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Abstract. In this study we presented an algorithm for an unconstrained optimiza-
tion of a continuous objective function, inspired by the Diffusion Monte Carlo method
using a weight-based implementation. In this algorithm a cloud of replicas explores
the solution space. Replicas are moved and evaluated after each step. Each replica
carries an additional parameter (weight) which reflects the quality of its local so-
lution. This parameter is updated after each step. Most inefficient replicas, i.e.
replicas with the lowest weights, are occasionally replaced with their highest weight
counterparts. In our study we present the basic implementation of the algorithm
and compare its performance with other approaches, including the previously used
implementation of DMC algorithm with a fluctuating population.

1. Introduction

Finding a global minimum of a nontrivial multidimensional function is a chal-
lenging problem in many areas of science and engineering |1, 2|. Many of
these problems belong to the class of NP-hard problems, which make them
extremely difficult to solve — except for a relatively small and simple cases.

There is a large number of algorithms for solving various types of global
minimum problems (GOP), unfortunately there is no generic algorithm which
can be applied to a wide selection of GOP. Most of the algorithms rely on
the specific characteristics of the optimized function, although there are also
more general methods, e.g. genetic algorithms [3|, and other evolutionary
approaches [4].
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In our study we present a different approach to the global minimum prob-
lem, inspired by the Diffusion Monte Carlo method [5, 6] used in quantum
physics and chemistry. We have already used a different implementation of
this algorithm in other studies [7-10] with a promising results.

In this paper we present a weight-based implementation of the DMC op-
timization scheme and compare it with the algorithm used in the previous
study.

In the next sections we discuss the details of the algorithm, show the effi-
ciency of both approaches on a set of simple problems, and discuss the strong
and weak points of both schemes.

2. Methodology

The DMC algorithm is often used in computational physics and chemistry to
solve numerically a time dependent Schrodinger equation by a random walk of
a cloud of replicas of a quantum system. Based on the weights distribution of
replicas, the approximate wave-function of the system can be obtained. Two
implementations of the algorithms are used. One, suggested by Anderson [5],
involves the modifications of the population size (kill/clone process). Another
approach, used by Suhm and Watts [6], uses continuous weighting method.

In this study we applied the Suhm and Watts implementation of the DMC
algorithm. The following procedure was used in our simulations:

Initialize population. The initial population of replicas is randomly
generated. Each replica represents a possible solution (i.e. the vector of
objective function variables). The size of the population N, is an empirical
parameter and depends on the problem. The additional parameter (weight)

is assigned to each replica. The usual value of the initial weight is %
rep

Move replicas. Fach replica is moved randomly with displacement Az
generated from the Gaussian distribution with g = 0 and ¢ depending on the
problem:

Tnt+1 = Tn + Azx. (1)

Calculate objective function values and modify weights. The ob-
jective function value is calculated for each replica. The weight (w;) of each
replica is then modified according to Eq. 2, where f; is the objective function
value of the replica 4, f is the mean value calculated over the total population,
7 is the empirical parameter, and n is the step number,

Wi n4+1 = Wi n €XP [_(fi - f)T]- (2)
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After the modification, weights of all replicas are renormalized to avoid nu-
merical errors (underflows or overflows).

Exchange replicas. During the simulation, some replicas explore regions
of the solution space with high objective function values. To avoid the un-
necessary computations, these replicas are occasionally removed. Each time
the replica is removed from the population, the replica with the largest weight
is cloned and the weight is divided between both copies. This procedure
eliminates worst solutions while keeping the population size constant.

Check for stopping criteria. In our study we use a fixed number of
steps, although other criteria can also be used.

In our study we use two test functions, namely Ackley’s problem in
N-dimensions [11| and Griewangk’s problem [12]. Ackley’s problem is a mul-
timodal, non-separable, differentiable and scalable function defined as:
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where ¥ = {z1,z9,...,2n}, and x; € (—32.768,32.768). It has a known
optimal solution for & = {0,0,...,0}, and F (&) = 0.
Griewangk’s problem is also a multimodal, non-separable, differentiable

and scalable function defined as:
v - ﬁ cos [ 2L (4)
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where & = {z1,29,...,2n}, and z; € (—600,600). It has a known optimal
solution for ¥ = {0,0,...,0}, and F(Z) = 0.

In our study we performed two sets of tests for each function, using the
number of dimensions Ny, = 5 and Ny, = 20, respectively. For each test we
performed DMC simulations using the randomly generated initial population
of Npep = 100 replicas, and the fixed number of steps, Ngteps = 1000. The
empirical parameter 7 was set as 0.5 in all the DMC runs, and the value
of o was equal to 0.5 for Ackley’s problem and 5.0 for Griewangk’s one (to
account for its larger solution space). After each step 10% of the population
was replaced.

The values of the simulation parameters were based on the educated guess
based on results from [8], although we are aware that these values may not be
optimal for our test functions.
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For a reference, we used results from a blind search, simple random walk,
and the DMC approach based on variable population size — DMC-VP (the
details of this method can be found in [10]). In the first method, N,¢, random
solution candidates in each of the Ngps steps are generated and evaluated.
In the second one, replicas are moved randomly according to the Gaussian
distribution with a given o value, but without the modification of the popu-
lation. In order to better compare both DMC approaches, we used the same
simulation parameters in both DMC runs.

The computational cost of all approaches is similar, therefore their perfor-
mance can be directly compared.

All experiments were repeated three times to remove possible artifacts.
Each time, the different initial population was used for random walk and DMC
runs. The averaged values from these experiments were used for comparison
of the algorithms efficiency.

3. Results and discussion

Results of the simulations are shown in Table 1. The values f;,;+ are the best
solutions from the initial (randomly generated) populations. In the case of the
blind search, each sampling is independent and therefore the initial solution
is defined as the result of first V.., samples. The values of fy.s are the best
solutions found during the simulation. The value fpest/ finit gives the factor,
by which the initial solution was improved during the simulation. All the
values in Table 1 are averaged over three independent runs.

Table 1: Simulation results.

Test function: | Ackley’s || Griewangk’s
Ngim =5
Method finit fbest % finit fbest %
Blind search 6.99 | 0.386 2.10 | 0.068
Random walk 11.27 | 0.623 18.39 | 0.593
DMC-VP 18090 050 | 0.033 || 3MOV | 019 0.006
DMC-CW 0.66 | 0.036 0.12 | 0.004
Ngim = 20
Method finit fbest % finit fbest %
Blind search 18.78 0.921 161.19 0.511
Random walk 19.44 0.953 292.42 0.928
DMC-VP 20401 466 | 0208 | 31922 131 0.004
DMC-CW 3.92 | 0.192 1.19 | 0.004
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The results obtained from both DMC-VP and DMC-CW simulation clearly
outperform other approaches. In the case of Griewangk’s problem the improve-
ment of the initial solution is very good for both Ny, = 5 and Ny = 20
cases, while for blind search and random walk the efficiency is not only much
worse, but it also deteriorates for a larger problem size. There is no signifi-
cant difference between DMC-VP and DMC-CW results, both algorithm give
similar results.

Ackley’s problem seems to be more challenging for all algorithms. The
improvement for DMC is not as good as in the previous case, especially for
Ngim = 20, where the factor of the solution improvement is only 0.2. Nev-
ertheless, the efficiency of both DMC algorithms is much better than other
methods, e.g. for Ny, = 20 both random walk and blind search were able to
reduce the initial solution by less than 10%. Both DMC-VP and DMC-CW
runs give similar results, although DMC-CW is slightly better for Ny, = 20.

From the efficiency point of view, both DMC algorithms give similar results.
However, the DMC-CW approach has several advantages over the DMC-VP.
The fixed size of the population is easier to implement and handle in the
computer storage (static vs. dynamic). The DMC-VP population size can
drastically change (population explosion or annihilation) if incorrect parame-
ters are used. The DMC-CW does not use random number generator in the
modification phase, reducing the possible error from the low quality random
numbers (although random numbers are still used for moving replicas).

Unfortunately, there are also several disadvantages of the DMC-CW scheme:
The range of weights increases very fast and must be normalized to avoid
overflows and underflows. Some replacement strategy must be used to remove
inefficient replicas without inhibiting the exploration process.

4. Conclusions

In this study we have presented a new global optimization approach based
on the Diffusion Monte Carlo method with continuous weighting (DMC-CW).
We have shown that performance of this algorithm is similar to the DMC im-
plementation with variable population size, while current approach is easier to
implement and is more stable numerically. Both DMC algorithms outperform
algorithms based on the blind search and simple random walks.

Both DMC schemes used in the current study are conceptually simple,
they are easy to implement on a multiprocessor machine. They require only
the value of the objective function. Therefore, they are good candidates for
a general global optimization scheme, although they require the large number
of function evaluation, so their usage is limited to inexpensive functions, which
can be quickly and cheaply calculated.
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