 395 260 318 685 335 35 1030 370 215 360 300 420 28 

1C2U-355 355 225 435 280 360 740 375 35 1160 425 250 400 320 440 28 

1C2U-400 400 250 475 330 420 835 425 42 1300 475 280 450 380 500 35 

1C2U-450 450 280 630 515 590 955 475 50 1460 530 310 500 500 650 35 

1C2U-500 500 315 700 580 650 1055 530 60 1650 615 360 565 530 690 42 
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Fig. D.9. Two-stage bevel-cylinder gearboxes of type KC1 

 

Table D.37. Two-stage bevel-cylinder gearboxes 

Technical characteristics 
Gear types 

KC1-200 KC1-250 KC1-300 KC1-400 KC1-500 

Transmission  6.3; 10; 14; 20; 28 

Permissible radial load on 
the bracket, N  

5100 7000 12000 18000 25000 

Rated torque on a low-
speed shaft, N m 

520 1200 2100 5300 9000 

Efficiency  0.94 

Weight, kg 186 391 474 980 1740 

 

 
Table D.38. Overall and connection dimensions of type KC1 gearboxes 

Gearbox AwT A A1 B H H1 h h1 L L1 L2 L3 L4 d n 
KC1-200 200 375 250 300 435 225 20 - 900 480 85 460 247 17 4 
KC1-250 250 480 325 375 515 265 25 - 1170 600 120 625 320 22 4 
KC1-300 300 545 350 450 607 315 25 - 1275 680 120 625 385 22 6 
KC1-400 400 810 450 526 705 320 35 95 1705 930 212 848 452 26 8 
KC1-500 500 990 550 630 877 400 40 100 2085 1160 250 1030 544 33 8 

 

 
Fig. D.10. Conical-cylindrical three-stage gearboxes type KC2 
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Table D.39. Tapered-cylinder three-stage gearboxes 
 

Technical characteristics 
Gear types 

KC2-500 KC2-750 KC2-1000 KC2-1300 

Transmission  28; 45; 71; 112; 180 

Permissible radial load on the 
bracket, N  

11500 1150 28000 75000 

Rated torque on low-speed 
shaft, Nm 

2300 6750 16500 37500 

Efficiency  0.91 

Weight, kg 490 1240 2658 5100 

 

 
 
Table D.40. Overall and connection dimensions of conical-cylindrical three-stage 

gearboxes 
Gearbox AwT AwP A A1 B H H1 h h1 L L1 L2 L3 L4 d n 
KC2-500 300 200 705 300 350 600 315 25 - 1300 830 90 460 327 22 6 
KC2-750 450 300 1120 470 550 765 335 35 130 1883 1260 120 625 464 33 10 

KC2-1000 600 400 1530 600 690 956 400 40 200 2482 1700 165 848 615 33 10 
KC2-1300 800 500 2020 740 850 1282 530 50 240 3178 2200 220 1030 790 39 10 

 
 
Table D.41. Mechanical characteristics of selected steels used for shaft production  
 

Steel 

Diameter 
of semi-
finished 
product 

mm 
no less 

HB 
hardness, 

no less 

Rm Re  τpl R-1 ks 

Heat 
treatment* 

MPa 

45 
Any 
120 
80 

200 
240 
270 

560 
800 
900 

280 
550 
650 

150 
300 
390 

250 
350 
380 

150 
210 
230 

N 
N 
N 

40H 
Any 
200 
120 

200 
240 
270 

730 
800 
900 

500 
650 
750 

280 
390 
450 

320 
360 
410 

200 
210 
240 

N 
N 
N 

40HN 
Any 
200 

240 
270 

820 
920 

650 
750 

390 
450 

360 
420 

210 
250 

N 
N 

20H 120 240 850 630 240 420 240 
Carb, H, 

ON 
12HN3A 120 260 950 700 490 420 210 Carb, H,LT 

Comment. * accepted designations: N - normalizing; Carb - carburizing; H - 
hardening;  

LT – stress relieving 
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Table D.42. Averaged allowable stress values for shafts and axles, MPa 
 

Shaft material Rm k0g k-1g 

Carbon steel 

400 
500 
600 
700 

70 
75 
95 

110 

40 
45 
55 
65 

Alloy steel 
800 

1000 
130 
150 

75 
90 

 
Table D.43. Basic dimensions of cylindrical shaft ends (ISO/R 775:1969), mm 

  
Diameter d for row Length l for execution 

r1 с 
1st 2nd 1 2 

10, 11 - 23 20 0.6 0.4 
12, 14 - 30 25 1.0 0.6 
16, 18 19 40 28 1.0 0.6 
20, 22 24 50 36 1.6 1.0 
25, 28 - 60 42 1.6 1.0 
32, 36 30, (35), 38 80 58 2.0 1.6 
40, 45 42 48 110 82 2.0 1.6 
50, 55 (52), (56) 110 82 2.5 2.0 
60, 70 63, 65, (71), 75 140 105 2.5 2.0 
80, 90 85,95 170 130 3.0 2.5 

100, 110, 125 120 210 165 3.0 2.5 
140 130, 150 250 200 4.0 3.0 

160, 180 170 300 240 4.0 3.0 
200, 220 190 350 280 5.0 4.0 

250 240, 260 410 330 5.0 4.0 

280, 320 300 470 380 5.0 4.0 
Comment. Non-recommended values are given in brackets  
 

Table D.44. Values [р] and [p ] for plain bearings 
 

Insert 
material 

,m/s 
[р], 

MPa 
[p ] 

MPa m/s 
Application 

EN-GJL-HB200 
2 0.05 0.1 

For working with hardened and 
normalised shafts  

0.2 9 1.8 

EN-GJL-HB250 
3 0.1 0.3 

0.75 6.0 4.5 

EN-GJL-HB300 
3 0.1 0.3 

For working with unhardened shafts 
0.75 6 4.5 

EN-GJS-400-15 5 0.5 2.5 
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Insert 
material 

,m/s 
[р], 

MPa 
[p ] 

MPa m/s 
Application 

1 12 12 
For working with hardened and 
normalised shafts 

Ductile cast 
iron EN-GJS-

500-7 

5 0.5 2.5 
For working with unhardened shafts  

1 12 12 

CuSn10F1 10 15 15 
Metal cutting machines, pumps, rolling 
equipment, gears 

CuAl9Fe 8 15 12 
CuSn6Zn6Sn3 

 
8 4 ÷ 6 4 ÷ 6 

CuSn30 10 ÷ 12 20 30 ÷ 90 
High variable loads, and imperfect 
lubrication. 

CuSn16Cd3Pb3 2 12 10 
Cranes, railways, excavators, crushers, 
slag carrier liners, cast iron carriers, 
metal cutting machine spindles 

Babbit B83, 
Babbit B89 

60 25 200 ÷ 100 
Large loads. Steam turbines, electric 
machines, turbochargers, roller drives 

Babbit B16 6 15 10 ÷ 50 

Large loads. Centrifugal pumps, 
gearboxes, gear racks of rolling mills, 
metal cutting machines, electric motors 
– 250 ÷ 750 kW, compressors 

 
Table D.45. Values of the safety factor Kb depending on the nature of the load and 

the application of the rolling bearings 
 

Charakter of the load Kb Application 

Light run-out; short-
term overloads up to 

125% of rated 
(calculated) load 

1.0 ÷ 1.2 

Precision gears. 
Metal cutting machines (except planers, chisels 
and grinders), hydroscopes. Crane lifting 
mechanisms. Electric hoists and monorail trolleys. 
Mechanically driven winches. Small and medium 
power electric motors. Light fans and blowers. 

Moderate run-out; 
vibration loads; short-
term overloads 150 % 
of rated (calculated) 

load 

1.2 ÷ 1.5 

Gears. Gears of all types. Axle boxes for rolling 
stock. Mechanisms for moving trolleys and cranes. 
Mechanisms for turning cranes and changing the 
reach of the jib. Grinder spindles. Electric 
spindles. Wheels for cars, buses, motorbikes, 
scooters. Agricultural machinery. 

The same, under 
conditions of increased 

reliability 
1.5 ÷ 1.8 

Centrifuges and separators. Axles and traction 
motors of electric locomotives. Crane motion 
mechanisms. Wheels of trucks, tractors, tractors, 
locomotives, cranes and road machinery. High-
powered electrical machines. Electrical power 
equipment. 

Loads with significant 
run-out and vibration; 

overloads 200 % 
1.8 ÷ 2.5 

Gear wheels. Crushers and gears. Crank 
mechanisms. Ball and impact mills. Rolling mills. 
Powerful fans and extractors. 
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Charakter of the load Kb Application 
of rated (calculated) 

load 
Loads with strong run-

out and short-term 
overload 300 % 

of rated (calculated) 
load 

2.5 ÷ 3.0 

Heavy forging machinery. Sawmill frames. 
Refrigeration equipment. Working roller 
conveyors for heavy sectional mills, blooming and 
slabbing. Hammer mills, crushers. 

 
 
Table D.46. Temperature coefficient values Kт 

 
Operating bearing temperature 

°С 
 100 125 150 175 200 225 250 350 

Temperature coefficient Kт 1.0 1.05 1.10 1.15 1.25 1.35 1.40 1.45 
Comment. At t > 120 °C, due to structural changes in the metal, it is necessary to 

use special bearing materials  

 
 
Table D.47. Recommended values of basic rolling bearing life L10аh for different 

types of machinery 
 

Type of machine and nature of work L10аh , h 
Equipment and mechanisms used periodically, 
agricultural machinery, household appliances 

500 ÷ 4000 

Mechanisms used for short periods, assembly cranes, 
construction machinery 

4000 ÷ 8000 

Precision mechanisms that operate sporadically 
(auxiliary mechanisms in power plants, conveyors for 
flow production, lifts, infrequently used metalworking 
machinery). 

8000 ÷ 12000 

Part-load single-shift machines (stationary electric 
motors, gearboxes, crushers) 

12000 ÷ 20000 

Single-shift, full-load machines (metal-cutting 
machines, woodworking machines, general technical 
equipment, cranes, fans, separators, centrifuges, 
printing equipment) 

20000 ÷ 30000 

Machinery for round-the-clock use (compressors, 
pumps, mine hoists, stationary electrical machinery, 
ship drives, rolling mills, textile machinery) 

40000 ÷ 50000 

Hydroelectric power plants, rotary kilns, marine 
engines 

60000 ÷ 100000 

Machines operating continuously with heavy loads 
(paper machines, power plants, mine pumps, 
mushroom shafts of sea-going ships) 

100000 
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Table D.48. X and Y values for bearings 
 

Single- and double-row radial ball bearings 

Fa /C0 
Fa /VF er  Fa /VF er  e 

X Y X Y  
0.014 

1 0 0.56 

2.30 0.19 
0.028 1.99 0.22 
0.056 1.71 0.26 
0.084 1.55 0.28 
0.11 1.45 0.30 
0.17 1.31 0.34 
0.28 1.15 0.38 
0.42 1.04 0.42 
0.56 1.00 0.44 

Angular contact roller bearings. tapered roller bearings and self-aligning roller bearings 
single row double row 

е Fa /VF er  Fa /VF er  Fa /VF er  Fa /VF er  
X Y X Y X Y X Y 

1 0 0.4 0.4 ctg 1 0.45 ctg 0.67 0.67 ctg 1.5 tg 

Angular contact ball bearings 

 
and Fa 

/C0 

single row double row 
е F/VFar  e F/VFar  e F/VFar  e F/VFar  e 

X Y X Y X Y X Y 

12 

0.014 

1 0 0.45 

1.81 

1 

2.08 

0.74 

2.94 0.30 
0.029 1.62 1.84 2.63 0.34 
0.057 1.46 1.60 2.37 0.37 
0.086 1.34 1.52 2.18 0.41 
0.11 1.22 1.39 1.98 0.45 
0.17 1.13 1.30 1.84 0.48 
0.29 1.04 1.20 1.69 0.52 
0.43 1.01 1.16 1.64 0.54 
0.57 1.00 1.16 1.62 0.54 

15 

0.015 

1 0 0.44 

1.47 

1 

1.65 

0.72 

2.39 0.38 
0.029 1.40 1.57 2.28 0.40 
0.058 1.30 1.46 2.11 0.43 
0.087 1.23 1.38 2.00 0.46 
0.12 1.19 1.34 1.93 0.47 
0.17 1.12 1.26 1.82 0.50 
0.29 1.02 1.14 1.66 0.55 
0.44 1.00 1.12 1.63 0.56 
0.58 1.00 1.12 1.63 0.56 

18 
 1 0 0.43 1.00 1 

0.02 
0.70 1.63 0.57 

19 0.92 

 
and Fa 

/C0 
X Y X Y X Y X Y е 

 

   

  

 

 

   
24 

0.41 0.87 0.67 1.44 0.68 
25 
26 
30 

35. 36 0.39 0.76 0.78 0.63 1.24 0.80 

40 
0.37 
0.35 

0.66 
0.57 

0.66 
0.55 

0.60 
0.57 

1.07 
0.93 

0.95 
1.14 

Comment: i - number of rows of rolling bodies 
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Table D.49. Selection recommendations for radial ball bearings  
 

ratio 
Fa/ 

Frmax 

Designatio
n and 

contact 
angle 

The axial 
component 
of the radial 

load S in 
fractions from 

Frmax 

Attention 

0.35 ÷ 0.8 
 
0.81 ÷ 1.2  

 
> 1.2 

36000; 
 = 12 ° 
46000; 
 = 26 ° 
66000; 
 = 36 ° 

0.3 Frmax 

 

0.6 Frmax 

 
0.9 Frmax 

Light and super-light series are 
allowed  
At very high speeds mostly light series  
For high speeds, a bearing with the 
specified contact angle is unsuitable 

Comment. At Fa/F rmax 0.35 single row radial ball bearings are used  

 

 
a b 

Fig. D.11. Single row radial ball bearings:  
a - 100-200-300-400 (ISO 5753:2009); b - 80100-80200 (ISO 5753:2009) 

 
Table D.50. Single row radial ball bearings (ISO 5753:2009), mm 
 

Signs d D B r 
Load capacity, kN nlim, 

thousand 
min-1 

Dynamic, С Static, С0 

Very lightweight series 

105  25 47 12 1.0 11.2 5.6 10 
106  30 55 13 1.5 13.3 6.8 10 
107  35 62 14 1.5 15.9 8.5 8 
108 80108 40 68 15 1.5 16.8 9.3 8 
109 - 45 75 16 1.5 21.2 12.2 8 
110 - 50 80 16 1.5 21.6 13.2 8 
111 - 55 90 18 2 28.1 17 8 
112 - 60 95 18 2 29.6 18.3 8 
113 - 65 100 18 2 30.7 19.6 3.3 
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Signs d D B r 
Load capacity, kN nlim, 

thousand 
min-1 

Dynamic, С Static, С0 

114 - 70 110 20 2 37.7 24.5 6.3 
115 - 75 115 20 2 39.7 26.0 5 
116 - 80 125 22 2 47.7 31.5 5 
117 - 85 130 22 2 49.4 33.5 5 
118 - 90 140 24 2.5 57.2 39.0 4 
119 - 95 145 24 2.5 60.5 41.5 4 
120 - 100 150 24 2.5 60.5 41.5 4 

Lightweight series 

205  25 52 15 1.5 14.0 6.95 12.5 
206  30 62 16 1.5 19.5 10.0 12.5 
207  35 72 17 1.5 25.5 13.7 10 
208 80208 40 80 18 2 32.0 17.8 10 
209 80209 45 85 19 2 33.2 18.6 8 

209А - 45 85 19 2 36.4 20.1 8 
210 - 50 90 20 2 35.1 19.8 8 
211 - 55 100 21 2.5 43.6 25.0 6.3 
212 80212 60 110 22 2.5 52.0 31.0 6.3 
213 80213 65 120 23 2.5 56.0 34.0 5 
214 - 70 125 24 2.5 61.8 37.5 5 
215 80215 75 130 25 2.5 66.3 41.0 5 
216 - 80 140 26 3 70.2 45.0 5 
217 - 85 150 28 3 83.2 53.0 5 

217А - 85 150 28 3 89.5 56.5 5 
218 80218 90 160 30 3 95.6 62.0 4 
219 - 95 170 32 3.5 108.0 69.5 4 

219А - 95 170 32 3.5 115.0 74.0 4 
220 80220 100 180 34 3.5 124.0 79.0 4 

Medium series 

305  25 62 15 2 22.5 11.4 10 
306  30 72 17 2 28.1 14.6 8 
307  35 80 19 2 33.2 18.0 8 
308  40 90 23 2.5 41.0 22.4 8 
309  45 100 25 2.5 52.7 30.0 6.3 
310  50 110 27 3 65.8 36.0 6.3 
311  55 120 29 3 71.5 41.5 6.3 
312  60 130 31 3.5 81.9 48.0 5 
313  65 140 33 3.5 92.3 56.0 5 
314  70 150 35 3.5 104.0 63.0 5 
315  75 160 37 3.5 112.0 72.5 4 
316  80 170 39 3.5 124.0 80.0 4 

316K5  80 170 39 3.5 130.0 89.0 4 
317  85 180 41 4 133.0 90.0 4 
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Signs d D B r 
Load capacity, kN nlim, 

thousand 
min-1 

Dynamic, С Static, С0 

318  90 190 43 4 143.0 99.0 3.2 
319  95 200 45 4 153.0 110 3.2 

319K5  95 200 45 4 161.0 120.0 3.2 
320  100 215 47 4 174.0 132.0 3.2 

Heavy series 
405  25 80 21 2.5 36.4 20.4 8 
406  30 90 23 2.5 47.0 26.7 6.3 
407  35 100 25 2.5 55.3 31.6 6.3 
408  40 110 27 3 63.7 36.5 6.3 
409  45 120 29 3 76.1 45.5 6.3 
410  50 130 31 3.5 87.1 52.0 5 
411  55 140 33 3.5 100.0 63.0 5 
412  60 150 35 3.5 108.0 70.0 4 
413  65 160 37 3.5 119.0 78.1 4 
414  70 180 42 4 143.0 105.0 4 
415  75 190 45 4 155.0 115.0 4 
416  80 200 48 4 163.0 125.0 4 
417  85 210 52 5 174.0 135.0 4 

 

 

 
Fig. D.12. Radial spherical double-row ball bearings (ISO 15:1998) 

 
Table D.51. Parameters of double-row spherical radial ball bearings (ISO 15:1998) 

 

D
es

ig
n

at
io

n
 

d D B r 

Load 
capacity, kN 

е Y* Y0 

nlim, 
thousand. 

min-1 С С0 

Lightweight narrow series 

1208 40 80 18 2 19.0 8.55 0.22 2.87/4.44 3.01 10 
1209 45 85 19 2 21.6 9.65 0.21 2.97/4.6 3.11 8 
1210 50 90 20 2 22.9 10.8 0.21 3.13/4.85 3.28 8 
1211 55 100 21 2.5 26.5 13.3 0.2 3.23/5.0 3.39 6.3 
1212 60 110 22 2.5 30.2 15.5 0.19 3.41/5.27 3.57 6.3 
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D
es

ig
n

at
io

n
 

d D B r 

Load 
capacity, kN 

е Y* Y0 

nlim, 
thousand. 

min-1 С С0 

1213 65 120 23 2.5 31.2 17.2 0.17 3.71/5.73 3.68 5 
1214 70 125 24 2.5 34.5 18.7 0.18 3.51/5.43 3.88 5 
1215 75 130 25 2.5 39.0 21.5 0.18 3.6/5.57 3.77 5 
1216 80 140 26 3 39.7 23.5 0.16 3.94/6.11 4.13 5 
1217 85 150 28 3 48.8 28.5 0.17 3.69/5.71 3.87 4 
1218 90 160 30 3 57.2 32.0 0.17 3.76/5.82 3.94 4 
1220 100 180 34 3.5 63.7 37.0 0.17 3.68/5.69 4.81 3.2 

Medium narrow series 
1305 25 62 17 2.0 17.8 6.0 0.28 2.26/3.49 3.36 8 
1306 30 72 19 2.0 21.2 7.7 0.26 2.46/3.8 2.58 8 
1307 35 80 21 2.5 25.1 9.8 0.25 2.57/3.98 2.69 8 
1308 40 90 23 2.5 29.6 12.2 0.24 2.61/4.05 2.74 8 
1309 45 100 25 2.5 37.7 15.9 0.24 2.54/3.93 2.66 6.3 
1310 50 110 27 3 43.6 17.5 0.24 2.69/4.14 2.8 6.3 
1311 55 120 29 3 50.7 23.5 0.23 2.7/4.17 2.82 5 
1312 60 130 31 3.5 57.2 26.5 0.23 2.8/4.83 2.93 5 
1313 65 140 33 3.5 61.8 29.5 0.23 2.79/4.31 2.92 5 
1314 70 150 35 3.5 74.1 35.5 0.22 2.81/4.35 2.95 4 
1315 75 160 35 3.5 79.3 38.5 0.22 2.84/4.39 2.97 4 
1316 80 170 37 3.5 88.4 42.0 0.22 2.92/4.52 3.06 4 
1317 85 180 41 4 97.5 48.5 0.22 2.90/4.49 3.04 4 

Medium wide series  

1608 40 90 33 2.5 44.9 15.7 0.43 1.46/2.25 1.52 6.3 
1609 45 100 36 2.5 54.0 19.4 0.42 1.51/2.33 1.58 6.3 
1610 50 110 40 3 67.7 23.6 0.43 1.48/2.29 1.55 5 
1611 55 120 43 3 76.1 28.0 0.41 1.53/2.36 1.6 5 
1612 60 130 46 3.5 87.1 33.0 0.4 1.56/2.41 1.63 4 
1613 65 140 48 3.5 95.6 38.5 0.38 1.65/2.55 1.73 4 
1614 70 150 51 3.5 111.1 44.5 0.38 1.68/2.59 1.76 4 
1616 80 170 58 3.5 135.0 58.0 0.37 1.68/2.61 1.76 3.2 

  

 
Fig. D.12. Single row radial thrust ball bearings  

(ISO 492:2014) 
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Table D.52. Parameters of single row radial thrust ball bearings (ISO 492:2014) 
 

Designation d D B Т r  r1 

Load capacity, 
kN 

nlim, 
thousand

min-1 С С0 

Light series narrow   = 12 ° 

36208 40 80 18 18 2 1 38.0 23.2 10 
36209 45 85 19 19 2 1 31.2 25.1 8 
36210 50 90 20 20 2 1 43D 27.0 8 
36211 55 100 21 21 2.5 1.2 58.4 34.2 8 
36212 60 110 22 22 2.5 1.2 61.5 39.3 6.3 
36214 70 125 24 24 2.5 1.2 80.2 54.8 5 
36216 80 140 26 26 3 1.5 93.6 65.0 5 
36217 85 150 28 28 3 1.5 101.0 70.8 4 
36218 90 160 30 30 3 1.5 118.0 83.0 4 
36219 95 170 32 32 3.5 2 134.0 95.0 4 

Medium narrow series   = 26 ° 

46308 40 90 23 - 2.5 1.2 50.8 31.1 6.3 
46309 45 100 25 - 2.5 1.2 61.4 37.0 5 
46310 50 110 27 - 3 1.5 71.8 44.0 5 
46312 60 130 31 - 3.5 2 100.0 65.3 5 
46313 65 140 33 - 3.5 2 113.0 75.0 4 
46314 70 150 35 - 3.5 2 127.0 85.3 3.2 
46316 80 170 39 - 3.5 2 136.0 99.0 3.2 
46318 90 190 43 - 4 2 165.0 122.0 2.5 
46320 100 215 47 - 4 2 213.0 177.0 2.5 

Heavy narrow series   = 36 ° 
66408 40 110 27 - 3 1.5 72.2 42.3 5 
66409 45 120 29 - 3 1.5 81.6 47.3 5 
66410 50 130 31 - 3.5 2 98.9 60.1 3.2 
66412 60 150 35 - 3.5 2 125.0 79.5 2.5 
66414 70 180 42 - 4 2 152.0 109.0 1.6 
66418 90 225 54 - 5 2.5 208.0 162.0 1.25 

  
 
 
Table D.53. Corrective reliability coefficient а1 

 

Reliability S % 90 95 96 97 98 99 
Resource designation L10a L5a L4a L3a L2a L1a 

а1 1 0.62 0.53 0.44 0.33 0.21 
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Table D.54. Correcting material and lubricant coefficient а23  (average value) 

 

Bearing type 
Working conditions 

1 2 3 
Ball (except spherical) 0.75 1.0 1.3 
Tapered roller 0.65 0.9 1.2 
Cylindrical roller bearings and spherical 
roller bearings 

0.55 0.8 1.1 

Spherical roller 0.35 0.6 0.9 
Comment. 1 –  normal operating conditions (hydrodynamic lubrication 

mode not guaranteed, conventional bearing component material, with 
conventional production technology, slight ring distortion), 2 –  hydrodynamic 
lubrication and slight ring distortion guaranteed, 3 –  same lubrication 
conditions and use of high-quality steel (electro-slagging or vacuum melting). 

 
 
Table D.55. Tapered single-row roller bearings (ISO 355:2019) 

 

D
es

ig
n

at
io

n
 

d D Т B с r r1 

Load 
capacity, kN 

е Y Y0 

nlim, 
thous

and 
min-1 С С0 

Light series   = 12 ° ÷ 18 ° 

7208 40 80 19.25 19 16 2.0 0.8 46.5 32.5 0.38 1.56 0.86 5 
7209 45 85 20.75 20 16 2.0 0.8 50.0 33.0 0.41 1.45 0.8 5 
7210 50 90 21.75 21 17 2.0 0.8 56.0 40.0 0.37 1.6 0.88 5 
7211 55 100 22.75 21 18 2.5 0.8 65.0 46.0 0.41 1.46 0.8 4 
7212 60 110 23.75 23 19 2.5 0.8 78.0 58.0 0.35 1.71 0.94 4 
7214 70 125 25.25 26 21 2.5 0.8 96.0 82.0 0.37 1.62 0.89 3.2 
7215 75 130 27.25 26 22 2.5 0.8 107.0 84.0 0.39 1.55 0.85 3.2 
7216 80 140 28.25 26 22 3.0 0.8 112.0 95.2 0.42 1.43 0.78 3.2 
7217 85 150 30.50 28 24 3.0 1.0 130.0 109 0.43 1.38 0.76 2.5 
7218 90 160 32.50 31 26 3.0 1.0 158.0 125 0.38 1.56 0.86 2.5 
7219 95 170 34.50 32 27 3.5 1.0 168.0 131 0.41 1.48 0.81 2.5 
7220 100 180 37.00 34 29 3.5 1.2 185.0 146 0.41 1.49 0.82 2.5 

Series average   = 10 ° ÷ 14 ° 
7308 40 90 25,25 23 20 2,5 0,8 66 47,5 0,28 2,16 1,18 4 
7309 45 100 27.25 26 22 2.5 0.8 83 60 0.28 2.16 1.19 4 
7310 50 110 29.25 29 23 3.0 1.0 100 75 0.31 1.94 1.06 4 
7311 55 120 31.5 29 25 3.0 1.0 107 81.5 0.33 1.8 0.99 3.2 
7312 60 130 33.5 31 27 3.5 1.2 128 96.5 0.3 1.97 1.08 3.2 
7313 65 140 36.0 33 28 3.5 1.2 146 112 0.3 1.97 1.08 3.2 
7314 70 150 38.0 37 30 3.5 1.2 170 137 0.31 1.94 1.08 3.2 
7315 75 160 40.0 37 31 3.5 1.2 180 148 0.33 1.93 1.06 2.5 
7317 85 180 44.5 41 35 4.0 1.5 230 196 0.31 1.91 1.05 2 
7318 90 190 46.5 43 36 4.0 1.5 250 201 0.32 1.88 1.03 2 

Medium series wide  = 11 ° ÷ 16 ° 
7608 40 90 35.25 33 29 2.5 0.8 90 67.5 0.3 2.03 1.11 4 
7609 45 100 38.25 36 31 2.5 0.8 114 90.5 0.29 2.06 1.13 4 
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D
es

ig
n

at
io

n
 

d D Т B с r r1 

Load 
capacity, kN 

е Y Y0 

nlim, 
thous

and 
min-1 С С0 

7611 55 120 45.5 44 37 3.0 1.0 160 140 0.32 1.85 1.02 3.2 
7612 60 130 48.5 47 39 3.5 1.2 186 157 0.3 1.97 1.08 3.2 
7613 65 140 51.0 48 41 3.5 1.2 210 168 0.33 1.83 1.01 3.2 

7614 70 150 54.0 51 43 3.5 1.2 240 186 0.35 1.71 0.94 2.5 

7615 75 160 58.0 55 47 3.5 1.2 280 235 0.3 1.99 1.20 2.5 
7616 85 170 61.5 59 49 3.5 1.2 310 290 0.32 1.89 1.04 2 
7618 90 180 67.5 67 54 4.0 1.5 370 365 0.3 1.99 1.2 2 
7620 100 215 77.5 73. 61 4.0 1.5 460 460 0.31 1.91 1.65 1.6 

Light series wide   = 12 ° ÷ 16 ° 
7508 40 80 24.75 24 20 2.0 0.8 56.0 44.0 0.38 1.57 0.87 4 
7509 45 85 24.75 24 20 2.0 0.8 60.0 46.0 0.42 1.44 0.79 4 
7510 50 90 24.75 24 20 2.0 0.8 62.0 54.0 0.42 1.43 0.78 4 
7511 55 100 26.75 25 21 2.5 0.8 80.0 61.0 0.36 1.67 0.92 3.2 
7512 60 110 29.75 28 24 2.5 0.8 94.0 75.0 0.39 1.53 0.84 3.2 
7513 65 120 32.75 31 27 2.5 0.8 110 98.0 0.37 1.62 0.89 3.2 
7514 70 125 33.25 31 27 2.5 0.8 125 101 0.39 1.55 0.85 3.2 
7515 75 130 33.25 31 27 2.5 0.8 130 108 0.41 1.48 0.81 2.5 
7516 80 140 35.25 33 28 3.0 1.0 143 126 0.40 1.49 0.82 2.5 
7517 85 150 38.50 36 30 3.0 1.0 162 141 0.39 1.58 0.85 2 
7518 90 160 42.5 40 34 3.0 1.0 190 171 0.39 1.55 0.85 2 
7519 95 170 45.5 46 37 3.5 1.2 230 225 0.38 1.56 0.85 2 
7520 100 180 49.0 46 39 3.5 1.2 250 236 0.41 1.49 0.82 1.6 

Light series wide   = 12 ° ÷ 16 ° 
7511А 55 100 26.75 25 21 2.5 0.8 99.0 80.0 0.4 1.5 0.8 3.2 
7512А 60 110 29.75 28 24 2.5 0.8 120.0 100 0.4 1.5 0.8 3.2 
7513А 65 120 32.75 31 27 2.5 0.8 142.0 120 0.4 1.5 0.8 3.2 
75I5A 75 130 33.25 31 27 2.5 0.8 157 130 0.43 1.4 08 3.2 
7516A 80 140 35.25 33 28 3.0 1.0 176 155 0.43 1.4 0.8 2.5 
7517A 85 150 38.5 36 30 3.0 1.0 201 180 041 1.4 0.8 2 
7520A 100 180 49.0 46 39 3.5 1.2 297 280 0.35 1.7 0.9 1.6 

 Comment: Х0 = 0.5.  
 
 

 
Fig. D.13. Sleeve-finger spring coupling (ISO-R775) 
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Table D.56. Parameters of bushing-finger spring couplings (ISO-R775) 

 

T 
N·m 

nmax 
min-1 

Dimensions, mm 

d D no 
more 

L no larger l 
execution 

Row 1 Row 2 1 2 3 4 1 2 3 4 

6,3 8800 
9 

 71 
43  43 - 20 - 13 - 

10.11 49 43 49 - 23 20 16 - 

16 7600 
12.14 

 75 
63 53 63 - 30 25 20  

16 83 59 83 59 
40 28 30 18 

31,5 6350 16.18  90 84 60 84 60 
63 5770 20.22  100 104 76 104 76 50 36 38 24 

125 4600 25.28 30 120 
125 89 125 89 60 42 44 38 

165 121 165 121 80 58 60 38 

250 3800 
32.36 35,38 

140 
40.45 42 

225 169 225 169 

110 82 85 56 
500 3600 40.45 42 170 

710 3000 
45.50 

48,55 190 
226 170 226 170 56 

1000 2850 
50.56 55 

220 
63 60,65,70 286 216 286 216 

140 105 107 72 
2000 2300 

63.71 65,70,75 
250 

288 218 288 218 
80.90 85 348 268 348 268 

170 130 135 95 
4000 1580 80.90 85,95 320 350 270 350 270 

8000 1450 
100.110 

120 400 432 352 432 352 
210 170 170 125 125 

16000 1150 
125 120 

500 
435 355 432 352 

140 130,150 515 415 515 415 250 200 205 155 
160 - 615 495 615 495 300 240 245 185 

Comment. Half couplings can be made: 1, 2 - with cylindrical holes for the long and 
short ends of the shafts; 3, 4 - with tapered holes for the long and short ends of the shafts.  

 
 

 
Fig. D.14. Gear couplings (ISO-R773) 
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Table D.57. Basic parameters of gear couplings (ISO-R773) 

 
C

o
u

p
li

n
g 

n
u

m
b

er
 

Т, 

Nm 

mm 

n
m

ax
 , 

m
in

-1
 

d dk d1 D D1 
L 

l lk 

A
, n

o
 le

ss
 

PB PP 

1 710 40 38 60 170 110 115 115 55 55 49 6300 

2 1400 40÷50 55 70 185 125 145 145 70 80 75 5000 

3 3150 40÷60 55 90 220 150 170 175 85 80 95 4000 

4 5600 45÷75 75 100 250 175 215 215 105 105 125 3350 

5 8000 50÷90 95 120 290 200 265 240 115 130 145 2800 

6 11800 60÷105 - 130 320 230 255 260 125 - 160 2500 

7 19000 65÷120 120 150 350 260 285 290 140 165 185 2120 

8 23600 80÷140 150 170 380 290 325 330 160 200 210 1900 

9 30000 80÷160 - 190 430 330 335 340 165 - 220 1700 

10 50000 80÷180 - 210 490 390 365 370 180 - 245 1400 

Comment 1. Coupling type PB - for direct connection of shafts; PP - for connection 
of shafts using an intermediate shaft;  

Comment 2. Design of half couplings: Н - without shaft-end fixing; Т - with shaft-end 
fixing; K - with tapered hole;  

Comment 3. The shaft diameter d of the intermediate ranges is taken in accordance 
with D.21 or D.43. 

 

 

Symbols designation 
h - profile height 
b - width of shelf 
d - wall thickness 
t - average thickness of the shelf 
F - cross-sectional area 
J - moment of inertia 
W - strength index 
i - radius of inertia 
S - static moment of half-section 
z0 - distance from the y-axis to the outer 
wall 

 
Fig. D.15. Hot-rolled steel section (ISO-657-11-1980) 

 
Table D.58. Basic parameters of hot-rolled steel channels (ISO-657-11-1980) 
 

Profile 
no. 

Basic dimensions, mm F 
cm2 

Jx 
cm4 

Wx 
cm3 

ix 
cm 

Sx 
cm3 

Jy 
cm4 

Wy 
cm3 

iy  
cm 

z0 
cm h b d t 

5 50 32 4.4 7.0 6.16 22.8 9.1 1.92 5.59 5.61 2.75 0.954 1.16 
6.5 65 36 4.4 7.2 7.51 48.6 15.0 2.54 9.0 8.7 3.68 1.08 1.24 
8 80 40 4.5 7.4 8.98 89.4 22.4 3.16 13.3 12.8 4.75 1.19 1.31 

10 100 46 4.5 7.6 10.9 174 34.8 3.99 20.4 20.4 6.46 1.37 1.44 
12 120 52 4.8 7.8 13.3 304 50.6 4.78 29.6 31.2 8.52 1.53 1.54 
14 140 58 4.9 8.1 15.6 491 70.2 5.6 40.8 45.4 11.0 1.70 1.67 
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Profile 
no. 

Basic dimensions, mm F 
cm2 

Jx 
cm4 

Wx 
cm3 

ix 
cm 

Sx 
cm3 

Jy 
cm4 

Wy 
cm3 

iy  
cm 

z0 
cm h b d t 

14a 140 62 4.9 8.7 17.0 545 77.8 5.66 45.1 57.5 13.3 1.84 1.87 
16 160 64 5.0 8.4 18.1 747 93.4 6.42 54.1 63.6 13.8 1.87 1.80 

16a 160 68 5.0 9.0 19.5 823 103 6.49 59.4 78.8 16.4 2.01 2.00 
18 180 70 5.1 8.7 20.7 1090 121 7.24 69.8 86 17.0 2.04 1.94 

18a 180 74 5.1 9.3 22.2 1190 132 7.32 76.1 105 20.0 2.18 2.13 
20 200 76 5.2 9.0 23.4 1520 152 8.07 87.8 113 20.5 2.20 2.07 

20a 200 80 5.2 9.7 25.2 1670 167 8.15 95.9 139 24.2 2.35 2.28 
22 220 82 5.4 9.5 26.7 2110 192 8.89 110 151 24.1 2.37 2.21 

22a 220 87 5.4 10.2 28.8 2330 212 8.99 121 187 30.0 2.55 2.46 
24 240 90 5.6 10.0 30.6 2900 242 9.73 139 208 31.6 2.60 2.42 

24a 240 95 5.6 10.7 32.9 3180 265 9.84 151 254 37.2 2.78 2.67 
27 270 95 6.0 10.5 35.2 4160 308 10.9 178 262 37.3 2.73 2.47 
30 300 100 6.5 11 40.5 5810 387 12.0 224 327 43.6 2.84 2.52 
33 330 105 7.0 11.7 46.5 7980 484 13.1 281 410 51.8 2.97 2.59 
36 360 110 7.5 12.6 53.4 10820 601 14.2 350 513 61.7 3.10 2.68 
40 400 115 8.0 13.5 61.5 15220 761 15.7 444 642 73.4 3.23 2.75 

 

 
Fig. D.16. Hot-rolled I-section (ISO 657/13) 

 
Table D.59. Hot-rolled I-beam (ISO 657/13) 

 

Profile 
no. 

Basic dimensions, 
mm 

F 
cm2 

Jx 
cm4 

Wx 
cm3 

ix 
cm 

Sx 
cm3 

Jy 
cm4 

Wy 
cm3 

iy 
cm 

h b d t 
10 10 55 4.5 7.2 12.0 198 39.7 4.06 23.0 17.9 6.49 1.22 
12 120 64 4.8 7.3 14.7 350 58.4 4.88 33.7 27.9 8.72 1.38 
14 140 73 4.9 7.5 17.4 572 81.7 5.73 46.8 41.9 11.5 1.55 
16 160 81 5.0 7.8 20.2 873 109 6.57 62.3 58.6 14.5 1.70 
18 180 90 5.1 8.1 23.4 1290 143 7.42 81.4 82.6 18.4 1.88 

18a 180 100 5.1 8.3 25.4 1430 159 7.51 89.8 114 22.8 2.12 
20 200 100 5.2 8.4 26.8 18.40 184 8.28 104 115 23.1 2.07 

20a 200 110 5.2 8.6 28.9 2030 203 8.37 114 155 28.2 2.32 
22 220 110 5.4 8.7 30.6 2550 232 9.13 131 157 28.6 2.27 

22a 220 120 5.4 8.9 32.8 0790 254 9.22 143 206 34.3 2.50 

 

Symbols designation 
h - profile height 
b - width of shelf 
d - wall thickness 
t - average thickness of the shelf 
F - cross-sectional area 
J - moment of inertia 
W - strength index 
i - radius of inertia 
S - static moment of half-section 
Z0 - distance from the y-axis to the outer 
wall 
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Profile 
no. 

Basic dimensions, 
mm 

F 
cm2 

Jx 
cm4 

Wx 
cm3 

ix 
cm 

Sx 
cm3 

Jy 
cm4 

Wy 
cm3 

iy 
cm 

h b d t 
24 240 115 5.6 9.5 34.8 3460 289 9.97 163 198 34.5 2.37 

24a 240 125 5.6 9.8 37.5 3800 317 10.1 178 260 41.6 2.63 
27 270 125 6.0 9.8 40.2 5010 371 11.2 210 250 41.5 2.54 

27a 270 135 6.0 10.2 43.2 5500 407 11.3 229 337 50.0 2.80 
30 300 135 6.5 10.2 46.5 7080 472 12.3 268 337 49.9 2.69 

30a 300 145 6.5 10.7 49.9 7780 518 12.5 292 436 60.1 2.95 
33 330 140 7.0 11.2 43.8 9840 597 13.5 339 419 59.9 2.79 
36 360 145 7.5 12.3 61.9 13380 743 14.7 423 516 71.1 2.89 
40 400 155 8.3 13.0 72.6 19062 953 16.2 545 667 86.1 3.03 
45 450 160 9 14.2 84.7 27696 1231 18.1 708 808 101 3.09 
50 500 170 10 15.2 100 39727 1589 19.9 919 1043 123 3.23 
55 550 180 11 16.5 118 55962 2035 21.8 1181 1356 151 3.39 
60 600 190 12 17.8 138 76806 2560 23.6 1491 1725 182 3.54 

 
 
 
 
 
 
 
 

 
Fig. D.16. Hot-rolled steel angle bar (ISO 657-1:1989) 

 
Table D.60. Basic parameters of hot-rolled steel angles (ISO 657-1:1989) 
 

P
ro

fi
le

 
n

u
m

b
e

r b d Section 
area 
cm2 

Additional values for the axes 

W
ei

gh
t 

1
m

 
k

g x-x x0-x0  y0-y0 x1-x1 
z0 , 
cm mm 

Jx 
cm4 

ix 
cm 

Jx0max 
cm4 

ix0max 
cm 

Jy0min 
cm4 

iy0 min  
cm 

Jx1 cm4 

2 20 
3 
4 

1.13 
1.46 

0.40 
0.50 

0.59 
0.58 

0.53 
0.78 

0.75 
0.73 

0.17 
0.22 

0.39 
0.38 

0.81 
1.09 

0.60 
0.64 

0.89 
1.15 

2.5 25 
3 
4 

1.43 
1.86 

0.81 
1.03 

0.75 
0.74 

1.29 
1.62 

0.95 
0.93 

0.34 
0.44 

0.49 
0.48 

1.57 
2.11 

0.73 
0.76 

1.12 
1.46 

2.8 28 3 1.62 1.16 0.85 1.84 1.07 0.48 0.55 2.2 0.80 1.27 

3 30 
3 
4 

1.74 
2.27 

1.45 
1.84 

0.91 
0.90 

2.30 
2.92 

1.15 
1.13 

0.60 
0.77 

0.59 
0.58 – 

0.85 
0.89 

1.36 
1.78 

3.2 32 
3 
4 

1.86 
2.4. 

1.77 
2.26 

0.97 
0.96 

2.80 
3.58 

1.23 
1.21 

0.74 
0.94 

0.63 
0.62 

3.26 
4.39 

0.89 
0.94 

1.46 
1.91 

3.5 35 
3 
4 
5 

2.04 
2.67 
3.28 

2.35 
3.01 
3.61 

1.07 
1.06 
1.05 

3.72 
4.76 
5.71 

1.35 
1.33 
1.32 

0.97 
1.25 
1.52 

0.69 
0.68 
0.68 

– 

0.97 
1.01 
1.05 

1.60 
2.10 
2.58 

4 40 
3 
4 
5 

2.35 
3.08 
3.79 

3.55 
4.58 
5.53 

1.23 
1.22 
1.20 

5.63 
7.26 
8.75 

1.55 
1.53 
1.54 

1.47 
1.90 
2.30 

0.79 
0.78 
0.79 

6.35 
8.53 

10.73 

1.09 
1.13 
1.17 

1.85 
2.42 
2.97 

4.5 45 
3 
4 
5 

2.65 
3.48 
4.29 

5.13 
6.63 
8.03 

1.39 
1.38 
1.37 

8.13 
10.50 
12.70 

1.75 
1.74 
1.72 

2.12 
2.74 
3.33 

0.89 
0.89 
0.88 

9.04 
12.10 
15.30 

1.21 
1.26 
1.30 

2.08 
2.73 
3.37 

5 50 3 2.96 7.11 1.55 11.30 1.95 2.95 1.00 12.40 1.33 2.32 

 

Symbols designation 
b - width of shelf 
d - wall thickness 
J - moment of inertia 
i - radius of inertia 
z0 - distance from the centre of gravity to 
the outer limits of the shelves 
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P
ro

fi
le

 
n

u
m

b
e

r b d Section 
area 
cm2 

Additional values for the axes 

W
ei

gh
t 

1
m

 
k

g x-x x0-x0  y0-y0 x1-x1 
z0 , 
cm mm 

Jx 
cm4 

ix 
cm 

Jx0max 
cm4 

ix0max 
cm 

Jy0min 
cm4 

iy0 min  
cm 

Jx1 cm4 

4 
5 
6 

3.89 
4.80 
5.69 

9.21 
11.20 
13.07 

1.54 
1.53 
1.52 

14.60 
17.80 
20.72 

1.94 
1.92 
1.91 

3.80 
4.63 
5.43 

0.99 
0.98 
0.98 

16.60 
20.90 

– 

1.38 
1.42 
1.46 

3.05 
3.77 
4.47 

5.6 56 
4 
5 

4.38 
5.41 

13.10 
16.00 

1.73 
1.72 

20.80 
25.40 

2.18 
2.16 

5.41 
6.59 

1.11 
1.10 

23.30 
29.20 

1.52 
1.57 

3.44 
4.25 

6.3 63 
4 
5 
6 

4.96 
6.13 
7.28 

18.90 
23.10 
27.10 

1.95 
1.94 
1.93 

29.90 
36.60 
42.90 

2.45 
2.44 
2.43 

7.81 
9.52 

11.20 

1.25 
1.25 
1.24 

33.10 
41.50 
50.00 

1.69 
1.74 
1.78 

3.90 
4.81 
5.72 

7 70 

4.
5 
5 
6 
7 
8 

6.20 
6.86 
8.15 
9.42 

10.70 

29.0 
31.9 
37.6 
43.0 
48.2 

2.16 
2.16 
2.15 
2.14 
2.13 

46.0 
50.7 
59.6 
68.2 
76.4 

2.72 
2.72 
2.71 
2.69 
2.68 

12.0 
13.2 
15.5 
17.8 
20.0 

1.39 
1.39 
1.38 
1.37 
1.37 

51.0 
56.7 
68.4 
80.1 
91.9 

1.88 
1.90 
1.94 
1.99 
2.02 

4.87 
5.38 
6.39 
7.39 
8.37 

7.5 75 

5 
6 
7 
8 
9 

7.39 
8.78 

10.10 
11.50 
12.80 

39.5 
46.6 
53.3 
59.8 
66.1 

2.31 
2.30 
2.29 
2.28 
2.27 

62.6 
73.9 
84.6 
94.9 

105.0 

2.91 
2.90 
2.89 
2.87 
2.86 

16.4 
19.3 
22.1 
24.8 
27.5 

1.49 
1.48 
1.48 
1.47 
1.46 

69.6 
83.9 
98.3 

113.0 
127.0 

2.02 
2.06 
2.10 
2.15 
2.18 

5.80 
6.89 
7.96 
9.02 

10.10 

8 80 

5 
6 
7 
8 

8.63 
9.38 

10.80 
12.30 

52.7 
57.0 
65.3 
73.4 

2.47 
2.47 
2.45 
2.44 

83.6 
94.0 

104.0 
116.0 

3.11 
3.11 
3.09 
3.08 

21.8 
23.5 
27.0 
30.3 

1.59 
1.58 
1.58 
1.57 

93.2 
102.0 
119.0 
137.0 

2.17 
2.19 
2.23 
2.27 

6.78 
7.36 
8.51 
9.65 

9 90 

6 
7 
8 
9 

10.60 
12.30 
13.90 
15.60 

82.1 
94.3 

106.0 
118.0 

2.78 
2.77 
2.76 
2.75 

130.0 
150.0 
168.0 
186.0 

3.50 
3.49 
3.48 
3.46 

34.0 
38.9 
43.8 
48.6 

1.79 
1.78 
1.77 
1.77 

145.0 
169.0 
194.0 
219.0 

2.43 
2.47 
2.51 
2.55 

8.33 
9.64 

10.90 
12.20 

10 100 

5 
7 
8 

10 
12 
14 
16 

12.80 
13.80 
15.60 
19.20 
22.80 
26.30 
29.70 

122.0 
131.0 
147.0 
179.0 
209.0 
237.0 
264.0 

3.09 
3.08 
3.07 
3.05 
3.03 
3.00 
2.98 

193.0 
207.0 
233.0 
284.0 
331.0 
375.0 
416.0 

3.88 
3.88 
3.87 
3.84 
3.81 
3.78 
3.74 

50.7 
54.2 
60.9 
74.1 
86.9 
99.3 

112.0 

1.99 
1.98 
1.98 
1.96 
1.95 
1.94 
1.94 

214.0 
231.0 
265.0 
333.0 
402.0 
472.0 
542.0 

2.68 
2.71 
2.75 
2.83 
2.91 
2.99 
3.06 

10.10 
10.80 
12.20 
15.10 
17.90 
20.60 
23.30 

11 110 
7 
8 

15.20 
17.20 

176.0 
198.0 

3.40 
3.39 

279.0 
315.0 

4.29 
4.28 

72.7 
81.8 

2.19 
2.18 

308.0 
353.0 

2.96 
3.00 

11.90 
13.50 

12.5 125 

8 
9 

10 
12 
14 
16 

19.7 
22.0 
24.3 
28.9 
33.4 
37.8 

294 
327 
360 
422 
482 
539 

3.87 
3.86 
3.85 
3.82 
3.80 
3.78 

469 
520 
571 
670 
764 
853 

4.87 
4.86 
4.84 
4.82 
4.78 
4.75 

122 
135 
149 
174 
200 
224 

2.49 
2.48 
2.47 
2.46 
2.45 
2.44 

516 
582 
649 
782 
916 

1051 

3.36 
3.40 
3.45 
3.53 
3.61 
3.68 

15.5 
17.3 
19.1 
22.7 
26.2 
29.6 

14 140 
9 

10 
12 

24.7 
27.3 
32.5 

466 
512 
602 

4.34 
4.33 
4.31 

739 
814 
957 

5.47 
5.46 
5.43 

192 
211 
248 

2.79 
2.78 
2.76 

818 
911 

1097 

3.78 
3.82 
3.90 

19.4 
21.5 
25.5 

16 160 

10 
11 
12 
14 
16 
18 
20 

31.3 
34.4 
37.4 
43.3 
49.1 
54.8 
60.4 

774 
844 
93 

1046 
1175 
1299 
1419 

4.96 
4.95 
4.94 
4.92 
4.89 
4.87 
4.85 

1229 
1341 
1450 
1662 
1866 
2061 
2248 

6.25 
6.24 
6.23 
6.20 
6.17 
6.13 
6.10 

319 
348 
376 
431 
485 
537 
589 

3.19 
3.18 
3.17 
3.16 
3.14 
3.13 
3.12 

1356 
1494 
1633 
1911 
2191 
2472 
2756 

4.30 
4.35 
4.39 
4.47 
4.55 
4.63 
4.70 

24.7 
27.0 
29.4 
34.0 
38.5 
43.0 
47.4 

18 180 
11 
12 

38.8 
42.2 

1216 
1317 

5.60 
5.59 

1933 
2093 

7.06 
7.04 

500 
540 

3.59 
3.58 

2128 
2324 

4.85 
4.89 

30.5 
33.1 

20 200 
12 
13 
14 

47.1 
50.9 
54.6 

1823 
1961 
2097 

6.22 
6.21 
6.20 

2896 
3116 
3333 

7.84 
7.83 
7.81 

749 
805 
961 

3.99 
3.98 
3.97 

3182 
3452 
3722 

5.37 
5.42 
5.46 

37.0 
39.9 
42.8 
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P
ro

fi
le

 
n

u
m

b
e

r b d Section 
area 
cm2 

Additional values for the axes 

W
ei

gh
t 

1
m

 
k

g x-x x0-x0  y0-y0 x1-x1 
z0 , 
cm mm 

Jx 
cm4 

ix 
cm 

Jx0max 
cm4 

ix0max 
cm 

Jy0min 
cm4 

iy0 min  
cm 

Jx1 cm4 

16 
20 
25 
30 

62.0 
76.5 
94.3 

111.5 

2363 
2871 
3466 
4020 

6.17 
6.12 
6.06 
6.00 

3755 
4560 
5494 
6351 

7.78 
7.72 
7.63 
7.55 

970 
1182 
1438 
1688 

3.96 
3.93 
3.91 
3.89 

4264 
5355 
6733 
8130 

5.54 
5.70 
5.89 
6.07 

48.7 
60.1 
74.0 
87.6 

22 220 
14 
16 

60.4 
68.6 

2814 
3175 

6.83 
6.81 

4470 
5045 

8.60 
8.58 

1159 
1306 

4.38 
4.36 

4941 
5661 

5.93 
6.02 

47.4 
53.8 

25 250 

16 
18 
20 
22 
25 
28 
30 

78.4 
87.7 
97.0 

106.1 
119.7 
133.1 
142.0 

4717 
5247 
5765 
6270 
7006 
7717 
8177 

7.76 
7.73 
7.71 
7.69 
7.65 
7.61 
7.59 

7492 
8337 
9160 
9961 

11125 
12244 
12965 

9.78 
9.75 
9.72 
9.69 
9.64 
9.59 
9.56 

1942 
2158 
2370 
2579 
2887 
3190 
3389 

4.98 
4.96 
4.94 
4.93 
4.91 
4.89 
4.89 

8286 
9342 

10401 
11464 
13064 
14674 
15753 

6.75 
6.83 
6.91 
7.00 
7.11 
7.23 
7.31 

61.5 
68.9 
76.1 
83.3 
94.0 

104.5 
111.4 

 
 

 
 
 
 
 
 
 

 
Fig. D.17. Hot-rolled unequal-area steel angle bar 

 
Table D.61. Basic parameters of hot-rolled unequal steel angles (ISO/R 657-2:1968) 

P
ro

fi
le

 n
o

. 

Dimensions 
mm 

C
ro

ss
-s

ec
ti

o
n

 
cm

2
 

Jx 
cm4 

ix 
cm 

Jy 
cm4 

iy 
cm 

Jumin 
cm4 

iu min 
cm4 

Tilt 
angle 

u 
tgα  

Jx1 
cm4 

Jy1 
cm4 

x0 
cm 

y0 
cm 

Weight 
1m 
kg B b d 

2.5/1.6 25 16 3 1.16 0.7 0.78 0.22 0.44 0.13 0.3 0.392 – – 0.42 0.86 0.91 

3.2/2 32 20 
3 
4 

1.49 
1.94 

1.52 
1.93 

1.01 
1.00 

0.46 
0.57 

0.55 
0.54 

0.28 
0.35 

0.43 
0.43 

0.382 
0.374 – – 

0.49 
0.53 

1.08 
1.12 

1.17 
1.52 

4/2.5 40 25 
3 
4 
5 

1.89 
2.47 
3.03 

3.06 
3.93 
4.73 

1.27 
1.26 
1.25 

0.93 
1.18 
1.41 

0.7 
0.69 
0.68 

0.56 
0.71 
0.86 

0.54 
0.54 
0.53 

0.385 
0.381 
0.374 

– – 
0.59 
0.63 
0.66 

1.32 
1.37 
1.41 

1.48 
1.94 
2.37 

5/3.2 50 32 3 2.42 6.18 1.6 1.99 0.91 1.18 0.7 0.403 – – 0.72 1.6 1.9 

5.6/3.6 56 36 
4 
5 

3.58 
4.41 

11.4 
13.8 

1.78 
1.77 

3.7 
4.48 

1.02 
1.01 

2.19 
2.66 

0.78 
0.78 

0.406 
0.404 

23.2 
29.2 

6.25 
7.91 

0.84 
0.88 

1.82 
1.86 

2.81 
3.46 

6.3/4 63 40 

4 
5 
6 
8 

4.04 
4.98 
5.90 
7.68 

16.3 
19.9 
23.3 
29.6 

2.01 
2.00 
1.99 
1.96 

5.16 
6.26 
7.28 
9.15 

1.13 
1.12 
1.11 
1.09 

3.07 
3.72 
4.36 
5.58 

0.87 
0.86 
0.86 
0.85 

0.397 
0.396 
0.393 
0.386 

33.0 
41.4 
49.9 
66.9 

8.51 
10.8 
13.1 
17.9 

0.91 
0.95 
0.99 
1.07 

2.03 
2.08 
2.12 
2.20 

3.17 
3.91 
4.63 
6.03 

7/4.5 70 45 5 5.59 27.8 2.23 9.05 1.27 5.34 0.98 0.406 56.7 15.2 1.05 2.28 4.39 

7.5/5 75 50 
6 
8 

7.25 
9.47 

40.9 
52.4 

2.38 
2.35 

14.6 
18.5 

1.42 
1.40 

8.48 
10.9 

1.08 
1.07 

0.435 
0.430 

83.9 
112 

25.2 
34.2 

1.21 
1.29 

2.44 
2.52 

5.69 
7.43 

8/5 80 50 
5 
6 

6.36 
7.55 

41.6 
49.0 

2.56 
2.55 

12.7 
14.8 

1.41 
1.40 

7.58 
8.88 

1.09 
1.08 

0.387 
0.386 

84.6 
102 

20.8 
25.2 

1.13 
1.17 

2.60 
2.65 

4.99 
5.92 

9/5.6 90 56 
5.5 
6 
8 

7.86 
8.54 

11.18 

65.3 
70.6 
90.9 

2.88 
2.88 
2.85 

19.7 
21.2 
27.1 

1.58 
1.58 
1.56 

11.8 
12.7 
16.3 

1.22 
1.22 
1.21 

0.384 
0.384 
0.380 

132 
145 
194 

32.2 
35.2 
48.7 

1.26 
1.28 
1.36 

2.92 
2.95 
3.04 

6.17 
6.70 
8.77 

10/6.3 100 63 

6 
7 
8 

10 

9.59 
11.1 
12.6 
15.5 

98.3 
113 
127 
154 

3.20 
3.19 
3.18 
3.15 

30.6 
35.0 
39.2 
47.1 

1.79 
1.78 
1.77 
1.75 

18.2 
20.8 
23.4 
28.3 

1.38 
1.37 
1.36 
1.35 

0.393 
0.392 
0.391 
0.387 

198 
232 
266 
333 

49.9 
58.7 
67.6 
87.5 

1.42 
1.46 
1.50 
1.58 

3.23 
3.28 
3.32 
3.40 

7.53 
8.70 
9.87 
12.1 

11/7 110 70 6.5 11.4 142 3.53 45.6 2.00 26.9 1.53 0.402 286 74.3 1.58 3.55 8.98 

 

Symbols designation 
B - width of the larger arm 
b - width of the smaller arm 
d - wall thickness 
J - moment of inertia 
i - radius of inertia 
x0, y0 - distance from the centre of gravity 
to the outer limits of the shelves 
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8 13.9 172 3.51 54.6 1.98 32.3 1.52 0.400 353 92.3 1.64 3.61 10.9 

12.5/8 125 80 

7 
8 

10 
12 

14.1 
16.0 
19.7 
23.4 

227 
256 
312 
365 

4.01 
4.00 
3.98 
3.95 

73.7 
83 

100 
117 

2.29 
2.28 
2.26 
2.24 

43.4 
48.8 
59.3 
69.5 

1.76 
1.75 
1.74 
1.72 

0.407 
0.406 
0.404 
0.400 

452 
518 
649 
781 

119 
137 
173 
210 

1.80 
1.84 
1.92 
2.00 

4.01 
4.05 
4.14 
4.22 

11.0 
12.5 
15.5 
18.3 

14/9 140 90 
8 

10 
18.0 
22.2 

364 
444 

4.49 
4.47 

120 
146 

2.58 
2.56 

70.3 
85.5 

1.98 
1.96 

0.411 
0.409 

727 
911 

104 
245 

2.03 
2.12 

4.49 
4.58 

14.4 
17.5 

16/10 160 100 

9 
10 
12 
14 

22.9 
25.3 
30.0 
34.7 

606 
667 
784 
897 

5.15 
5.13 
5.11 
5.08 

186 
204 
239 
272 

2.85 
2.84 
2.82 
2.80 

110 
121 
142 
162 

2.20 
2.19 
2.18 
2.16 

0.391 
0.390 
0.388 
0.385 

1221 
1359 
1634 
1910 

300 
335 
405 
477 

2.23 
2.28 
2.36 
2.43 

5.19 
5.23 
5.32 
5.40 

18.0 
19.8 
23.6 
27.3 

18/11 180 100 
10 
12 

28.3 
33.7 

952 
1123 

5.80 
5.77 

276 
324 

3.12 
3.10 

165 
194 

2.42 
2.40 

0.375 
0.374 

1933 
2324 

444 
537 

2.44 
2.52 

5.88 
5.97 

22.2 
26.4 

20/12.5 200 125 

11 
12 
14 
16 

34.9 
37.9 
43.9 
49.8 

1449 
1568 
1801 
2026 

6.45 
6.43 
6.41 
6.38 

446 
482 
551 
617 

3.58 
3.57 
3.54 
3.52 

264 
285 
327 
367 

2.75 
2.74 
2.73 
2.72 

0.392 
0.392 
0.90 

0.388 

2920 
3189 
3726 
4264 

718 
786 
922 

1061 

2.79 
2.83 
2.91 
2.99 

6.50 
6.54 
6.62 
6.71 

27.4 
29.7 
34.4 
39.1 

 
 

Table D.62. Hot-rolled round steel sections (EN 10060:2003) 
 

Diameter 
d , mm 

Cross-
sectional 
area, cm2 

Weight 
of 1 m 
length 
of wire 
rod, kg  

Diameter 
d , mm 

Cross-
sectional 
area, cm2 

Weight 
of 1 m 
length 
of wire 
rod, kg  

5.0 0.196 0.154 29.0 6.605 5.185 
5.5 0.238 0.187 30.0 7.069 5.549 
6.0 0.283 0.222 31.0 7.548 5.925 
6.3 0.312 0.245 32.0 8.043 6.313 
6.5 0.332 0.261 33.0 8.553 6.714 
7.0 0.385 0.302 34.0 9.079 7.127 
8.0 0.503 0.395 35.0 9.621 7.553 
9.0 0.636 0.499 36.0 10.179 7.990 

10.0 0.785 0.617 37.0 10.752 8.440 
11.0 0.950 0.746 38.0 11.341 8.903 
12.0 1.131 0.888 39.0 11.946 9.378 
13.0 1.327 1.042 40.0 12.566 9.865 
14.0 1.539 1.208 41.0 13.203 10.364 
15.0 1.767 1.387 42.0 13.854 10.876 
16.0 2.011 1.578 43.0 14.522 11.400 
17.0 2.270 1.782 44.0 15.205 11.936 
18.0 2.545 1.998 45.0 15.904 12.485 
19.0 2.835 2.226 46.0 16.619 13.046 
20.0 3.142 2.466 47.0 17.349 13.619 
21.0 3.464 2.719 48.0 18.096 14.205 
22.0 3.801 2.984 50.0 19.635 15.413 
23.0 4.155 3.262 52.0 21.237 16.671 
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Diameter 
d , mm 

Cross-
sectional 
area, cm2 

Weight 
of 1 m 
length 
of wire 
rod, kg  

Diameter 
d , mm 

Cross-
sectional 
area, cm2 

Weight 
of 1 m 
length 
of wire 
rod, kg  

24.0 4.524 3.551 53.0 22.062 17.319 
25.0 4.909 3.853 54.0 22.902 17.978 
26.0 5.309 4.168 55.0 23.758 18.650 
27.0 5.726 4.495 56.0 24.630 19.335 
28.0 6.158 4.834 58.0 26.421 20.740 
60.0 28.274 22.195 140.0 153.938 120.841 
62.0 30.191 23.700 145.0 165.130 129.627 
63.0 31.173 24.470 150.0 176.715 138.721 
65.0 33.183 26.049 155.0 188.692 148.123 
67.0 35.257 27.676 160.0 201.062 157.834 
68.0 36.317 28.509 165.0 213.825 167.852 
70.0 38.485 30.210 170.0 226.980 178.179 
72.0 40.715 31.961 175.0 240.528 188.815 
73.0 41.854 32.855 180.0 254.469 199.758 
75.0 44.179 34.680 185.0 268.803 211.010 
78.0 47.784 37.510 190.0 283.529 222.570 
80.0 50.266 39.458 195.0 298.648 234.438 
82.0 52.810 41.456 200.0 314.159 246.615 
85.0 56.745 44.545 210.0 346.361 271.893 
87.0 59.447 46.666 220.0 380.133 298.404 
90.0 63.617 49.940 230.0 415.476 326.148 
92.0 66.476 52.184 240.0 452.389 355.126 
95.0 70.882 55.643 250.0 490.874 385.336 
97.0 73.898 58.010 260.0 530.929 416.779 

100.0 78.540 61.654 270.0 572.555 449.456 
105.0 86.590 67.973 –  –  –  

110.0 95.033 74.601 –  –  –  

115.0 103.869 81.537 –  –  –  

120.0 113.097 88.781 –  –  –  

125.0 122.719 96.334 –  –  –  

130.0 132.732 104.195 –  –  –  

135.0 143.139 112.364 –  –  –  
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Fig. D.18. Hexagon head screw 

 
 

Table D.63. Hexagon head bolts, accuracy class A, for reaming holes (ISO 898-1) 

 

Nominal thread 
diameter d 

6 8 10 12 (14) 16 (18) 20 (22) 24 (27) 30 36 42 48 

Thread 
pitch 

ordinary 1 1.25 1.5 1.75 2 2.5 3 3.5 4 4.5 5 

finely wound – 1 1.25 1.5 2 3 

Bar diameter d1 7 9 11 13 15 17 19 21 23 25 28 32 38 44 50 

Keyway dimension S 10 12 14 17 19 22 24 27 30 32 36 41 50 60 70 

Comment. Screw dimensions in brackets are not recommended for use.  
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