Equational theories of P-compatible varieties

Katarzyna Hałkowska

We consider a given type of algebras $\tau: F \to \mathbb{N}$, where F is a set of fundamental operation symbols and \mathbb{N} is the set of non-negative integers. Let $Id(\tau)$ be the set of all identities of type τ . For a term p of type τ different from a variable we denote by ex(p) the most external fundamental operation symbol in p, i.e. if $f \in F$ and $p_1, \ldots, p_{\tau(f)}$ are terms of type τ then $ex(f(p_1, \ldots, p_{\tau(f)}) \equiv f$.

Let Π_F be the set of all partitions of F and let $P \in \Pi_F$. The block of P containing $f \in F$ will be denoted by $[f]_P$.

An identity p = q of type τ is P-compatible if it is of the form x = x or both p and q are not variables and $ex(p) \in [ex(q)]_P$.

So, if p and q are different from a variable, then p = q is P-compatible if the outermost operation symbols in p and q belong to the same block of P.

The notion of *P*-compatible identity was introduced by J. Płonka in [9] and is a generalization of an externally compatible identity introduced by W. Chromik in [2] and a normal identity defined independently by J. Płonka [8] and I. I. Melnik [11].

An identity p = q is externally compatible if it is of the form x = x or ex(p), ex(q) are the same symbols.

So, p=q is externally compatible if and only if it is P-compatible, where P consists of singletons only. We denote this partition of F by Ex and the partition $\{F\}$ by N. An identity p=q is normal if it is of the form x=x or neither p or q is a variable.

So, an identity is normal if and only if it is N-compatible.

We denote the set of all P-compatible identities of type τ by $P(\tau)$. So, $Ex(\tau)$ is the set of all externally compatible identities of type τ and $N(\tau)$ is the set of all normal identities of type τ .

If K is a variety then P(K) denotes the set of all P-compatible identieties of type τ which are satisfied in K, IdK the set of all identities satisfied

The lemmas and all theorems we give without proofs, because that ni

We have: $P(K) = IdK \cap P(\tau)$, $N(K) = IdK \cap N(\tau)$ and $Ex(K) = IdK \cap Ex(\tau)$.

By K_P we denote the variety defined by P(K).

For a set $\Sigma \subseteq Id(\tau)$ we denote by $D(\Sigma)$ the deductive closure of Σ (see Definition 14.1.6, p.94 in [1]), i.e. $D(\Sigma)$ is the smallest subset of $Id(\tau)$ containing Σ such that

- (1) $x = x \in D(\Sigma)$ for every variable x;
- (2) $p = q \in D(\Sigma) \Rightarrow q = p \in D(\Sigma);$
- (3) $p = q, q = r \in D(\Sigma) \Rightarrow p = r \in D(\Sigma);$
- (4) $D(\Sigma)$ is closed under replacement, that means, given any $p = q \in D(\Sigma)$ and any term r of type τ , if p occurs as a subterm of r, then by letting s be the result of replacing that occurence of p by q, we have $r = s \in D(\Sigma)$;
- (5) $D(\Sigma)$ is closed under substitution, which means, for each $p = q \in D(\Sigma)$ and each term r of type, if we replace every ocurrence of a given variable x in p = q by r, then the resulting identity belongs to $D(\Sigma)$.

By $Mod \Sigma$ we denote the set of all models of Σ , that is, the set of all algebras of type τ satisfying the identities from Σ . So, if $\Sigma = P(K)$ then $Mod \Sigma = K_P$.

A variety K such that Id(K) = P(K) is called P-compatible. Let $\mathcal{L}(K)$ be the lattice of all subvarieties of K. The aim of this paper is to describe the lattice $\mathcal{L}(K_{Ex})$, where K is an idempotent variety.

It is well known that the lattice of equational theories of type τ is dually isomorphic to the lattice of all varieties of the same type and for equational theory Σ the lattice $\mathcal{L}(\Sigma)$ of all equational theories extending Σ is dually isomorphic to the lattice $\mathcal{L}(Mod \Sigma)$. So, we described also the lattice $\mathcal{L}(Ex(\tau))$ and $\mathcal{L}(Ex(K))$.

The concept of a P-compatible identity is related to the special structure of terms occurring in the identity. This structure is preserved by operator D and we can concider equational theories determined by P-compatible identities. It is easy to observe that $Id(\tau)$, $Ex(\tau)$, $N(\tau)$, $P(\tau)$ for $P \in \Pi_F$, P(K) for a variety K are equational theories with respect to operator D. Now, we prove some lemmas which characterize this theories. We are use them to find the lattice $\mathcal{L}(Ex(\tau))$.

The lemmas and all theorems we give without proofs, because the full text of this paper will be published elsewhere.

Lemma 1. Let $P_1, P_2 \in \Pi_F$. Then

$$P_1 \subseteq P_2$$
 if and only if $P_1(\tau) \subseteq P_2(\tau)$.

Lemma 2. For any $P_1, P_2 \in \Pi_F$ the following conditions are equivalent

- (i) $P_1 = P_2$.
- (ii) $P_1(\tau) = P_2(\tau)$.

This lemma follows immediately from lemma 1.

Lemma 3. The identities (f,g):

$$(f,g)$$
 $f(x_1,\ldots,x_{\tau(f)}) = g(x_{\tau(f)+1},\ldots,x_{\tau(f)+\tau(g)})$ for $f,g \in F$

and $g \in [f]_p$ form an equational base for $P(\tau)$.

An immediate corollary from lemma 3 is the next lemma.

Lemma 4. The following identities (f) for $f \in F$:

$$(f) \ f(x_1, \dots, x_{\tau(f)}) = f(x_{\tau(f)+1}, \dots, x_{2\tau(f)})$$

form an equational base for $Ex(\tau)$.

This lemma was also noticed in W. Chromik [2].

Lemma 5. Let Σ be an equational theory extending $Ex(\tau)$ and $\Sigma \neq Id(\tau)$. Then there exists exactly one partition P of F such that $P(\tau) = \Sigma$.

Theorem 1. The lattice $\mathcal{L}(Ex(\tau))$ is isomorphic to the lattice $\Pi_F + 1$ of all partitions of F with the additional greatest element 1.

We called a variety K of type τ F-normal if and only if for any $f, g \in F$ there exists in Id K an identity p = q such that $ex(p) \equiv f$ and $ex(q) \equiv g$.

The aim of this section is to characterize the lattice $\mathcal{L}(Ex(K))$ of equational theories of F-normal variety K. Let us denote by T the trivial variety of type τ . Then $IdT = Id(\tau)$ and $P(T) = P(\tau)$ for $P \in \Pi_F$.

As an immediate consequence of Theorem 1 and the well-known fact that the lattice $\mathcal{L}(\Sigma)$ of all equational theories extending Σ is dually isomorphic to the lattice of subvarieties of the variety $Mod \Sigma$, we have the next lemma.

Lemma 6. $V \in \mathcal{L}(T_{Ex})$ if and only if there exists a partition $P \in \Pi_F$ such that $V = T_P$ or V = T.

Lemma 7. Let K be a variety of type τ and $P \in \Pi_F$. Then $K_P = K \vee T_P$.

Lemma 8. If K is an F-normal variety of type τ and $P_1, P_2 \in \Pi_F$ then

$$P_1 \neq P_2$$
 if and only if $P_1(K) \neq P_2(K)$.

Theorem 2. If K is an F-normal variety of type τ then the function

a qui eta e la di avollo:
$$arphi:\Pi_F+1 o \mathcal{L}(Ex(K))$$
 di avollo: (\cdot,\cdot)

defined as follows $\varphi(1) = Id(\tau)$ and $\varphi(P) = P(K)$ for $P \in \Pi_F$ is a lattice embedding

In W. Chromik and K. Hałkowska [3] the lattice $\mathcal{L}(D_{Ex})$ of subvarieties of the variety D_{Ex} defined by all externally compatible identities of the variety D of distributive lattices was described. It was proved that $\mathcal{L}(D_{Ex})$ is isomorphic to the direct product of a 2-element chain and a 3-element chain. In K. Hałkowska [7] the lattice $\mathcal{L}(B_{Ex})$ was described for the variety B of Boole'an algebras.

A variety K is called idempotent if and only if for any $f \in F$ the identity f(x, ..., x) = x belongs to K.

Lemma 9. Let K be an idempotent variety of type τ with $F \neq \emptyset$. Then for every variety $V \in \mathcal{L}(K_{Ex})$ the following identity holds:

$$V = (V \cap K) \vee (V \cap T_{Ex}).$$

Lemma 10. If K is an idempotent variety of type τ , $V_1 \in \mathcal{L}(K)$ and $V_2 \in \mathcal{L}(T_{Ex})$ then $(V_1 \vee V_2) \cap K = V_1$.

Lemma 11. If K is an idempotent variety of type τ $V_1 \in \mathcal{L}(K)$ and $V_2 \in \mathcal{L}(T_{Ex})$ then $(V_1 \vee V_2) \cap T_{Ex} = V_2$.

The next lemma is some reformulation of the well known results of G. Grätzer [5].

Lemma 12. Let K be a variety of type τ . The mapping

$$arphi: \mathcal{L}(K_{Ex})
ightarrow \mathcal{L}(K) imes \mathcal{L}(T_{Ex})$$

defined for $V \in L(K_{Ex})$ as follows: $\varphi(V) = (V \cap K, V \cap T_{Ex})$ is a lattice isomorphism if and only if the following conditions are satisfied:

- (1) $V = (V \cap K) \lor (V \cap T_{Ex}),$ To the Harmonian to see the content of the Harmonian content
 - (2) $(V_1 \lor V_2) \cap K = V_1$, 2 on (888) If MAT ago I to noise 8 als
- (3) $(V_1 \lor V_2) \cap T_{Ex} = V_2$ where the serious landshaped with M [7] and the serious landshaped with the seri

for $V \in \mathcal{L}(K_{Ex})$, $V_1 \in \mathcal{L}(K)$ and $V_2 \in \mathcal{L}(T_{Ex})$.

Theorem 3. If K is an idempotent variety of type τ then the lattice $\mathcal{L}(K_{Ex})$ is isomorpic to the direct product of $\mathcal{L}(K)$ and $\mathcal{L}(T_{Ex})$.

Proof. We define the mapping $\varphi: L(K_{Ex}) \to L(K) \times L(T_{Ex})$ as follows $\varphi(V) = (V \cap K, V \cap T_{Ex})$

for $V \in L(K_{Ex})$. From lemmas 9, 10, 11 and 12 it follows that φ sets up a lattice isomorphism.

Corollary 1. If K is a variety of idempotent grupoids then $\mathcal{L}(K_{Ex}) \cong \mathcal{L}(K) \times 2$, where 2 is a 2-element chain.

Corollary 2. If K is the variety of dstributive lattices then $\mathcal{L}(K_{Ex}) \cong 2 \times 3$, where 2 is a 2-element chain and 3 is a 3-element chain.

Corollary 2 is a theorem in W. Chromik and K. Hałkowska [3].

Let us note that the assumption in theorem 3 is essential. In K. Hałkowska [7] the variety $\mathcal{L}(B_{Ex})$ for the variety B of Boolean algebras was described. In this case the lattice $\mathcal{L}(B) \times \mathcal{L}(T_{Ex})$ is a proper sublattice of $\mathcal{L}(B_{Ex})$.

Theorem 3 can be applied also to a variety of algebras in which every operation is a projection.

References

- [1] S. Burris and H. P. Sankappanavar, A course in Universal Algebra, Springer-Verlag 1981
- [2] W. Chromik, Externally compatible identities of algebras, Demonstratio Mathematica 23 1990, no. 2, 345–355.
- [3] W. Chromik and K. Hałkowska, The lattice of subvarieties of the variety defined by externally compatible identities of distributive lattices, Demonstratio Mathematica 24 (1991), no. 1-2 1991 235-240.
- [4] K. Denecke and K. Hałkowska, On P-compatible hybrid identities and hyperidentities, Studia Logica 53 (1994), no. 4, 493-501.
- [5] G. Grätzer, Universal Algebra, Springer-Verlag Berlin, 1979.
- [6] K. Hałkowska, On dispersion operator on classes of algebras, Bull. of the Section of Logic PAN 17 (1988), no. 2, 67-70.
- [7] K. Hałkowska, Equational theories of varieties defined by P-compatible identities of Boolean algebras, Beiträge zur Algebra und Geometrie 33 (1992), 103–108.
- [8] J. Płonka, On the subdirect product of some equational classes of algebras, Math. Nachr. 63 (1974), 303-305.

- [9] J. Płonka On varieties of algebras defined by identities of some special forms, Houston Journal of Math. 14 (1988), 253–263.
- [10] J. Płonka, On subdirectly irreducible algebras in varieties defined by externally compatible identities, Studia Sci. Math. Hungarica, 27 (1992), 267–271.
- [11] I. J. Melnik, Nilpotent shifts of varieties (in Russian), Mat. Zametki 14 (1973), no. 5.
- [12] G. F. Mc Nulty, Structural diversity in the lattice of equational theories, Algebra Universalis 13 (1981), 271–292.
- [13] H. Rasiowa, Wstep do Matematyki Współczesnej, PWN, Warszawa, 1975.
- [14] W. Taylor, Equational logic, Houston Journal of Math. 2 (1979), 1–83.

Hypergraph satisfiability and a generalized resolution rule. A hypergraph is a structure $\mathcal{G} = (\mathcal{V}.\mathcal{E})$, where \mathcal{V} is any set and \mathcal{E} family of nonempty subsets of \mathcal{V} . In the sake of simplicity, we shall assume that \mathcal{V} (and hence also \mathcal{E}) is finite. Hypergraphs whose edges are dement are called graphs. The elements of \mathcal{V} will be called vertices which he typergraph \mathcal{G} and the elements of \mathcal{E} —its edges. Sets of vertices which is not contain edges will be called \mathcal{G} -consistent, or simply consistent here is no possibility of misunderstanding. Sets which are not consistent are inconsistent. Sets of vertices will semetimes be called clauses.

 $g \in \mathcal{A}$, (see [1,4]). A family of clauses is satisfiable iff some consistent g at shear it. We easily notice that colorability of a graph is equivalent to satisfiability of the family of its all edges. The same was got verify and