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ON LOCAL WHITNEY CONVERGENCE

STANISŁAW KOWALCZYK

Abstract

In this paper we will give definitions of local Whitney convergence in F(X,Y ) and in C(X,Y ),

where X is a topological space, (Y, d) is a metric space and F(X,Y ) is the space of all functions

from X to Y and C(X,Y ) is the space of all continuous functions from X to Y . We will study

some properties of this notion and connections with other kinds of convergence.

1. Preliminaries

Throughout the article (X, T ) will denote a T1 topological space and

(Y, d) will denote a metric space. For any subset A of the spaceX, its closure

and interior will be denoted by cl(A) and int(A), respectively. Furthermore,

F(X,Y ) and C(X,Y ) will denote the class of functions and the class of

continuous functions from X to Y . Symbols R, R+ and N stand for the set

of real numbers, positive real numbers and positive integers, respectively.

If f : X → Y , A ⊂ X, then by f |A we will denote the restriction of f to A.

Definition 1 ([1,2,4,5,6]). A sequence (fn)n∈N of functions from F(X,Y )

is said to be convergent to a function f ∈ F(X,Y ) in the sense of Whitney,

shortly W-convergent, if for each ϕ ∈ C(X,R+) there exists n0 ∈ N such

that d
(
fn(x), f(x)

)
< ϕ(x) for each x ∈ X and n ≥ n0.
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Remark 1. It is obvious that if (fn)n∈N is a sequence of continuous func-

tions which is W-convergent to f then f is continuous too.

Since each positive constant function from X to R belongs to C(X,R+),

W-convergence implies uniform convergence. It is well-known that if X is

a pseudo-compact completely regular topological space then W-convergence

and uniform convergence are equivalent. More precisely, we have the fol-

lowing theorem.

Theorem 1 ([1,4]). Let X be a pseudo-compact completely regular topologi-

cal space and let Y be a metrizable space. The sequence (fn)n∈N of functions

from X to Y is W-convergent to f : X → Y if and only if it is uniformly

convergent to f .

2. Local Whitney convergence

Now, we give the first definition of local Whitney convergence.

Definition 2. A sequence (fn)n∈N of functions from F(X,Y ) is said to be

convergent to a function f ∈ F(X,Y ) in the sense of Whitney at a point

x0 ∈ X, shortly W-convergent at x0, if there exists a neighborhood U of x0

such that for each ϕ ∈ C(X,R+) there exists n0 ∈ N such that

d
(
fn(x), f(x)

)
< ϕ(x)

for each x ∈ U and n ≥ n0.

We say that (fn)n∈N is locally W-convergent to f if it is W-convergent

to f at each x ∈ X.

Corollary 1. If (fn)n∈N is a sequence of continuous functions which is

locally W-convergent to f then f is continuous function too.

It follows directly from the definitions, that W-convergence implies local

W-convergence. Later, we will give an example of locally W-convergent

sequence of continuous functions which is not W-convergent.

Theorem 2. Let fn ∈ F(X,Y ) for n ∈ N and let f ∈ F(X,Y ). If the

sequence (fn)n∈N is locally W-convergent to f then (fn)n∈N is almost uni-

formly convergent to f .
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Proof. Let (fn)n∈N be locally W-convergent to f . Take any ε > 0 and any

compact subset A of X. Let ϕ ∈ C(X,R+) be a constant function, ϕ(x) = ε

for x ∈ X.

Then for each x ∈ A we can find a neighborhood Ux of x and nx ∈ N

such that

d
(
fn(y), f(y)

)
< ϕ(y) = ε

for y ∈ Ux and n ≥ nx.

Since A is compact, A ⊂ Ux1
∪ . . . ∪ Uxk

for some x1, . . . , xk ∈ A.

Let n0 = max{nx1
, . . . , nxk

}. Then d (fn(x), f(x)) < ε for x ∈ A and

n ≥ n0. This completes the proof. �

Theorem 3. Let (X, T ) be a paracompact space. The following conditions

are equivalent:

(1) for each metric space (Z, ̺), every sequence (fn)n∈N from F(X,Z)

is locally W-convergent to f ∈ F(X,Z) if and only if (fn)n∈N is

almost uniformly convergent to f ,

(2) every sequence (fn)n∈N of functions from F(X,R) is locally W-

convergent to f ∈ F(X,R) if and only if (fn)n∈N is almost uniformly

convergent to f ,

(3) for each metric space (Z, ̺) every sequence (fn)n∈N from C(X,Z)

is locally W-convergent to f ∈ C(X,Z) if and only if (fn)n∈N is

almost uniformly convergent to f ,

(4) every sequence (fn)n∈N from C(X,R) is locally W-convergent to f

from C(X,R) if and only if (fn)n∈N is almost uniformly convergent

to f ,

(5) X is locally compact.

Proof. The implications (1)⇒ (2), (3)⇒ (4), (1)⇒ (3) and (2)⇒ (4) are

obvious.

(4) ⇒ (5) Let local W-convergence and almost uniform convergence in

C(X,R) be equivalent. Suppose that X is not locally compact at some

x0 ∈ X. Let fn(x) =
1
n
, f(x) = 0 for n ∈ N, x ∈ X.

Obviously, the sequence (fn)n∈N is almost uniformly convergent to f

(actually, (fn)n∈N is uniformly convergent to f). Let U be any neighborhood

of x0. Then cl(U) is not compact and since X is paracompact, it is not

pseudo-compact.



60 STANISŁAW KOWALCZYK

Thus there exists ϕ̃ ∈ C(cl(U),R+) such that inf
x∈cl(U)

ϕ̃(x) = 0. Hence

inf
x∈U

ϕ̃(x) = 0. By normality of X (X is normal, since it is paracompact),

there exists ϕ ∈ C(X,R+) such that ϕ|cl(U) = ϕ̃. Then for each n ∈ N we

have
∣∣fn(x)− f(x)

∣∣ = 1
n
≥ ϕ(x) for some x ∈ U .

Hence the sequence (fn)n∈N is not locally W-convergent to f . This con-

tradicts to assumptions. Thus X is locally compact.

(5) ⇒ (1) Let X be locally compact and let (Z, ̺) be any metric space.

Take any sequence (fn)n∈N from F(X,Z) and f ∈ F(X,Z). If the sequence

is locally W-convergent to f then, by Theorem 2, it is almost uniformly

convergent to f . Assume that (fn)n∈N is almost uniformly convergent to f .

Let x0 ∈ X. By local compactness of X there exists a neighborhood U of

x0 such that cl(U) is compact. Then (fn|cl(U))n∈N is uniformly convergent

to f |cl(U). Let ϕ ∈ C(X,R+). Then inf
x∈cl(U)

ϕ(x) = c > 0 and there exists

n0 ∈ N such that ̺
(
fn(x), f(x)

)
< c ≤ ϕ(x) for x ∈ cl(U) and n ≥ n0. It

follows that the sequence (fn)n∈N is locally W-convergent to f . The proof

is completed. �

Theorem 4. Let (X, T ) be a normal space and let fn ∈ F(X,Y ) for n ∈ N

and f ∈ F(X,Y ). For each x0 ∈ X the following conditions are equivalent:

(1) the sequence (fn)n∈N is W-convergent to f at x0,

(2) there exists a neighborhood U of x0 such that the sequence
(
fn|cl(U)

)
n∈N

is W-convergent to f |cl(U),

(3) for each neighborhood U of x0 there exists a neighborhood V ⊂ U of

x0 such that
(
fn|cl(V )

)
n∈N

is W-convergent to f |cl(V ),

(4) there exists a neighborhood U of x0 such that for each neighborhood

V ⊂ U of x the sequence
(
fn|cl(V )

)
n∈N

is W-convergent to f |cl(V ).

Proof. 2)⇒ 1) Let U be a neighborhood of a point x0 such that the sequence(
fn|cl(U)

)
n∈N

is W-convergent to f |cl(U). Take any ϕ ∈ C(X,R+). Then

ϕ| cl(U) ∈ C(cl(U),R+). Therefore there exists n0 ∈ N such that

d(fn(x), f(x)) < ϕ| cl(U)(x)

for each x ∈ cl(U) and n ≥ n0. In particular,

d(fn(x), f(x)) < ϕ(x)
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for each x ∈ U and n ≥ n0. It follows that (fn)n∈N is W-convergent to f

at x0.

3)⇒ 2) This implication is evident.

4)⇒ 3) This implication is evident too.

1) ⇒ 4) Let the sequence (fn)n∈N be W-convergent to f at x0. There

exists a neighborhood U of x0 such that for ϕ ∈ C(X,R+) we can find

n0 ∈ N for which d(fn(x), f(x)) < ϕ(x) for n ≥ n0 and x ∈ U . Since X is

normal, there exists a neighborhood U1 of x0 such that cl(U1) ⊂ U . Let V

be any neighborhood of x0 contained in U1. Then cl(V ) ⊂ cl(U1) ⊂ U .

We claim that the sequence (fn|cl(V ))n∈N is W -convergent to f |cl(V ). Let

ϕ̃ ∈ C(cl(V ),R+). Since X is normal, there exists ϕ ∈ C(X,R+) such that

ϕ|cl(V ) = ϕ̃. Then we can find n0 ∈ N such that

d(fn(x), f(x)) < ϕ(x) = ϕ̃(x)

for x ∈ U and n ≥ n0. In particular, d(fn(x), f(x)) < ϕ(x) = ϕ̃(x) for

x ∈ cl(V ) and n ≥ n0. Thus
(
fn|cl(V )

)
n∈N

is W-convergent to f |cl(V ) and

the proof is completed. �

We will need the following result.

Theorem 5 ([3, Theorem 4]). Let (X, τ) be a normal topological space,

(Y, d) a metric space. Let f ∈ C(X,Y ) and fn ∈ C(X,Y ) for n ∈ N. Then

the sequence (fn)n∈N is W-convergent to f if and only if the following two

conditions hold:

(1) the sequence (fn)n∈N is uniformly convergent to f ;

(2) there exists a closed countably compact set K ⊂ X such that if U

is an open subset of X containing K then we can find n0 ∈ N such

that fn|(X\U) = f |(X\U) for n ≥ n0.

Problem 1. Is Theorem 5 true for functions from F(X,Y )?

Theorem 6. Let X be a paracompact space. Assume that fn ∈ C(X,Y ) for

n ∈ N and f ∈ C(X,Y ). Then the sequence (fn)n∈N is locally W-convergent

to f if and only if it is almost uniformly convergent and there exist a locally

compact set F ⊂ X and a sequence (An)n∈N of open subsets of X such that

(1) fk(x) = f(x) for all x ∈ An and k ≥ n,
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(2) X \ F ⊂
∞⋃
n=1

An,

(3) for each x ∈ F there exists a neighborhood Gx of x such that for any

neighborhood V of F ∩Gx there exists n0 such that fn(y) = f(y) for

all y ∈ Gx \ V and n ≥ n0.

Proof. First assume that (fn)n∈N is locally W-convergent to f . Obviously,

(fn)n∈N is almost uniformly convergent. By Theorem 4, for each x ∈ X

we can find a neighborhood Ũx of x such that
(
fn|cl(Ũx)

)

n∈N
is Whitney

convergent to f |
cl(Ũx)

. By Theorem 4 and by normality of X, there exists

a neighborhood Ux of x such that cl(Ux) ⊂ Ũx and
(
fn|cl(Ux)

)
n∈N

is Whitney

convergent to f |cl(Ux).

Let Fx ⊂ cl(Ũx) be a closed countably compact set which satisfies con-

ditions of Theorem 5 for the sequence (fn|cl(Ũx)
)n∈N. By paracompactness

of X, Fx is locally compact.

Take any y ∈ cl(Ux) \ Fx ⊂ Ũx \ Fx. By normality of X, there exist

a neighborhood V of y such that cl(V )∩ Fx = ∅ and cl(V ) ⊂ Ũx. Then, by

Theorem 5, we can find n0 ∈ N such that fn(t) = f(t) for each t ∈ V and

each n ≥ n0. Thus we have proven that

(*) for each y ∈ cl(Ux) \ Fx there exist a neighborhood V of y and

n0 ∈ N such that fn(t) = f(t) for each t ∈ V and each n ≥ n0.

Put

An = int{x ∈ X : fk(x) = f(x) for each k ≥ n}

for n ∈ N and

F = X \
∞⋃

n=1

An.

Then F is closed and, by (∗), F ∩ cl(Ux) ⊂ Fx for x ∈ X. Hence F is

locally compact. Take any x ∈ F and put Gx = Ux. Then condition (3) is

satisfied, by Theorem 5 and by definition of Ux.

Now, assume that (fn)n∈N is almost uniformly convergent to f and there

exist a locally compact set F ⊂ X and a sequence (An)n∈N of open subsets

of X for which conditions (1), (2) and (3) hold. Take any x0 ∈ X. First

consider the case, where x0 /∈ F .

Then x0 ∈ Ak for some k ∈ N. Since X is normal, there exists a neighbor-

hood U of x0 such that cl(U) ⊂ Ak. Then fn|cl(U) = f |cl(U) for n ≥ k. Hence
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(fn|cl(U))n∈N is Whitney convergent to f |cl(U). By Theorem 4, (fn)n∈N is

W-convergent to f at x0.

Finally, consider the case, where x0 ∈ F . Let Gx0
be a neighborhood of

x0 such that for any neighborhood V of F ∩Gx0
there exists n0 such that

fn(x) = f(x) for all x ∈ Gx0
\ V and n ≥ n0.

Since F is locally compact and X is normal, there exists a neighborhood

Wx0
of x0 such that cl(Wx0

) ∩ F is compact and cl(Wx0
) ⊂ Gx0

. Consider

the sequence (fn|cl(Wx0
))n∈N. Clearly, it is uniformly convergent to f |cl(Wx0

)

and F ∩ cl(Wx0
) is compact. Let V be any neighborhood of F ∩ cl(Wx0

) in

cl(Wx0
). There exists open subset Ṽ of X such that V = Ṽ ∩ cl(Wx0

).

Then (Gx0
\ cl(Wx0

)) ∪ Ṽ ) is a neighborhood of F ∩ Gx0
. Therefore we

can find n0 such that fn|cl(Wx0
)(t) = f |cl(Wx0

)(t) for each t ∈ cl(Wx0
) \ V .

By Theorem 5, (fn|cl(Wx0
))n∈N is Whitney convergent to f |cl(Wx0

) and, by

Theorem 4, (fn)n∈N is W-convergent to f at x0.

Since x0 was arbitrary, the proof is completed. �

3. Strong local W -convergence and w⋆-convergence

Theorem 4 motivates us to introduce two new definitions of local Whitney

convergence.

Definition 3. A sequence (fn)n∈N of functions from F(X,Y ) is said to be

w⋆-convergent to f ∈ F(X,Y ) at a point x0 ∈ X, if there exists a neigh-

borhood U of x0 such that for each ϕ ∈ C(U,R+) there exists n0 ∈ N such

that

d (fn(x), f(x)) < ϕ(x)

for each x ∈ U and n ≥ n0.

Equivalently, (fn)n∈N is w⋆-convergent to a function f ∈ F(X,Y ) at

a point x0 ∈ X, if there exists a neighborhood U of the point x0 such that

(fn|U )n∈N is W -convergent to f |U .

We say that (fn)n∈N is locally w⋆-convergent to f if it is w⋆-convergent

to f at every x ∈ X.

Definition 4. A sequence (fn)n∈N of functions from F(X,Y ) is said to

be W -convergent in the strong sense to f ∈ F(X,Y ) at a point x0 ∈ X,

shortly SW -convergent at x0, if for each neighborhood U of x0 we can find
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a neighborhood V ⊂ U of x0 such that for each ϕ ∈ C(V,R+) there exists

n0 ∈ N such that

d
(
fn(x), f(x)

)
< ϕ(x)

for all x ∈ V and n ≥ n0.

Equivalently, (fn)n∈N is SW -convergent to a function f ∈ F(X,Y ) at a

point x0 ∈ X, if for each neighborhood U of x0 there exists a neighborhood

V ⊂ U of x0 such that the sequence (fn|V )n∈N is W -convergent to f |V .

We say that (fn)n∈N is locally SW -convergent to f if it is SW -convergent

to f at every x ∈ X.

Corollary 2. If a sequence (fn)n∈N of continuous functions from X to Y

is locally SW -convergent or locally w⋆-convergent to f then f : X → Y is

continuous too.

From the definitions we easily get the following two propositions.

Proposition 1. Let (fn)n∈N be a sequence from F(X,Y ), f ∈ F(X,Y )

and x0 ∈ X.

(1) If (fn)n∈N is w⋆-convergent to f at x0 then (fn)n∈N is W -convergent

to f at x0.

(2) If (fn)n∈N is SW -convergent to f at x0 then (fn)n∈N is w⋆-convergent

to f at x0.

The first relation follows from the obvious fact that if ϕ ∈ C(X,R+) then

ϕ|U ∈ C(U,R+).

Proposition 2. Let (fn)n∈N be a sequence of functions from F(X,Y ) and

f ∈ F(X,Y ). If (fn)n∈N is W -convergent to function f then (fn)n∈N is

locally w⋆-convergent to f .

We can put U = X in the definition of w⋆-convergence.

Relationships between discussed types of convergence can be illustrated

in the following diagrams.

SW-conv. at x0 ⇒ w⋆-conv. at x0 ⇒ W-conv. at x0



ON LOCAL WHITNEY CONVERGENCE 65

W -convergence

⇓

local SW-conv. ⇒ local w⋆-conv. ⇒ local W-conv.

We will show that none of the reverse implications hold, even in C(X,Y ).

Example 1. Let fn : R→ R,

fn(x) =





0 if x ≤ n,
1
n

if x ≥ n+ 1,
x−n
n

if n < x < n+ 1,

for n ∈ N and let f : R→ R, f(x) = 0 if x ∈ R.

Then f and fn for n ∈ N are continuous. Since for each x0 ∈ R there

exist n0 ∈ N such that fn(x) = 0 if n ≥ n0 and x ∈ (x0 − 1, x0 + 1),

the sequence (fn)n∈N is locally SW -convergent to f . On the other hand,

there exists ϕ ∈ C(R,R+) such that ϕ(n + 1) = 1
n
for n ≥ 1. Then

|fn(n + 1) − f(n + 1)| = 1
n
= ϕ(n + 1) for each n. It follows that (fn)n∈N

is not W -convergent to f .

Example 2. Let fn : [0, 1] → R, fn(x) = 1
n
if x ∈ [0, 1], n ∈ N and

let f : [0, 1] → R, f(x) = 0 if x ∈ [0, 1]. Then functions f and fn are

continuous. Since [0, 1] is compact and (fn)n∈N is uniformly convergent

to f , (fn)n∈N is W -convergent to f .

Take any x ∈ (0, 1) and let U = (0, 1). Then U is a neighborhood of x and

any neighborhood V of x contained in U is not closed. Therefore there exist

ϕ ∈ C(V,R+) and a sequence (xn)n∈N ⊂ V such that ϕ(xn) = 1
n
. Hence

(fn|V )n∈N is not W -convergent to f |V . Thus (fn)n∈N is not SW -convergent

to f at any x ∈ (0, 1). Hence (fn)n∈N is not locally SW -convergent to f .

Example 3. Let fn : R→ R, fn(x) =
1
n
if n ∈ N, x ∈ R and let f : R→ R,

f(x) = 0 if x ∈ R. Obviously, (fn)n∈N is not w
⋆-convergent to f at any

point x ∈ R (arguments are similar as in the previous example).

Let x0 ∈ R and ϕ ∈ C(R,R+). Then there exists δ > 0 such that

ϕ(x) ≥ δ for x ∈ (x0 − 1, x0 + 1). Hence |fn(x) − f(x)| = 1
n
< δ ≤ ϕ(x)

for x ∈ (x0 − 1, x0 + 1) and sufficiently large n. Thus (fn)n∈N is locally

W -convergent.



66 STANISŁAW KOWALCZYK

The next example shows that w⋆-convergence at a point is not a local prop-

erty.

Example 4. Let fn, gn : [0, 2]→ R, fn(x) =
1
n
if x ∈ [0, 2] and

gn(x) =





1
n

if x ∈ {0} ∪
[
1
n
, 2

]
,

1 if x = 1
2n ,

linear in
[
0, 1

2n

]
and

[
1
2n ,

1
n

]
,

if n ∈ N. Next, let f : [0, 2] → R, f(x) = 0 if x ∈ [0, 2]. Since [0, 2]

is compact and (fn)n∈N is uniformly convergent to f , (fn)n∈N is locally

w⋆-convergent to f .

Take any x ∈ [0, 2]. Let U be any neighborhood of x. Then either

[0, η) ⊂ U for some η > 0 or U is not closed subset of [0, 2].

If [0, η) ⊂ U for some η > 0 then (gn|U )n∈N is not uniformly convergent.

Hence (gn|U )n∈N is not Whitney convergent.

Finally, assume that U is not a closed subset of [0, 2]. Then there exist

a sequence (xn)n∈N ⊂ U and ϕ ∈ C(U,R+) such that ϕ(xn) =
1
n
for n ≥ 1.

Since g(x) ≥ 1
n
for x ∈ [0, 2], we have

|gn(xn)− f(xn)| ≥
1

n
= ϕ(xn).

It follows that (gn|U )n∈N is not Whitney convergent. We have proven that

(gn)n∈N is not w
⋆-convergent at any x ∈ [0, 2]. Thus the sequence (fn)n∈N

is w⋆-convergent at each point x ∈ [0, 2] and (gn)n∈N is not w
⋆-convergent

at any x ∈ [0, 2], nevertheless fn(x) = gn(x) for all x ∈ [1, 2] and n ∈ N.

Theorem 7. Let (X, T ) be a paracompact perfect topological space, x0 ∈ X

and let (Y, d) be any metric space. If X is locally compact at x0 then the

following conditions are equivalent:

(1) W -convergence at x0 and SW -convergence at x0 in F(X,Y ) are

equivalent.

(2) W -convergence at x0 and SW -convergence at x0 in C(X,Y ) are

equivalent.

(3) there exists a local base of T at x0 consisting of sets which are both

open and closed.
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Proof. 3) ⇒ 1) Assume that there exists a local base at x0 consisting of

sets which are both open and closed. Let (fn)n∈N be any sequence from

F(X,Y ) and f ∈ F(X,Y ). If (fn)n∈N is SW -convergent to f at x0 then,

obviously, it is W -convergent at x0.

On the other hand, assume that (fn)n∈N is W -convergent to f at x0 and

let U be any neighborhood of x0. By Theorem 4, there exists a neigh-

borhood U1 of x0 such that for each neighborhood U2 of x0 contained

in U1 the sequence (fn|U2
)n∈N is W -convergent to f |U2

. By assumption,

we can find a neighborhood V of x0 such that V ⊂ U1 ∩ U and cl(V ) = V .

Then (fn|V )n∈N is W -convergent to f |V . It follows that (fn)n∈N is SW -

convergent to f at x0. Thus W -convergence at x0 and SW -convergence

at x0 in F(X,Y ) are equivalent.

1)⇒ 2) This implication is obvious.

2) ⇒ 3) Assume that W -convergence at x0 and SW -convergence at x0

are equivalent in C(X,Y ). Suppose that there exists a neighborhood U of

x0 such that each neighborhood V of x0 contained in U is not closed. By

local compactness of X at x0, there exists a neighborhood U0 of x0 with

compact closure. Let f : X → Y , f(x) = 0 for x ∈ X. By normality of X,

we can find a neighborhood G of x0 and a sequence of continuous functions

fn : X → Y such that cl(G) ⊂ U ∩ U0, fn(x) =
1
n
for x ∈ G, fn(x) = 0 for

x ∈ X \ (U ∩ U0) and 0 ≤ fn(x) ≤
1
n
for x ∈ X. By Theorem 5, (fn)n∈N is

Whitney convergent to f , because cl(U ∩U0) is compact. Hence (fn)n∈N is

W -convergent at x0.

Let V ⊂ G be any neighborhood of x0. In particular, V ⊂ U . Therefore

V is not closed. It follows that V is not compact. Since X is perfect, V is

of type Fσ. Therefore V is a paracompact space. It follows that V is non

pseudo-compact. Hence there exist a sequence (xn)n∈N of points from V

and ϕ ∈ C(V,R+) such that ϕ(xn) =
1
n
for n ≥ 1. Then

d
(
fn(xn), f(xn)

)
= 1

n
= ϕ(xn)

for all n. It follows that (fn|V )n∈N is not Whitney convergent to f |V and

therefore (fn)n∈N is not SW -convergent to f at x0, which is a contradiction.

This completes the proof. �
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Since every metric space is paracompact and perfect we have the following

corollary.

Corollary 3. Let (X, dX) be a locally compact metric space. The following

conditions are equivalent:

(1) for each metric space (Z, ̺) local W-convergence and local SW-con-

vergence in F(X,Z) are equivalent.

(2) local W-convergence and local SW-convergence in F(X,R) are equiv-

alent.

(3) for each metric space (Z, ̺) local W-convergence and local SW-con-

vergence in C(X,Z) are equivalent.

(4) local W-convergence and local SW-convergence in C(X,R) are equiv-

alent.

(5) X is zero dimensional.
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