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Abstract. The problem of calculating routing probabilities in packet synchronous
networks, such as optically-switched packet networks, involves enumerating packet
arrangements. Previously we published a method for enumerating the most probable
packet arrangements, and in this article we present its novel graph interpretation and
evaluate the method for several stop conditions and for the Poisson and geometric
probability distributions of arriving packets.

1. Introduction

Optical packet switching (OPS) is a technology that could be deployed in
future optical networks with packet switching [1]. In synchronous OPS packets
are sent out a node at the beginning of a time slot, and packets last one time
slot. Performance evaluation of OPS networks can be used for off-line network
planning and on-line evaluation to proactively provision optical resources with
OpenFlow |2].

One of the problems in the performance evaluation of synchronous OPS
is the enumeration of the possibilities of packet arrivals at a node, which we
call packet arrangements or just arrangements. Enumerating all arrangements
may be impractical and unnecessary, and so in [3| we published an algorithm
which efficiently finds any number of the most probable arrangements.
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2. Problem statement

A flow is a sequence of packets grouped together according to a given crite-
rion, such as the same source and destination nodes. A flow is described by
a probability distribution of the number of packets that arrive at a node in
a time slot. There are R flows for which the probability distribution functions
are given by vector F' = (f1,..., fr,... , fr). We assume that the distribution
functions f, are independent.

An arrangement takes place at a node in every time slot, and it is de-
scribed by a discrete random variable X = (z1,... ,2y,... ,xR), where x, is
a discrete random variable of the number of packets that belong to flow r.
The probability of arrangement X can be calculated as given by Eq. (1):

R
P(X’F) = Hfr(l'r) (1)
r=1

Arrangement X can be alternatively described by a random variable
Y = (i, sYr,-.. ,Yyr), where the number of packets x, is the y,th most
probable for flow r. For distribution f,(x,), we can find the value of z, that
yields the highest value of f,(x,), i.e. the mode, and denote it I'.(1). The
next most probable number is I',(2), and I',(y,) for the further y,-th most
probable number of packets.

The number of possible arrangements is the product of the domain sizes
of flow distributions. If a distribution for a flow is infinite, the number of
arrangements is infinite too. Even if the number of arrangements if finite,
enumerating all of them may be unnecessary.

Instead of enumerating arrangements in an arbitrary order, we find a se-
quence Xe = (ZT1e,... ,Tpe,... ,TRe) Oof the most probable arrangements,
where X7 is the most probable one, while the next arrangements X, have
nonincreasing probabilities, i.e. P(X,, F) > P(X 41, F).

3. Algorithm

The algorithm finds efficiently any number of the most probable arrangements,
and stops according to the stop condition provided by the user. In this section
we present a novel graph interpretation of the algorithm.

There is given a weighted directed graph. A vertex represents an arrange-
ment, and the label of the vertex represents the probability of the arrange-
ment. The source vertex represents arrangement Y7. An edge leaving vertex
Y, represents a possible way of obtaining a different arrangement by changing
in arrangement Y, the number of packets of a single flow to the next most
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Figure 1: A graph of the possible arrangements for two flows.

probable value. The weight of an edge is negative and represents the decrease
in probability of arrangement Y, caused by the change.

Figure 1 depicts a graph for two flows, but the vertex labels and edge
weights are omitted. The source vertex Y7 = (1,1) is the most probable, and
from it two new arrangements can be obtained: (1,2) and (2,1), but which of
them is Y5 depends on their probabilities.

In such a graph, the algorithm finds the longest paths from the source
vertex to other vertexes. For this purpose we adapted the Dijkstra algorithm,
even though the input data violates the conditions of the Dijkstra algorithm,
that the edges are nonnegative and that vertex labels are nondecreasing.

The adaptation involved a number of changes. First, the vertexes in the
priority queue are sorted not with increasing labels, but with decreasing labels,
as we search for vertexes with decreasing probabilities. Second, the relaxation
of an edge is performed not when there is an edge that yields a lower label
of a vertex, but when an edge yields a higher label of a vertex. Finally, the
source vertex is labeled not with zero, but with the probability of the most
probable arrangement.

4. FEvaluation

The evaluation discussed in this section was implemented as part of the test
suite of the OPUS software. The program file is test/test arr queue.cc, and
is available for download at [4].

Figures 2, 3, 4 and 5 show results of finding arrangements for five stop
conditions. In each of the figures there are two subfigures, one for the flows of
the Poisson distribution, the other for the flows of the geometric distribution.
The reported values are a function of the number of flows R.

A stop condition, when met, causes the algorithm to stop finding further
arrangements. A number of stop conditions can be devised, but we define
five stop conditions. They can be used separately or in a compound state-
ment. The algorithm stops when: 1) a number of found arrangements reaches
a given value, 2) the aggregate probability of found arrangements exceeds
a given value, 3) the ratio of the probability of the found arrangement to
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Figure 2: Aggregate probability of considered arrangements.
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Figure 3: The number of considered arrangements.

the probability of the most probable arrangement drops below a given value,
4) the size of the priority queue of arrangements exceeds the given value, 5) the
execution time exceeds the given value.

Each bar in the figures reports a mean value of a sample of 100 test cases.
A test case has the parameters of its flows chosen at random: for the Poisson
flows the intensities A € (0,1), for the geometric flows the probabilities of
success p € (0.5,1). The standard errors of the means are small, and they are
not reported in the figures. Results for each of the five conditions are shown
in each figure with the same bars: the black bars (wmmm) are for the limit of
1000 on the number of arrangements, the gray bars (====) are for the limit
of 0.5 on the aggregate probability, the white bars (—=) are for the limit of
1072 on the probability ratio, the checked bars (=xxx) are for the limit of 1000
on the arrangement queue size, and the slashed bars (=77) are for the limit
of 10 ms on the execution time.
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Figure 4: The time needed to find the arrangements.
16+06 100000
100000 7 10000 F 7 #
L 7
% 10000 ? ’ ’ ? ? _g 1000
e 1000 fg 1] ’ ’ ’ ’ o
g LAWY g 100
&) wl (TN g
1mant
10 ’ ’ ’ ’ ’ 10
1 I‘ ‘ ‘ 1 ] vl -
2 2 4 6 8 10
R R
(a) The Poisson case (b) The geometric case

Figure 5: The size of the queue.

Figure 2a shows the aggregate probability of the considered arrangements.
For up to 6 flows, the number of considered arrangements were enough to re-
sult in the aggregate probabilities above 0.9. For 10 flows the probability was
slightly above (0.7. Clearly, the stop condition for the number of considered
arrangements yields aggregate probability that decreases faster than a linear
function as the number of flows decreases. The other conditions gave results of
similar characteristic, but the time condition gave the least decreasing aggre-
gate probabilities as the number of flows increased. Figure 2b shows similar
results for the geometric flows. Figures 3, 4, 5 show the results on a logarith-
mic scale. Most of the results are an exponential function of the number of
flows, as the bars in the plots raise and fall like a linear function. However,
there is one exception: the execution time with the limit on the queue length
(Fig. 5, slashed bars) depends slightly on the number of flows, which suggests
that the operation of inserting of an element into the queue dominates.
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5. Conclusion

The evaluation showed that the proposed algorithm finds efficiently the most
probable arrangements, because we adopted the efficient Dijkstra algorithm.
However, as the number of flows increases, the number of arrangements re-
quired to obtain a given aggregate probability increases exponentially. For
a small number of flows the algorithm performs satisfactorily, but for larger
number of flows the algorithm is rendered unusable, because the number of
arrangements to consider (i.e. the size of the problem) grows exponentially.

In the future work, one could research how the algorithm performed had
the distributions been correlated.
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