ARITHMETIC SEQUENCES OF HIGHER DEGREES CHARACTERIZING FIGURATE NUMBERS

Grażyna Rygał^a, Arkadiusz Bryll^b, Grzegorz Bryll^c

^a Pedagogical Faculty Jan Długosz University in Częstochowa Armii Krajowej 13/15, 42-200 Częstochowa, Poland e-mail: g.rygal@op.pl

^b Technical University of Częstochowa, The Faculty of Management Dąbrowskiego 69, 42-200 Częstochowa, Poland ^c Emeritus professor, Poland

Abstract. Figurate numbers have simple geometric illustration: polygonal numbers can be represented by polygons, pyramidal numbers by pyramids, prismatic numbers by prisms, and trapezoidal numbers by trapezoids. The numbers mentioned above can be defined by formulae¹ or can be characterized by some arithmetic sequences of higher degrees which allow to obtain the corresponding formulae [3]. Figurate numbers due to their geometrical illustration and intersting properties can be of interest for school pupils.

1. Arithmetic sequences of higher degrees

For arbitrary sequence $\{a_n\}$: a_1, a_2, a_3, \ldots we can calculate the sequence of the first finite differences $\{\Delta^1 a_n\}$

$$\Delta^1 a_1 = a_2 - a_1, \quad \Delta^1 a_2 = a_3 - a_2, \quad \Delta^1 a_3 = a_4 - a_3, \dots$$
 (1)

and the sequences of successive differences

$$\Delta^{k+1} a_i = \Delta^k a_{i+1} - \Delta^k a_i, \quad i = 1, 2, 3, \dots \quad k = 1, 2, 3, \dots$$
 (2)

Using the method of complete mathematical induction it can be proved that an arbitrary term of a sequence $\{a_n\}$ can be described by the following formula (see [1, 4]):

¹This method was used by W. Sierpiński in the book [5] in definitions of triangle and tetrahedral numbers.

$$a_n = \binom{n-1}{0} a_1 + \binom{n-1}{1} \Delta^1 a_1 + \binom{n-1}{2} \Delta^2 a_1 + \ldots + \binom{n-1}{n-1} \Delta^{n-1} a_1.$$
 (3)

It is evident that to define the *n*th term of a sequence $\{a_n\}$ it is sufficient to (know) have the first term and the differences: $\Delta^1 a_1, \ \Delta^2 a_1, \dots, \ \Delta^{n-1} a_1$.

A sequence $\{a_n\}$ is called an arithmetic sequence of the degree m $(m=1,2,\ldots)$ if and only if the sequence $\{\Delta^m a_n\}$ is constant and differs from the zero sequence. A constant sequence will be called an arithmetic sequence of the zero degree.

It follows from Eq. (3) that an arbitrary term of an arithmetic sequence of the degree m is expressed as:

$$a_n = \binom{n-1}{0} a_1 + \binom{n-1}{1} \Delta^1 a_1 + \binom{n-1}{2} \Delta^2 a_1 + \dots + \binom{n-1}{m} \Delta^m a_1.$$
 (4)

To determine the differences $\Delta^1 a_1, \ \Delta^2 a_1, \dots, \Delta^m a_1$ we draw up the following table

2. Polygonal numbers

For sequences with general terms

- (a) $a_n = n$,
- (b) $a_n = 2n 1$,
- (c) $a_n = 3n 2$,
- (d) $a_n = 4n 3$,

(e)
$$a_n = 5n - 4$$
, \dots

(f)
$$a_n = (s-2)n - (s-3), s = 3, 4, 5, \dots$$

the sequences of partial sums² have the following form, respectively:

$\{t^{(3)}(n)\}:$	1	3	6	10	15	21	28	
$\{t^{(4)}(n)\}:$	1	4	9	16	25	36	49	
$\{t^{(5)}(n)\}:$	1	5	12	22	35	51	70	
$\{t^{(6)}(n)\}:$	1	6	15	28	45	66	91	
${t^{(7)}(n)}:$	1	7	18	34	55	81	112	
$\{t^{(s)}(n)\}$:	1	s	3s - 3	6s - 8	10s - 15	15s - 24	21s - 35	

Elements (terms) of a sequence $\{t^{(s)}(n)\}$ are called s-gonal numbers. Hence, there are trigonal numbers, square (quaternal) numbers, pentagonal numbers, hexagonal numbers, etc.

Geometrical illustration of these numbers is as follows:

Trigonal numbers:

Square numbers:

²The *n*th partial sum for a sequence $\{a_n\}$ is $a_1 + a_2 + \ldots + a_n$

Pentagonal numbers:

Hexagonal numbers:

The sequences $\{t^{(s)}(n)\}$ $(s=3,4,\ldots)$ are arithmetic sequences of the second degree. The general term of a sequence $\{t^{(s)}(n)\}$ can be determined by the method of successive differences using table (5) and equation (4). The table of differences for this sequence has the form:

As $t^{(s)}(1) = 1$, $\Delta^1 t^{(s)}(1) = s - 1$, $\Delta^2 t^{(s)}(1) = s - 2$, then, using Eq. (4), we obtain:

$$t^{(s)}(n) = \binom{n-1}{0} \cdot 1 + \binom{n-1}{1}(s-1) + \binom{n-1}{2}(s-2),$$

i.e.

$$t^{(s)}(n) = \frac{n}{2}[n(s-2) - s + 4]. \tag{6}$$

Therefore trigonal, square, pentagonal, hexagonal, and heptagonal numbers can be defined using the following equations:

$$t^{(3)}(n) = \frac{n}{2}(n+1), t^{(4)}(n) = n^2,$$

$$t^{(5)}(n) = \frac{n}{2}(3n-1), t^{(6)}(n) = \frac{n}{2}(4n-2),$$

$$t^{(7)}(n) = \frac{n}{2}(5n-3).$$

Many properties of s-gonal numbers can be found in books [2, 5].

3. Pyramidal numbers

If for a sequence $\{t^{(s)}(n)\}$ the sequence of partial sums is created, then a sequence $\{T^{(s)}(n)\}$ is obtained being an arithmetic sequence of the third degree. Elements (terms) of this sequence are called s-gonal pyramidal numbers.

The sequences of trigonal, square, pentagonal, hexagonal, heptagonal, \dots , s-gonal pyramidal numbers have the following form

To determine the general term of a sequence $\{T^{(s)}(n)\}$ draw up a table of successive differences:

For the sequences under consideration we have

$$T^{(s)}(1) = 1,$$
 $\Delta^1 T^{(s)}(1) = s$ $\Delta^2 T^{(s)}(1) = 2s - 3,$ $\Delta^3 T^{(s)}(1) = s - 2.$

Using Eq. (4), we obtain

$$T^{(s)}(n) = \binom{n-1}{0} \cdot 1 + \binom{n-1}{1} s + \binom{n-1}{2} \cdot (2s-3) + \binom{n-1}{3} (s-2),$$

i.e.

$$T^{(s)}(n) = \frac{n}{6}[n^2(s-2) + 3n - (s-5)]. \tag{7}$$

This equation can be written as

$$T^{(s)}(n) = \frac{n}{6}(n+1)[n(s-2) - (s-5)]. \tag{8}$$

Indeed:

$$n^{2}(s-2) + 3n - (s-5) = n^{2}(s-2) + 3n + (s-2) + 3 =$$

$$(n^{2}-1)(s-2) + 3(n+1) = (n+1)[(n-1)(s-2) + 3] =$$

$$= (n+1)[n(s-2) - (s-5)].$$

For sequences $\{T^{(3)}(n)\},\ldots,\{T^{(7)}(n)\}$, according to Eq. (8), the general terms have the form:

$$T^{(3)}(n) = \frac{n}{6}(n+1)(n+2), \qquad T^{(4)}(n) = \frac{n}{6}(n+1)(2n+1),$$

$$T^{(5)}(n) = \frac{n^2}{2}(n+1), \qquad T^{(6)}(n) = \frac{n}{6}(n+1)(4n-1),$$

 $T^{(7)}(n) = \frac{n}{6} \cdot (n+1)(5n-2).$

In the book [5] many properties of trigonal pyramidal numbers being elements (terms) of the sequence $T^{(3)}(n)$ can be found.

4. Prismatic numbers

Let m be an arbitrary natural number distinct from 1. Consider the sequence:

$$m$$
, $2(m+1)$, $3(m+2)$, $4(m+3)$, $5(m+4)$, ...

and create for it the sequence $\{P^{(m)}(n)\}$ being the sequence of partial sums:

$$\{P^{(m)}(n)\}: m, 3m+2, 6m+8, 10m+20, 15m+40, \dots$$

It is easy to see that the above sequence is an arithmetic sequence of the third degree. The general term of this sequence cab be found drawing up a table of successive differences

Then we have

$$P^{(m)}(1) = m,$$
 $\Delta^1 P^{(m)}(1) = 2m + 2,$
 $\Delta^2 P^{(m)}(1) = m + 4,$ $\Delta^3 P^{(m)}(1) = 2.$

Using Eq. (4), we obtain

$$P^{(m)}(n) = \binom{n-1}{0}m + \binom{n-1}{1}2(m+1) + \binom{n-1}{2}(m+4) + \binom{n-1}{3} \cdot 2$$

or

$$P^{(m)}(n) = \frac{n}{6}(n+1)[3m+2(n-1)]. \tag{9}$$

Elements (terms) of the sequence $\{P^{(m)}(n)\}$ are called *prismatic numbers* of the range $m \ (m \ge 2.)$

The sequences of prismatic numbers of the second, third, and forth range have the form:

$$\{P^{(2)}(n)\}: 2 \ 8 \ 20 \ 40 \ 70 \ \dots \ P^{(2)}(n) = \frac{1}{3}(n+1)(n+2)$$

 $\{P^{(3)}(n)\}: 3 \ 11 \ 26 \ 50 \ 85 \ \dots \ P^{(3)}(n) = \frac{n}{6}(n+1)(2n+7)$
 $\{P^{(4)}(n)\}: 4 \ 16 \ 32 \ 60 \ 100 \ \dots \ P^{(4)}(n) = \frac{n}{3}(n+1)(n+5)$

Using prism, the prismatic numbers have the following geometrical illustration:

$$m = 2$$

m = 3

It should be noted that faces of a prism illustrating prismatic numbers being triangles can be interpreted as corresponding trigoanl numbers, whereas lateral faces of a prism being trapezes as *trapezoid numbers*.

For numbers $m=2,\ m=3,\ m=4,\ldots,m=s$ we obtain the following sequences of trapezoid numbers:

$$\{R^{(2)}(n)\}:$$
 2 5 9 14 20 ... $\{R^{(3)}(n)\}:$ 3 7 12 18 25 ... $\{R^{(4)}(n)\}:$ 4 9 15 22 30 ... \dots $\{R^{(s)}(n)\}:$ 5 2s+1 3s+3 4s+6 5s+10 ...

The general term of the sequence $\{R^{(s)}(n)\}$ can be found based on a table of successive differences:

Hence, we have $R^{(s)}(1) = s$, $\Delta^1 R^{(s)}(1) = s + 1$, $\Delta^2 R^{(s)}(1) = 1$. Using Eq. (4), we obtain

$$R^{(s)}(n) = \binom{n-1}{0}s + \binom{n-1}{1}(s+1) + \binom{n-1}{2}$$

or

$$R^{(s)}(n) = \frac{n}{2}(n - 1 + 2s). \tag{10}$$

The sequence $\{R^{(s)}(n)\}$ is an arithmetic sequence of the second degree. According to (10), the sequences $\{R^{(2)}(n)\}, \{R^{(3)}(n)\}, \{R^{(4)}(n)\}$ have the following general terms:

$$R^{(2)}(n) = \frac{n}{2}(n+3), \qquad R^{(3)}(n) = \frac{n}{2}(n+5), \qquad R^{(4)}(n) = \frac{n}{2}(n+7).$$

Summarizing we state that all the types of the abovementioned figurate numbers can be characterized by some arithmetic sequences of the second or third degree.

References

- [1] G. Bryll, R. Sochacki. Wybrane zagadnienia dydaktyki matematyki. Oficyna Wydawnicza GARMOND, Poznań 2009.
- [2] Sz. Jeleński. Śladami Pitagorasa. PZWS, Warszawa 1953.
- [3] H.B. Lübsen. Analysis. Friedrich Brandstetter Verlag, Leipzig 1922.
- [4] A. Mostowski, M. Stark. *Elementy algebry wyższej.* PWN, Warszawa 1958.
- [5] W. Sierpiński. Liczby trójkątne. Biblioteczka Matematyczna Nr 12, PZWS, Warszawa 1962.