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Abstract. We show that the one-sided regularizations of the generator of any uni-
formly continuous set, valued Nemytskij operator, acting between the spaces of func-
tions of bounded variation in the sense of Schramm, is an affine function. Results
along these lines extend the study [1].

1. Introduction

Let (X,|-|) and (Y,]|-|) be two real normed spaces, C' be a convex cone in X
and I = [a,b] C R (a,b € R,a < b) be an interval. Let cc(Y) be the family of
all non-empty convex and compact subsets of Y. We consider the Nemytskij
operator, i.e. the composition operator defined by (H F')(t) = h(t, F'(t)), where
F:I—C, h:IxC — cc(Y) is a given set-valued function. It is shown
that if the operator H maps the space ®BV (I;C) of functions of bounded
®-variation in the sense of Schramm into the space BSy(I;cc(Y)) of set—
valued functions of bounded W-variation in the sense of Schramm, and is
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uniformly continuous, then the one-sided regularizations h~ and h™ of h with
respect to the first variable, are affine with respect to the second variable. In
particular,

h™(t,x) = A(t)xr + B(t) fortel, xeC,

for some function A : I — L(C,cc(Y)) and B € BSy(I;cc(Y)), where
L(C,cc(Y)) stands for the space of all linear mappings acting from C' into
ce(Y).

2. Preliminaries

We start by recalling some very basic facts as definitions and known re-
sults concerning the space of functions of bounded variation in the sense of
Schramm.

Let F be the set of all convex functions ¢ : [0,00) — [0,00) such that
#(0) = ¢(0") = 0 and tliﬁmOO ¢(t) = co. Then we have

Remark 1. 1If ¢ € F, then ¢ is continuous and strictly increasing
(see [1, 7]).

A sequence ® = (¢;)72; of functions from F satisfying the following two
conditions:

(1) Oont1(t) < pp(t) forallt >0 and n € N,

o0
(il) > ¢n(t) diverges for all x > 0,
n=1

is said to be a ® sequence.

Let I = [a,b] (a,b € R,a < b) be an interval. For a set X we denote by
X' the set of all functions f: I — R.
If I, = [an,by] is a subinterval of the interval I (n = 1,2,...), then we

write f(In) = f(bn) - f(an)

Definition 1. Let ® = (¢,)52; be a ® sequence and (X, |- |) be a real
normed space. A function f € X' is of bounded ®-variation in the sense of
Schramm in I if

ve(f) = va(f, 1) :=sup D ¢n(|f(Ln)]) < o0, (1)
n=1

where the supremum is taken over all m € N and all non—ordered collections
of non overlapping intervals I, = [an,b,] C I,n=1,... ,;m (|18]).
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It is known that for all a,b,c € I, a < ¢ < b we have ve(f,a,c]) <
vo(f,[a,b]) (that is ve is increasing with respect to the interval) and

U‘1>(f7 [a’v C]) + U‘I’(fv [Ca b]) < U‘I’(fv [a’ b])

In what follows we denote by Vg (I, X) the set of all functions f € X/
of bounded ®-variation in the Schramm sense and by ®BV (I, X) the linear
space of all functions f € X7 such that vg(\f) < oo for some constant A > 0.

In the space @BV (I, X) the function || -||¢ defined by

[flle = [f(a)l +pa(f), [feP®BV(I,X),

where
po(f) = pa(f,I) = inf{e >0:vg(f/e) < 1}, fe®BV(L,X), (2)

is a norm (see for instance [14]).

For X = R, the linear normed space (PBV(I,R),]|| - ||o) was studied by
Schramm |18, Theorem 2.3]. The functional p(-) defined by (2) is called the
Luzemburg-Nakano-Orlicz seminorm |5, 25, 26].

It is worth mentioning that the symbol ®BV (I, C') stands for the set of
all functions f € ®BV (I, X) such that f: I — C and C is a subset of X.

Let cc(X) be the family of all non-empty convex compact subsets of X,
and let D be the Pompeiu-Hausdorff metric in cc(X), i.e.

D(A, B) := max {e(A, B), e(B,A)}, A, B € ce(X), (3)
where
e(A, B) = sup {d(m,B) Lz € A}, d(z, B) = inf {d(x,y) Ly B}. (4)

It is easy to check that the Pompeiu-Hausdorff metric D is invariant with
respect to translation, i.e.

D(A,B)=D(A+Q,B+Q) (5)

(see |4, Lemma 3|) for all A,B € cc(X) and bounded nonempty subset
Q of X.

Definition 2. Let ® = (¢,)22,; be a ®-sequence and F : I — cc(X).
We say that I’ has bounded ®-variation in the Schramm sense if



26 T. Eret, J.L. Séanchez, N. Merentes, M. Wrébel

where the supremum is taken over all m € N and all non—ordered collections
of non—overlaping intervals I,, = [ay,b,] C I,i=1,... ,m.
From now on, let

BSg(I,cc(X)) = {F € ce(X)! 1 we(AF) < oo for some \ > 0}. (7)
For F, F» € BSs(I,cc(X)) put
Do (Fy, Fy) := D (Fi(a), Fa(a)) + pa(F1, F2), (8)

where

po(F1, Fy) = inf {e >0:S.(F, F) < 1} 9)

and
Se(Fl, Fg) = Supz qbn (%D(Fl(tn) + Fg(tnfl); Fg(tn) + Fl(tnl))) y (10)
n=1

where the supremum is taken over the same collection ([an,by])p~; as in
Definition 2. Then (BSs(I,cc(X)), Dg) is a metric space, and it is complete
if X is a Banach space |24, Lemma 5.4].

Taking into account [23, Theorem 3.8 (d)] and [24, condition 5.6, we get
the following

Lemma 1. Let ® = (¢,,)2, be a ® sequence and Fj, Fy € BSs(I, cc(X)).
Then, for A > 0,

S\(F1,F,) <1 if and only if pg(Fi, Fp) <A -

In what follows, let(X,|-|), (Y,]-]|) be two real normed spaces and C be
a convex cone in X. Given a set-valued function h : I x C' — cc(Y') we set
the composition operator H : G — cc(Y)! generated by h as:

(Hf)(t) := h(t, f(t), fecl, tel (11)

Moreover, let us denote by A(C, cc(Y')) the space of all additive functions
and by L(C, ce(Y)) the space of all set-valued linear functions, i.e. the space of
all set-valued functions A € A(C, cc(Y')) which are positively homogeneous [1].

Now we quote the following lemma given by Nikodem.

Lemma 2. (|15, Theorem 5.6]). Let (X,|-|), (Y,|-|) be normed spaces
and C' a convex cone in X. A set-valued function F' : C — cc(Y) satisfies
the Jensen equation

F("”;y) - %(F(aj) +F(y)), 2,y € C, (12)
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if and only if there exist an additive set-valued function A : C — ¢c(Y') and a
set B € cc(Y) such that F(x) = A(z)+ B forall z € C. (]

3. The composition operator

Now we will present our main result.

Theorem 1. Let (X, |- |) be a real normed space, (Y,|-|) a real Banach
space, C' a convex cone in X and suppose that ® = (¢,,)72; and ¥ = (¢,,)72,
are ®—sequences. If the composition operator H generated by a set-valued
function h : I x C — cc(Y) maps ®BV(I,C) into BSy(I,cc(Y)) and
is uniformly continuous, then the left regularization of h, i.e. the function

h™ I x C — cc(Y) defined by

h™(t,z):=limh(s,z), tel, ze€C,

sTt

exists and

h™(t,x) = A(t)r + B(t), tel, ze€C,

for some A:I — A(X,ce(Y)) and B : I — cc(Y). Moreover, if 0 € C,
then B € BSy(I,cc(Y)) and the linear set-valued function A(t) is continuous.

Proof. For every x € C, the constant function I 5 t — z belongs to
®BV(1,C). Since H maps ®BV(I,C) into BSy (I, cc(Y)) for every z € C,
the function I 5 ¢ — h(t,z) belongs to BSy(I,cc(Y)). Now the complete-
ness of cc(Y') with respect to the Pompeiu-Hausdorff metric [24, Lemma 6.12]
implies the existence of the left regularization h~ of h.

By the assumption, H is uniformly continuous on ®BV(I,C). Let
w:RT — R*™ be the modulus of continuity of H, that is

w(p):= SUP{D\P(H(fl)aH(ﬁ))Z I fi—felle < p; f1,fa € ®BV(I, 0)}> p > 0.
Hence we get

Dy (H(f1),H(f2)) <w(|fi = follo) for fi,fa € ®BV(I,C). (13)

From the definition of the metric Dy and (13), we obtain

pu(H(f1);H(f2)) <w(||fr = follo) for fi, fo € ®PBV(I,C). (14)

From Lemma 1, if w(||f1 — f2]ls) > 0, the inequality (14) is equivalent to

Su(llfr-1alle) (H(fl),H(fg)) <1, fi1,fo€ ®BV(I,C). (15)
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Therefore, foranya < o1 < f1 < aa < o < <y < B =0b, oy, B €1,
i€{1,2,---,m}, m €N, the definitions of the operator H and the functional
Se, imply

> D(h(Bi, f1(B:)) + hley, fa(cw)); R(Bs, f2(8i)) + R, fi(ew))) -
;%( w(llfr = folle) ) -
(16)
For o,B € R, a < 3, we define functions 7,3:R — [0,1] by
0 if t<a«
=3I a<i<p (17)
Na,3(t) o if a<t<
1 if B<t.

Let us fix t € I. For arbitrary finite sequence a < a1 < 1 < ag < o <
s <y < B < tand 21,29 € C, 11 # 9, the functions f, fo : [ — X
defined by

1
fe(1) =5 (Mo, (T) (@1 — ) + g+ 2], T€I, =12, (18)

belong to the space @BV (I,C). From (18) we have

1 — X2

fi(r) = fo(1) = 5 Tel,
therefore
xr1T — X
1= falle = |52
moreover
[1(Bi) = x1; f2(Bi) = o ‘ngQ; filew) = o ;—wz; fa(ai) = 2.

Using (16), we get

D (h(Bi,@1) + b, @); h (as, 2522) + h (85, 25+2))

> b <1. (19)
i=1 w ( age )

Fix a positive integer m. We have
sz D(h(ﬁwxl)"‘h(azaxZ)vh(azv 2 ) +h‘(ﬁl7 2 )) <1 (20)

L1 —x2

=)
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From the continuity of v;, passing to the limit in (20) when «a;y T t, we
obtain that

D (h_(t,:cl) +he(t,22); 2R~ <t, 7 —;m))
<1

X;wi (\Il _mD
1= w

2

Hence,

o0 D (h™(t,z1) + h™(t,x2); 2R~ (t, B1522))

> i ( nE=) 2 <1,

i=1 y
and’ by (11)5

D(h_(t, 21) + h(tw2); 20~ (t, 3 ;—m)) o

Therefore,

= (t T+ xg) _ h=(t,z1) + h™(t, z2)
' 2 2
forall telandall =z, 29 € C.

Thus, for each ¢ € I, the function h™(¢,-) satisfies the Jensen functional
equation in C'. Consequently, by Lemma 2, for every ¢ € [ there exist an
additive set valued function A(t): C — cc(Y') and a set B(t) € cc(Y') such
that

h™(t,z) = A(t)r + B(t) for z€C, tel, (21)

which proves the first part of our result.

The uniform continuity of the operator H : @BV (I,C) — BSy(I,cc(Y))
implies the continuity of the function A(t) so that A(t) € L(C,cc(Y))
[15, Theorem 5.3]. Putting x = 0 in (21) and taking into account that
A(t)0 = {0} for t € I, we get

h=(t,0) = B(t), tel,

which implies that B € BSy(I, cc(Y)). =

Remark 2. The counterpart of Theorem 1 for the right regularization h™
of h defined by

Rt (t,z) = li?tl h(s,z), tel,

is also true.
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Remark 3. Taking 1,(t) = ¥(t) (t > 0), we obtain the main result
of [1].

Remark 4. Denote by S the set of all functions f € BV (I, () such that

F(t) = = [lop () (1 — 22) + 7+ 2],

2
where 7, 3 is defined by (17) and @ = x1 or & = 5. It follows from the argu-
ment used in the proof that Theorem 1 remains valid if the uniform continuity
of the operator H is postulated only on the set S.
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