Jan Dtugosz University in Czestochowa

Scientific Issues, Mathematics XVI, Czestochowa 2011

DIFFERENT KINDS OF BOUNDARY
CONDITIONS FOR TIME-FRACTIONAL
HEAT CONDUCTION EQUATION

Yuriy Povstenko

Institute of Mathematics and Computer Science
Jan Dtugosz University in Czestochowa
Armii Krajowej 13/15, 42-200 Czestochowa, Poland
e-mail: j.povstenko@ajd.czest.pl

Abstract. The time-fractional heat conduction equation with the Caputo derivative
of the order 0 < a < 2 is considered in a bounded domain. For this equation dif-
ferent types of boundary conditions can be given. The Dirichlet boundary condition
prescribes the temperature over the surface of the body. In the case of mathematical
Neumann boundary condition the boundary values of the normal derivative are set,
the physical Neumann boundary condition specifies the boundary values of the heat
flux. In the case of the classical heat conduction equation (o = 1), these two types
of boundary conditions are identical, but for fractional heat conduction they are
essentially different. The mathematical Robin boundary condition is a specification
of a linear combination of the values of temperature and the values of its normal
derivative at the boundary of the domain, while the physical Robin boundary condi-
tion prescribes a linear combination of the values of temperature and the values of
the heat flux at the surface of a body.

1. Introduction

The conventional theory of heat conduction is based on the classical (local)
Fourier law, which relates the heat flux vector q to the temperature gradient

q=—kgradT, (1)



62 Yuriy Povstenko

where k is the thermal conductivity of a solid. In combination with a law of
conservation of energy,
oT
C — = —div 2
PC > q (2)
with p being the mass density, C the specific heat capacity, the Fourier law
leads to the parabolic heat conduction equation
oT
— =aAT, 3
T (3)
where a is the thermal diffusivity coefficient.

It should be noted that Eq. (1) is a phenomenological law which states the
proportionality of the flux to the gradient of the transported quantity. It is
met in several physical phenomena with different names.

For example, it is well known that from mathematical viewpoint the Fourier
law (1) in the theory of heat conduction and the Fick law in the theory of
diffusion,

J = —k.gradc, (4)

where J is the matter flux, ¢ is the concentration, k. is the diffusion conduc-
tivity, are identical. In combination with the balance equation for mass,

0
P 8_§ = —divJ, (5)
the Fick law leads to the classical diffusion equation
oc
a = Q¢ Ac. (6)

Here a. is the diffusivity coefficient.

Similarly, the classical empirical Darcy law, describing the flow of fluid
through a porous medium, states proportionality between the fluid mass flux
J and the gradient of the pore pressure p,

J = —k,gradp, (7)
and leads to the parabolic diffusion equation for the pressure

dp

— =a, Ap. 8
Though we will consider heat conduction, it obvious that the discussion

concerns also diffusion as well as the theory of fluid flow through the porous

solid.
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Nonclassical theories of heat conduction in which the Fourier law and the
standard heat conduction equation are replaced by more general equations,
constantly attract the attention of the researchers. For an extensive biblio-
graphy on this subject see [1-11] and references therein.

2. Nonlocal generalizations of the Fourier law

For materials with time nonlocality (with memory) the effect at a point x at
time ¢ depends on the histories of causes at a point x at all past and present
times. In the theory proposed by Gurtin and Pipkin [12]| the law of heat
conduction is given by general time—nonlocal dependence

q(t) = —k:/ooo K(u)grad T'(t — u) du. (9)

Using substitution 7 =t — u leads to the following equation

t
q(t) = —k/_ K(t —7)grad T(7) dr. (10)

Choosing 0 instead of —oo as a “starting point”, we obtain

t
q(t) = —k:/o K(t—7)grad T(r)dr (11)

and the heat conduction equation with memory [13]:

or !
— = a/ K(t—71)AT(T)dr. (12)
ot 0

The time-nonlocal dependences between the heat flux vector and the tem-
perature gradient with the “long-tale” power kernel K (¢ — 7) were considered
in [5, 8, 9] (see also [14])

q(t) = _I‘(ka)gt/o (t — 1) Lgrad T(r)dr, 0<a<l,; (13)

q(t) = — K ] /0 (t — 1) 2 grad T(r) dr, l<a<?2, (14)

MNa—-1

where I'(«) is the gamma function. Equations (13) and (14) can be interpreted
in terms of fractional integrals and derivatives

q(t) = —kDp,“grad T(t), 0<a<l; (15)
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q(t) = —kI* tgrad T(t), l<a<?, (16)

where 1¢f(t) and D%, f(t) are the Riemann-Liouville fractional integral and
derivative of the order «a, respectively [15-18]:

o) = ﬁ/o (t— 1L f(r)dr, a0, (17)

n t
D%Lf(t)::? [ﬁ/o (t—1)" " f(r)dr|, n—1l<a<n. (18)

The constitutive equations (15) and (16) yield the time-fractional heat
conduction equation

0T

ot

with the Caputo fractional derivative of order 0 < a < 2

= aAT, 0<a<2, (19)

daf(t) 1 ) /t(t _ T)n—a—ldnf(T) (‘17’,
0

- drn

—1 . 20
o T(n—a n <a<n (20)

3. Boundary conditions

The Dirichlet boundary condition (the boundary condition of the first kind)
specifies the temperature over the surface of the body under consideration

T|y = go(xs,t). (21)

For fractional heat conduction equations, two types of Neumann boundary
condition (the boundary condition of the second kind) can be considered: the
mathematical condition with the prescribed boundary value of the normal
derivative

oT
— 22
anls Go(xs,1) (22)

and the physical condition with the prescribed boundary value of the heat flux

oT
Dzl%_La% = Go(xs,t), 0<a<l,
’ (23)
T
I(H%n s: Go(xs,t), 1<a<2.
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In the case of the classical heat conduction equation (o = 1), these two types
of boundary condition are identical, but for fractional heat conduction they are
essentially different. Similarly, the mathematical Robin boundary condition
(the boundary condition of the third kind) is a specification of a linear com-
bination of the values of temperature and the values of its normal derivative
at the boundary of the domain

oT
<61T + C2 a—ﬂ)

with some nonzero constants c¢; and cy, while the physical Robin boundary
condition specifies a linear combination of the values of temperature and the
values of the heat flux at the boundary of the domain. The condition of convec-
tive heat exchange between a body and the environment with the temperature
Te leads to

= Hy(xs,1) (24)
S

T

(hT + /.cD};Lag) = hT,(xg,t), 0<a<l,
n

’ (25)
T

(hT + klo‘lg—> = hT.(xs,t), 1<a<2,

n
S

where h is the convective heat transfer coefficient.

References

[1] Ya.S. Podstrigach, Yu.M. Kolyano. Generalized Thermomechanics. Nau-
kova Dumka, Kiev 1976. (In Russian).

[2] D.D. Joseph, L. Preziosi. Heat waves. Rev. Modern Phys., 61, 41 73,
1989.

[3] R. Metzler, J. Klafter. The random walk’s guide to anomalous diffusion:
a fractional dynamics approach. Phys. Rep., 339, 1 77, 2000.

[4] R. Metzler, J. Klafter. The restaurant at the end of the random walk:
recent developments in the description of anomalous transport by frac-
tional dynamics. J. Phys. A: Math. Gen., 37, R161-R208, 2004.

[5] Y.Z. Povstenko. Fractional heat conduction equation and associated
thermal stress. J. Thermal Stresses, 28, 83 102, 2005.



66

Yuriy Povstenko

6]

7l

8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

S. Bargmann, P. Steinmann, P.M. Jordan. On the propagation of second-
sound in linear and nonlinear media: results from Green-Naghdi theory.
Phys. Lett. A, 372, 4418-4424, 2008.

R. Quintanilla, P.M. Jordan. A note on the two temperature theory
with dual-phase-lag delay: some exact solutions. Mech. Res. Commun.,
36, 796 803, 2009.

Y.Z. Povstenko. Thermoelasticity which uses fractional heat conduction
equation. J. Math. Sci., 162, 296-305, 2009.

Y.Z. Povstenko. Theory of thermoelasticity based on the space-time-
fractional heat conduction equation. Phys. Ser. T, 136, 014017, (6 pp),
2009.

J. Ignaczak, M. Ostoja Starzewski. Thermoelasticity with Finite Wave
Speeds. Oxford University Press, Oxford 2010.

Y.Z. Povstenko. Fractional Cattaneo-type equations and generalized
thermoelasticity. J. Thermal Stresses, 34, 97 114, 2011.

M.E. Gurtin, A.C. Pipkin. A general theory of heat conduction with
finite wave speeds. Arch. Rational Mech. Anal., 31, 113 126, 1968.

R.R. Nigmatullin. To the theoretical explanation of the “universal re-
sponse". Phys. Stat. Sol. (b), 123, 739-745, 1984.

R. Gorenflo, F. Mainardi, D. Moretti, P. Paradisi. Time fractional dif-
fusion: a discrete random walk approach. Nonlinear Dynamics, 29,
129 143, 2002.

S.G. Samko, A.A. Kilbas, O.I. Marichev. Fractional Integrals and Deri-
vatives, Theory and Applications. Gordon and Breach, Amsterdam 1993.

R. Gorenflo, F. Mainardi. Fractional calculus: integral and differen-
tial equations of fractional order. Fractals and Fractional Calculus in
Continuum Mechanics, A. Carpinteri, F. Mainardi (Eds.), pp. 223 276,
Springer, New York 1997.

I. Podlubny. Fractional Differential Equations. Academic Press, San
Diego 1999.

A.A. Kilbas, H.M. Srivastava, J.J. Trujillo. Theory and Applications of
Fractional Differential Equations. Elsevier, Amsterdam 2006.



