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Abstract

In many various practical problems we often deal with computing distribution functions of sums

of independent non-negative random variables. In applied mathematics (ex. queueing theory) we

can find many formulas with Stieltjes convolutions of distribution functions of random variables of

the same type. Finding convolutions on the base of definition is not easy and convenient, because

there are some technical problems connected with computations. There are some interesting ways

to obtain such distribution functions applying other methods. In this paper we present methods

connected with applications of generating functions and Laplace-Stieltjes transforms.

1. Introduction

Assume that ξ1, ξ2 are two independent non-negative random variables.

Distribution functions of these random variables will be denoted by L1(x) and

L2(x), respectively.

For the random variable ξ = ξ1 + ξ2 we easily obtain formula for its distri-

bution function L(x) = P{ξ < x}.

L(x) = P{ξ < x} = P{ξ1 + ξ2 < x} =

=

∫ x

0
P{ξ2 < x− u|ξ1 ∈ [u, u+ du)}P{ξ1 ∈ [u, u+ du)} = (1)

=

∫ x

0
P{ξ2 < x− u}P{ξ1 ∈ [u, u+ du)} =

∫ x

0
L2(x− u)dL1(u).
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In the case of discrete independent random variables taking only integer

values with distributions

pk = P{ξ1 = k}, rk = P{ξ2 = k}, k = 0, 1, . . . ,
∑

k

pk =
∑

k

rk = 1

we can obtain the distribution of random variable ξ = ξ1 + ξ2 as follows:

qk = P{ξ = k} = P{ξ1 + ξ2 = k} =
k

∑

i=0

P{ξ1 = i, ξ2 = k − i} = (2)

=
k

∑

i=0

P{ξ1 = i}P{ξ2 = k − i}.

Then we can finally calculate the distribution function of random variable ξ

applying the formula

L(x) =
∑

k<x

qk.

For the arbitrary number of independent random variables we can generalize

(1), (2) by induction but final formulas may not be convenient.

For example, if we consider two independent random variables having expo-

nential distribution with the parameter a (a > 0) i.e. L1(x) = L2(x) = 1−e−ax

for x > 0, applying integration by parts, we easily obtain

L(x) =

∫ x

0

(

1− e−a(x−u)
)

ae−audu =

=

∫ x

0
ae−audu−

∫ x

0
ae−axdu = 1− (1 + ax)e−ax.

So in this case we obtain 2-Erlang distribution with the parameter a.

In the case of many independent random variables computation becomes

very complicated because we have to use parts integration repeatedly.

Consider now two independent random variables ξ1, ξ2 which have geomet-

ric distribution with the parameter p (p ∈ (0, 1)) i.e. pk = rk = (1 − p)pk,

k = 0, 1, . . .. Then we obtain the following result:

qk = P{ξ1 + ξ2 = k} =

k
∑

i=0

P{ξ1 = i}P{ξ2 = k − i} =

=
k

∑

i=0

(1− p)pi(1− p)pk−i =
k

∑

i=0

(1− p)2pk = (k + 1)(1− p)2pk.
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In the case of n independent random variables (n ≥ 3) computation also

becomes more difficult because of complicated sums appearing.

Formulas with Stieltjes convolutions which can be calculated applying (1),

(2) appear in applied mathematics very often. For example, they are used in

theory of queueing systems with non-homogeneous customers ([3], [4], [5]).

2. Laplace-Stieltjes Transformation (LST) and its Useful

Properties

Let ξ denote a non-negative random variable and L(x) its distribution func-

tion. For every complex q that has non-negative real part (re q ≥ 0) we can

define the following function ([1], [4]):

α(q) = Ee−qξ =

∫ ∞

0
e−qxdL(x). (3)

The function given by (3) is called Laplace-Stieltjes transformation (LST) of

random variable ξ.

Now we present two very interesting properties of LST that can be used in

obtaining distribution functions of sums of independent random variables.

Property 1. Let ξ1, ξ2, . . . , ξn denote the sequence of independent non-negative

random variables and α1(q), α2(q), . . . , αn(q) – a sequence of LST of these

random variables respectively and ξ = ξ1 + ξ2 + . . .+ ξn – the sum of random

variables ξ1, ξ2, . . . , ξn. Let α(q) denote the LST of random variable ξ. Then

we obtain the following formula:

α(q) =
n
∏

i=1

αi(q). (4)

Proof. Applying the definition of LST, in view of properties of mean value of

independent random variables product, we obtain

α(q) = Ee−qξ = Ee−q
∑n

i=1
ξi = E

n
∏

i=1

e−qξi =

n
∏

i=1

Ee−qξi =

n
∏

i=1

αi(q).

�
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Property 2. Assume that ξ is a non-negative random variable and denote

as L(x) and α(q) distribution function and LST of random variable ξ conse-

quently. Then we have the following formula:

α(q) =

∫ ∞

0
e−qxdL(x) = q

∫ ∞

0
e−qxL(x)dx. (5)

Notice that the integral on the right side of (5) is the well known Laplace

transformation of the function L(x).

Proof. Calculating the integral from the left side of (5) by parts integration

and the basic properties of Stieltjes integral we obtain

α(q) =

∫ ∞

0
e−qxdL(x) = e−qxL(x)

∣

∣

∞

0
−

∫ ∞

0
L(x)d(e−qx) =

= q

∫ ∞

0
e−qxL(x)dx.

Applying the two above properties we can obtain the distribution functions of

sums of independent non-negative random variables. First we have to calculate

LST αi(q) for every random variable and in view of (4) we obtain LST

α(q) =
n
∏

i=1

αi(q)

of sum of all variables. Secondly, applying (5), we obtain Laplace transforma-

tion of the sum l(q) = α(q)
q
. Finally, we can use Laplace transform inversion

to find distribution function of the sum. In the last step we can use residuum

method or Laplace transformation tables or computer algebra systems (Math-

ematica environment). This method is very useful especially in the case of

absolutely continuous random variables. �

3. Examples of calculating distribution functions of sums of

independent random variables using LST

Let us consider n independent random variables having exponential distri-

bution with parameters ai (i = 1, n). Applying (4), (5) we obtain

l(q) =

∏n
i=1 ai

q
∏n

i=1(ai + q)
. (6)
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Applying computer algebra systems and inverse Laplace transformation, we

obtain distribution function of the sum of above random variables in the form

L(x) = 1 +
n
∑

i=1

∏

j 6=i aj
∏

i 6=j(ai − aj)
e−aix. (7)

In the special case of n independent random variables having exponential

distribution with the same parameter a we have αi(q) = a
a+q

, i = 1, n. In

view of (4) and (5) we obtain formula for the Laplace transformation of the

sum of these variables

l(q) =
an

q(a+ q)n
. (8)

Applying residuum method we can obtain the distribution function in the

form

L(x) = 1− e−ax
n−1
∑

i=0

(ax)i

i!
. (9)

So in this case we obtain n-Erlang distribution with the parameter a.

Assume now that we have n independent random variables having uniform

distribution on the interval [a, b] (0 ≤ a < b) i.e. for every i = 1, n Li(x) =
x−a
b−a

for every x ∈ [a, b] and Li(x) = 0 if x < a and Li(x) = 1 if x > b. Then we

have αi(q) =
e−aq−e−bq

q(b−a) , i = 1, n. Applying (4) and (5) we obtain

l(q) =
(e−aq − e−bq)n

qn+1(b− a)n
. (10)

Using computer algebra systems we can obtain the distribution function in

the form

L(x) =

(

−1

b− a

)n n
∑

l=0

(−1)l((b− a)l − bn+ x)nH((b− a)l − bn+ x)

l!(n− l)!
, (11)

where H(x) is the Heaviside unitstep function.

4. Generating Function (GF) and its Useful Properties

Let us consider a non-negative random variable ξ taking only integer values.

Denote as pk probability that ξ is equal to k i.e. pk = P{ξ = k},
∑

k pk = 1.

Then for every complex z that satisfies condition |z| ≤ 1 we can define the
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following function ([2], [4]):

P (z) = Ezξ =
∞
∑

k=0

pkz
k. (12)

Because P (z) is analytic we assume that P (0) = p0. The function given by

(12) is called the generating function (GF) of random variable ξ.

Now we present two very interesting properties of GF which can be used

in obtaining distribution functions of sums of independent random variables

taking only integer values.

Property 3. Let ξ1, ξ2, . . . , ξn denote the sequence of independent random

variables taking only integer value and P1(z), P2(z), . . . , Pn(z) – a sequence of

GF of random variables ξ1, ξ2, . . . , ξn, respectively.

If ξ = ξ1+ξ2+ . . .+ξn denotes the sum of these random variables and P (z)

is GF of the random variable ξ, then we have the following formula:

P (z) =
n
∏

i=1

Pi(z). (13)

Proof. Applying the definition of GF, in view of properties of mean value of

independent random variables product, we obtain

P (z) = Ez
∑n

i=1
ξi = E

n
∏

i=1

zξi =
n
∏

i=1

Ezξi =
n
∏

i=1

Pi(z).

�

Property 4. If we have the GF P (z) of random variable ξ then we can recover

distribution pk = P{ξ = k} applying the formula

pk =
P (k)(0)

k!
. (14)

Proof. Applying the definition of GF we obtain

P (k)(z) =

∞
∑

i=k

i(i− 1)(i− 2) . . . (i− k + 1)piz
i−k = k!

∞
∑

i=k

(

i

k

)

piz
i−k. (15)

From (15) we easily obtain

P (k)(0) = k!pk,

which confirms (14). �
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Applying these properties we can obtain the distributions pk of sums of

independent random variables which take only integer values. First we have

to calculate GF Pi(z) for every random variable. Then applying (13) and (14)

we can obtain distribution of the sum of these variables.

5. Examples of Calculating Distributions of Sums of

Independent Random Variables applying GF

Let us consider two independent random variables ξ1, ξ2 that are both

defined by the following table:

xi 1 2

pi
1
3

2
3

Generating functions of both variables have the form

P1(z) = P2(z) =
1

3
z +

2

3
z2.

Then GF of the sum ξ1 + ξ2 has the form

P (z) = P1(z)P2(z) =

(

1

3
z +

2

3
z2
)2

=
1

9
z2 +

4

9
z3 +

4

9
z4. (16)

Applying (14) we can find pk probabilities that are presented in the following

table:

xi 2 3 4

pi
1
3

4
9

4
9

Similar computations can be leaded for the arbitrary number of independent

random variables that are defined in the finite probability tables.

Assume now that we have n independent random variables ξ1, . . . , ξn having

Poisson distribution with parameter µ i.e. pk = µk

k! e
−µ. GF of each random

variable has the form: Pi(z) = e−µ(1−z), i = 1, n. Then the GF of the sum

ξ1 + . . .+ ξn has the form

P (z) = e−nµ(1−z). (17)

In view of (17) we obtain

P (k)(z) = (nµ)ke−nµ(1−z).
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and

P (k)(0) = (nµ)ke−nµ.

Applying (14) we finally obtain

pk =
(nµ)k

k!
e−nµ. (18)

It follows from (18) that the sum ξ1 + . . . + ξn has the Poisson distribution

with parameter nµ. If ξ1, . . . , ξn have Poisson distribution with parameter

µi, i = 1, n, making analogous computation, we can easily obtain that the

sum ξ1 + . . .+ ξn have Poisson distribution with the parameter µ =
∑n

i=1 µi.

Consider now n independent random variables having geometric distribu-

tion with parameter p i.e. pk = (1 − p)pk. Then the generating function of

each variable has the form: Pi(z) = 1−p
1−pz , i = 1, n. Then the sum of these

random variables has the following GF:

P (z) =
(1− p)n

(1− pz)n
. (19)

From (19) we easily obtain

P (k)(z) = n(n+ 1)(n+ 2) . . . (n+ k − 1)
pk(1− p)n

(1− pz)n+k
, (20)

and in view of (14) we finally obtain

pk =

(

n+ k − 1

k

)

pk(1− p)n. (21)

Analogous computations, using GF or LST, can be proceeded also for ran-

dom variables which have different distribution functions.

For example, let us assume that we have two independent random variables

ξ1, ξ2. First variable has Poisson distribution with parameter µ and second

variable has geometric distribution with parameter p.

Then in view of (13) GF of the sum ξ1 + ξ2 has the form

P (z) =
e−µ(1−z)(1− p)

1− pz
. (22)

From (22), using Mathematica environment, we obtain

P (k)(z) = k!(1− p)e−µ(1−z)
k

∑

i=0

µipk−i

i!(1− pz)k+1−i
, (23)
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and applying (14) we finally obtain

pk = (1− p)e−µ
k

∑

i=0

µipk−i

i!
= (1− p)pke−µ

k
∑

i=0

(

µ
p

)i

i!
. (24)

6. Case of n Independent Random Vectors

Assume that ξ = (ξ1, ξ2) and η = (η1, η2) are two independent non-negative

random vectors. Let L1(x, y) and L2(x, y) denote the distribution functions

of these vectors, respectively. For the random vector

ζ = (ζ1, ζ2) = ξ + η = (ξ1 + η1, ξ2 + η2)

we obtain the following formula for its distribution function

L(x, y) = P{ζ1 < x, ζ2 < y}

L(x, y) = P{ζ1 < x, ζ2 < y} = P{ξ1 + η1 < x, ξ2 + η2 < y} =

=

∫ x

0

∫ y

0
P{ξ1 < x− u, ξ2 < y − v

∣

∣η1 ∈ [u, u+ du), η2 ∈ [v, v + dv)}×

×P{η1 ∈ [u, u+du), η2 ∈ [v, v+dv)} =

∫ x

0

∫ y

0
L1(x−u, y−v)dL2(u, v). (25)

In the case of two independent random vectors taking only integer values

with distributions pij = P{ξ1 = i, ξ2 = j}, rij = P{η1 = i, η2 = j} we obtain

the following formula:

qij = P{ξ1 + η1 = i, ξ2 + η2 = j} =

=

i
∑

k=0

j
∑

l=0

P{ξ1 = k, η1 = i− k, ξ2 = l, η2 = j − l} =

=

i
∑

k=0

j
∑

l=0

P{ξ1 = k, ξ2 = l}P{η1 = i− k, η2 = j − l} =

=
i

∑

k=0

j
∑

l=0

pklri−kj−l. (26)

Then we can finally calculate the distribution function of random vector

(ζ1, ζ2) applying the formula

L(x, y) =
∑

i<x

∑

j<y

qij .



106 MARCIN ZIÓŁKOWSKI

Formulas (25), (26) can be generalized for the arbitrary number of non-

negative independent random vectors but computations may be very com-

plicated.

7. LST of Random Vectors and its Properties

Let (ξ, η) denote a non-negative random vector and L(x, y) denote its distri-

bution function. For every complex numbers q, s which satisfy the condition

Re q ≥ 0, Re s ≥ 0 we can define the LST of random vector (ξ, η) as it follows

[4]:

α(q, s) = Ee−qξ−sη =

∫ ∞

0

∫ ∞

0
e−qx−sydL(x, y). (27)

The function given by (27) is called the double LST of random vector (ξ, η)

and has the following properties.

Property 5. Let (ξ1, η1), (ξ2, η2), . . . , (ξn, ηn) be a sequence of independent

non-negative random vectors and α1(q, s), α2(q, s), . . . , αn(q, s) be a sequence

of double LST of these random vectors respectively,

(ξ, η) = (ξ1, η1) + (ξ2, η2) + . . .+ (ξn, ηn)

— the sum of random vectors (ξ1, η1), (ξ2, η2), . . . , (ξn, ηn). If α(q, s) is the

double LST of random vector (ξ, η), then we obtain the following formula:

α(q, s) =

n
∏

i=1

αi(q, s). (28)

Property 6. Let us assume that (ξ, η) is a non-negative random vector and

L(x, y) and α(q, s) are distribution function and double LST of random vector

(ξ, η) respectively. Then we have the following formula:

α(q, s) =

∫ ∞

0

∫ ∞

0
e−qx−sydL(x, y) = qs

∫ ∞

0

∫ ∞

0
e−qx−syL(x, y)dxdy. (29)

Let us notice that the integral on the right side of (29) is the well known

double Laplace transformation of function L(x, y) ([6]).

Definition of double LST can be generalized for the arbitrary dimensions

of random vectors. The properties of such generalized functions stay the

same. Applying two above properties we can obtain the distribution functions

of independent random vectors in a similar way as we did in the case of

independent random variables.
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8. Generating Function (GF) of a Random Vector and its

Properties

Consider now a non-negative random vector (ξ, η) taking only integer values

and introduce the following notation: pij = P{ξ = i, η = j},
∑

i,j pij = 1.

Then for every complex z1, z2 that satisfy conditions |z1| ≤ 1, |z2| ≤ 1 we can

define the following function ([2]):

P (z1, z2) = Ez
ξ
1z

η
2 =

∞
∑

i=0

∞
∑

j=0

pijz
i
1z

j
2. (30)

The function given by (30) is called the generating function (GF) of random

vector (ξ, η).

Now we present two very interesting properties of GF that can be used in

obtaining distribution functions of sums of independent random vectors taking

only integer values.

Property 7. Let (ξ1, η1), (ξ2, η2), . . . , (ξn, ηn) be a sequence of independent

random vectors taking only integer values and

P1(z1, z2), P2(z1, z2), . . . , Pn(z1, z2)

denote a sequence of GF of random vectors (ξ1, η1), (ξ2, η2), . . . , (ξn, ηn) re-

spectively. If (ξ, η) = (ξ1 + ξ2 + . . . + ξn, η1 + η2 + . . . + ηn) denotes the sum

of these random vectors and P (z1, z2) – GF of the random vector (ξ, η), then

we have the following formula:

P (z1, z2) =
n
∏

i=1

Pi(z1, z2). (31)

Property 8. If we have the GF P (z1, z2) of random vector (ξ, η) then we can

recover distribution pij = P{ξ = i, η = j} applying the formula

pij =
1

i!j!

∂i+jP (z1, z2)

∂zi1∂z
j
2

∣

∣

z1=z2=0
. (32)

In view of those two properties we can compute the distributions of sums of

independent random vectors taking only integer values. The definition of GF

can be extended for the arbitrary dimensions of random vectors taking only

integer values and its properties stay the same.
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9. Examples of Calculating Distributions of Sums of

Independent Random Vectors applying GF or LST

Assume that (ξ1, η1), (ξ2, η2) are two independent random vectors taking

only integer values that are defined by the following tables:

(ξ1, η1) 1 2

3 5
6

1
6

(ξ2, η2) 3 4

1 1
3

2
3

The generating functions of the random vectors (ξ1, η1) and (ξ2, η2) have

the form

P1(z1, z2) =
5

6
z1z

3
2 +

1

6
z21z

3
2 , P2(z1, z2) =

1

3
z31z2 +

2

3
z41z2.

Applying (31) we can obtain the generating function of the sum of these

random vectors in the form

P (z1, z2) = P1(z1, z2) · P2(z1, z2) =
5

18
z41z

4
2 +

11

18
z51z

4
2 +

2

18
z61z

4
2 . (33)

Applying (32) and (33) we can recover the distribution of the sum. It is

presented in the following table:

(ξ1 + ξ2, η1 + η2) 4 5 6

4 5
18

11
18

2
18

Assume now that we have n independent random vectors (ξ, η) having the

distribution defined by the formula

pij =
(1− p)pi

ej!
, p ∈ (0, 1). (34)

The generating function of the random vector (ξ, η) has the form

P (z1, z2) =
(1− p)ez2

e(1− pz1)
. (35)

GF of the sum has the form

Q(z1, z2) =
enz2(1− p)n

(e− epz1)n
. (36)

Applying (32) we obtain distribution in the form

pij =
1

i!j!

(

1− p

e

)n

pinj

i−1
∏

k=0

(n+ k). (37)



SOME APPLICATIONS OF GF AND LST 109

Consider finally two independent non-negative random vectors (ξ, η) having

distribution function

L(x, y) = P{ξ < x, η < y} = 1− e−x − e−y + e−x−y, x > 0, y > 0. (38)

The double LST of each vector has the form:

α1(q, s) =
1

(q + 1)(s+ 1)
. (39)

Then, applying (28), the double LST of the sum of two independent vectors

(ξ, η) has the form

α(q, s) =
1

(q + 1)2(s+ 1)2
. (39)

In view of (29) we obtain formula for the double Laplace transform of this

sum

l(q, s) =
α(q, s)

q2s2
=

1

q2s2(q + 1)2(s+ 1)2
. (40)

If we apply Laplace transform inversion (ex. Mathematica environment) we

finally obtain formula for the distribution function of the sum

L2(x, y) = e−x−y (2 + x+ ex(x− 2)) (2 + y + ey(y − 2)) . (41)

Let us notice that the majority of calculations concern to the situation if the

components of the random vectors (ξ, η) are independent. In the discrete case

i.e. the distribution of the random vector has the form pij = kilj , where ki

and lj are the distributions of random variables taking only integer values. In

the case of absolutely continuous random vectors the distribution function of

each vector has the form F (x, y) = F1(x)F2(y), where F1(x), F2(y) are the

distribution functions of absolutely continuous non-negative random variables.

Calculations in this case are much easier because in the discrete case the GF

of the sum has the form P (z1, z2) = (P1(z1))
n(P2(z2))

n and it is not difficult to

recover the distribution pij . In the case of the sum of the absolutely continuous

random vectors we have the following formula for its LST:

α(q, s) = (α1(q))
n(α2(s))

n

and in some cases it is easier to inverse the double Laplace transform α(q,s)
qs
.

If the components of the random vectors are dependent, obtaining general

formulas for distribution functions of the sums is much more difficult since the

distribution functions of vectors are not the products of distribution functions
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of their components and during the computations we deal with calculating

more complicated sums (i.e. we have to use binomial formula), so finding

general formulas is possible only in some special cases.
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