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Abstract. A generalization theorem for i—connected sets in the Hashimoto topology
is given. Moreover, ¢ connectivity in the topology of at most countable complements
and in the order topology is presented.

1. Introduction

Let (X,T) be a topological space and let P stand for some property of the
subsets of X. We denote by P the family of all subsets of X which satisfy P.
We say that a subset A has the property P at the point p € X, if there exists
a neighbourhood V,, of p such that V, N A € P. We introduce the symbol A*
to define the set of all points at which A does not have the property P, i.e.

(1) A*:{pexz/\(vpnA¢P)}.
v,

Additionally, let us assume that the family P is ideal, i.e.

(2) the relations A € P and B € P imply AUB € P,
(3) the relations A € P and B C A imply B € P.

Moreover, let us assume that the property P satisfies the following

(4) (AeP) & (ANA"=9¢) & (A" =9),
and that

(5) every single element subset of X belongs to P.
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Example 1. The family of the sets of the first category and the family of
the sets of measure zero in the sense of Lebesgue satisfy conditions (2)-(5).

Let (X,T) be T1 — space. Using an ideal P we can introduce the new
topology on the set X, the so—called Hashimoto topology, defined by the for-
mula

(6) T*"={U\FCX:UeTANF eP}

We see easily that T C T*.

For simplicity of the notation we continue to write intA (clA) for the in-
terior (the closure) of A in the topological space (X,T") and int, A (cl,A) for
the interior (the closure) of A in the space (X,T%).

Because T* is a stronger topology we have

(7) /\ intA Cint, A,
ACX

8) /\ clAcCcdAa,
ACX

(9) if M C X is connected in the Hashimoto topology (X,T%), then M is
connected in (X, T).

Now let us recall the definition of an i—connected set (cf. |2]).

Definition 1. Let (X, T) be a topological space. A set A C X is said to be
i connected if it has a nonempty interior and both A and intA are connected.

Example 2. In the natural topology on the straight line every connected
set which has a nonempty interior is i—connected. Note that no similar fact
holds for the Euclidean plane. For instance, a set consisting of two tangent
discs is connected but it’s interior is not.

2. The i—connected sets in the Hashimoto topology

We will need the following lemmas.

Lemma 1. (cf. [1], p. 6). Let (X,T) be a topological space. An open
set G belonging to P is contained in X\ X*.

Lemma 2. (cf. [1], p. 7). If the space (X,T) satisfies X* = X, then
clG = cl,G for every G € T™*.

Lemma 3. Let (X,T) be a topological space and let X* = X. If A C X
is open and connected in (X, T'), then A is connected in (X, T™).
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Proof. Let us suppose that A is disconnected in (X,7™). Then we can
represent the set A as the sum of two nonempty disjoint open subsets in the
subspace (A,T%). Since A € T and T' C T, (6) shows that there exist two
nonempty sets Uy, Us € T and two sets Fy, Fy € P such that A = (U;\Fy) U
(UQ\FQ) and (Ul\Fl) N (UQ\FQ) = ¢. Hence A C U; U U; and

(10) U nNU; C F1 U Fy.

Because Uy NUs; € T, Fy U Fy, € P and X = X*, therefore, by Lemma 1
and (10), we obtain that U; N Uy = ¢ which means that A is disconnected in
(X,T), contrary to the assumption. [J

Theorem 1. Let (X,7) be a topological space and let X = X*. If
a set A C X has a nonempty and connected interior in the space (X,T)
and A C clintA, then A is i—connected in the space (X, T™).

Proof. Since intA in open and connected in (X,T), by Lemma 3, it is
connected in (X, 7). By (7) we have

intA C int,A C A C clA.
Moreover, by the assumption and Lemma 2, we get
clA = clintA = cl, intA

and finally,
intA C int, A C A C cl,intA.

Since intA and cl,intA (as the closure of a connected set) are connected in
(X,T*), the sets int,A and A are connected in (X,7%), and the proof is
completed. [

Note that every set satisfying the assumptions of the above theorem is
i connected in (X, 7). Therefore we obtain the following

Corollary 1. If a set A C X is i—connected in the space (X,7T") and
X = X* and clA = clint A, then A is i connected in the space (X, T™).

Remark 1. Taking in the above theorem (X,T) = (R? T;) and
T* = {U\F Cc R? : U € T; and u(F) = 0}, where u denotes the Lebesgue
measure in R? and T} is the family of open sets in the Euclidean plane, one
gets Theorem 3 of [2].
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3. The i—connectivity in the topology of at most
countable complements

We start with the following lemma which gives the equivalent condition on
connectivity of open sets.

Lemma 4. Let (X,T) be a topological space and let a nonempty and
open set A C X be fixed. Then a set A is connected in the space (X, T) if
and only if the following condition is fulfilled

(11) N\ (A1 #dNAL #ANA €T) = A\A; ¢ T).
A1CA

Proof.

= Let us suppose, contrary to our claim, that there exists a nonempty and
open set A; such that Ay C A, A; # A and A\A; € T. Then the set A can
be represented as the union of two nonempty disjoint and open sets A; and
A\ A, which is impossible.

< Conversely, suppose that there exist two nonempty open sets
Ay, Ay C X such that ANA; #0,ANAs#0, (AN A)N(ANAy) =0 and
A= (ANA;)U(ANAy). Since A is open therefore ANA; € T and ANAy € T.
It follows that there exists a nonempty and open set B = A N Ay such that
B C A,B # A and A\B € T, contrary to (11). O

Let 9 be a family of all subsets of X which satisfy (11), i.e.
M=qACX: N\ (A #dNA#ANA €T) = A\A ¢ T)
A1CA

We present some properties of the family 901

(a) A nonempty and open set is connected if and only if it belongs to 91.
(b) A nonempty and open set is i—connected if and only if it belongs to I1.
(c) If a set is i—connected, then it’s interior belongs to 9.

(d) A topological space (X,T) is connected if and only if X belongs to 9.

(e) A topological space (X,T') is connected if and only if every nonempty
and closed subset of X belongs to 9.
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Remark 2. If we denote by & the family of all connected sets in the
topological space (X,T), then

SN (T\{0}) =9 (T\{0}).
Example 3. The base
B ={(a,b) :a,b€ R, a<b}

of natural topology on the straight line is contained in the family 9.
In the sequel the symbol cardF' denotes the cardinality of the set F' C X.

Theorem 2. Let X be an uncountable set and let Tls be a topology of at
most countable complements, i.e.

Ts:{UcX:U:gb\/ \/ (carngxOAU:X\F)}.
FcX

Then every nonempty and open set belongs to 901.

Proof. Let us choose arbitrary nonempty open sets U and A; such that
Ay C U and A; # U. Then there exist two at most countable sets F, F} C X
such that U = X\F, Ay = X\F}, F C F} and F # F}.
Since

UNAp = UN(X\F) = U N (X\(X\F7)) =UnNHh

therefore, the set U\A; is nonempty and at most countable, and finally
U\A; ¢ Ts which completes the proof. [J

By the above theorem and Lemma 4 we have the following corollaries:
Corollary 2. Every nonempty and open set in (X, Ts) is connected.

Corollary 3. Every connected set in (X, Ts) which has a nonempty inte-
rior, is i—connected.

Therefore in the space (X, Ts) the connectivity of the sets with nonempty
interiors is identical with the i—connectivity.

We end our study by the following observation.

Let (X,T) be a topological space such that X is an uncountable set and
T = {0, X }. Moreover, let P be a family of subsets of X defined by the formula

P={AC X :cardA < xo}.

It is easy to check that the family P fulfils conditions (2)-(5) and so we can
introduce the Hashimoto topology T™ in the set X. It immediately follows
that such defined topology is the same as the topology of at most countable
complements.
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4. The i—connectivity in the order topology

Let (X, <) be linearly ordered set including at least two elements where the
ordering relation < is dense and does not have gaps (i.e. the relation < is
continuously ordered X).

Obviously in X we can introduce the so—called order topology 7 by defin-
ing a base consisting of all open intervals of the form

(a,b)={reX:a<z<b}, («a)={reX: z<a},

(a,—)={z € X:a<z}, where a,b€ X and a <b.

It follows immediately that in such defined topology every connected set is
convex. Moreover, in [3] it has been shown that every convex set is connected.
Hence for continuously ordered subsets (in particular on the straight line) the
connectivity is equivalent to it’s convexity.

Now, let us quote the following theorem.

Theorem 3 (cf. [3], p. 13). Let (X, <) be linearly ordered set including
at least two elements where the ordering relation < deos not have gaps. Then
every nonempty and convex subset is one of the form:

(12) X, (a,b),(=00,a),(a, =), [a,b], (<, al, [a, =), (a,0], a, b)

where [a,0] = {z € X 1 a <z < b},(+,a] ={z € X : z < a},(a,—) =
{reX:a<z}(ab)={reX:a<z<b}ab)={recX:a<z<b}
for arbitrary a,b € X and a < b.

Corollary 4. Let (X,7) be a topological space defined by the ordering
relation < which is dense and does not have gaps. Then the only nonempty
connected sets are subsets of the form (12).

Corollary 5. Let (X,7) be a topological space defined by the ordering
relation < which is dense and does not have gaps. Then every connected set
which has a nonempty interior is ¢ connected.
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