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Abstract. It is known that every locally defined operator acting between two Holder
spaces is a Nemytskii superposition operator. We show that if such an operator is
bounded in the sense of the norm, then its generator is continuous.

1. Introduction

Let I C R be an arbitrary interval and by R! we denote the set of all functions
p : I — R. For a given two-place function h : I x R — R, the mapping
K : R — R! defined by

K(p)(x) := h(z, (), @eR' zel,

is called a Nemytskii superposition operator of the generator h.

It is known that every locally defined operator mapping the set of con-
tinuous functions C(I,R) into itself must be a superposition operator [2].
Moreover, K maps C(I,R) into itself if and only if its generator h is contin-
uous. At this background it is surprising enough that there are discontinuous
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functions h : I x R — R generating the superpositions operators K which
map the space of continuously differentiable functions C1(I,R) into itself (cf.
[1, p. 209]). In [3] it has been proved that if a locally defined operator maps
the Banach space Hg(I,R) of all Holder functions ¢ : I — R into Hy (I, R),
then it is a Nemytskii superposition operator. The purpose of this paper is to
show that if, additionally, K is bounded with respect to Hy (I, R)-norm, then
its generator must be continuous.

2. Main result

Let ¢ : (0,00) — (0, 00) satisfy the following condition:
(i) ¢ is strictly increasing, ¢(0+) := tlir(gr ¢(t) = 0 and the function

(O,m)atﬁ@

is decreasing.
Let us note the following (easy to verify)

Remark 1. If ¢ : (0,00) — (0, 00) satisfies condition (i), then ¢ is subad-
ditive and continuous.

Let I C R be an interval and let zy € I be arbitrarily fixed. For a given
¢ :(0,00) — (0,00), having the above properties, by Hy(/,R) we denote the
Banach space of all Holder functions ¢ : I — R equipped with the norm

- le(@) —eW)]
el = le(zo)| T, ey

Clearly, ¢ € Hy(I,R) if and only if there exists a constant ¢ > 0 such that

() — W) < collz —yl), zyel

Let us notice that if ¢(t) = t* for some a € (0,1], then H,(I,R) :=
Hy(I,R) is the classical Hélder functions space and Hi(I,R) becomes the
Banach space of Lipschitz functions.

Definition. Let ¢, : (0,00) — (0,00) satisfy condition (i). An operator
K : Hy(I,R) — Hy(I,R) is said to be locally defined if for any open interval
J C R and for any functions ¢, € Hy(I,R),

‘P|Jn1 = w‘]ﬂ[ = K(90)|Jml = K(w)‘JﬂI’

where gb‘JmI denotes the restriction of ¢ to JNI.
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In [3] the following result was proved:

Theorem 1. ([3], Corollary 2). Let I C R be an interval. If a locally
defined operator K maps Hy(I,R) into Hy(I,R), then there exists a unique
function h : I x R — R such that

K(p)(z) = h(z,p(z)), (z€1I),
for all p € Hy(I,R), that is K is a Nemytskii operator of the generator h.
We say that an operator K : Hy(I,R) — Hy(I,R) is bounded if it maps
the convergent sequences of Hy(I,R) into bounded sequences in Hy (1, R).
The main result reads as follows:

Theorem 2. Let I C R be an interval. If a locally defined operator
K : Hy(I,R) — Hy(I,R) is bounded, then there exists a continuous function
h:I xR — R such that

K(o)(z) =Mz, p(x)); @€ Hy(I,R), (zel).

Proof. By Theorem 1, there exists a function h : I x R — R such that the
formula of our result holds true. We shall show that h is continuous.

Without any loss of generality we can assume that [ = [a,b), where
0 < b < 400, and that

et 2@ =)
lplly == le( )I+x7yil}jﬁéy ¢(jz—yl)

First we show that h is continuous with respect to the second variable. To
this end let us fix (29, y0) € I and choose arbitrarily a real sequence (Y, )neN
such that

Yn # Yo, neN, lim y, =yo. (1)
n—oo

Let (z,,)nen be a sequence such that x,, € I, n € N, and

|2 — o = ¢ (\/lyn - yol) , neN,

Hence we obtain

[Yn — Yol [Yn — Yol N
= =Vlyn —wl, neN. (2
$llen = 20D~ 6 (671 (/] — wol) ) °

Define the functions P,, : I — R, ¢, : I — R, n € N, by the following
formulas:

Py, (z) :=yn, neN, (3)
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Yo, for x € [auxO]a
pnlr) = § Z—L(a —wo) +yo for z € (wp,n), nEN,
Ty — To
Yn, for =z € [z, b).
and put
wo(z) =yo, wzel.
Of course,
Py.,on € Hy(I,R), neN.
Since

1Py, — ¢olls = lyn —vol, n €N,
applying (1) and (2), we get

lim [P, — ¢oll¢ =0, lim |/, — @ollg¢ = 0.
n—oo n—oo

(4)

()

Making use of (3), (4), the triangle inequality and by the definition of the

norm, we have

|h(z0,yn) = M@0, yo)| < |A(@n; yn) = (@0, Yn)| + (2, Yn) — h(z0, y0)]

= [h(n, Py, (2n) — h(zo, Py, (o)
Fh(@n; on(@n)) = h(zo, ¢n(0))]
= [K(Py,)(xn) = K(By,)(x0)|

+ K (en)(@n) — K(on)(0)]

_ KBy, )(xn) = K(Py,)(20)]

Wlon o) LoD
K n)a) ~ Klon)ao)
o)) = B30y,

<K Byl ([2n — 20]) + 1K (n) | - P (|2n = 2ol)-

Taking into account (5), the equality 1(0+) = 0, the boundedness of the
operator K and letting n tend to the infinity, we get the continuity of h with

respect to the second variable.

To show that h is continuous fix (xg,yo) € I X R, take two arbitrary se-
quences x,, € I, y, € R, n € N, convergent to xg and g, respectively, and

define P, : I — R, n e NU{0}, by

P, () =yn, neNU{0}.
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Hence, by the triangle inequality and by the definition of the norm, we have
W@, yn) — W0, yo)| < [R(2n, yn) — h(@0, yn)| + |h(z0, yn) — R0, y0)]

= |h(an, By, (xn)) = h(zo, Py, (x0)]
+ [h(zo, yn) — (w0, yo)|

= [(K(Py,)(zn) — K(By,)(x0)|

+ [h(z0, yn) — (o, yo)|

KR (a) = K(P) (o)
B (n — 0] v
+|h(xo, yn) — h(xo,yo0)|

< BBy )l (|2n, ol) + [A(20, yn) = h(zo, yo)|.

Since, by the definition of P, , n € NU {0},

|Zn — T0l)

nh_)ngo ”Pn - Pyo”¢ =0,

applying the boundedness of the operator K, the equality ¢(04+) = 0 and
the first part of the proof, i.e. the continuity of h with respect to the second
variable, letting n tend to the infinity, we get the required claim. O

Remark 2. Taking in the above theorem a compact interval I C R, one
gets Theorem 7.3 from [1].

To construct an example showing that the assumption of the boundedness
of K is essential, we need the following

Lemma. Let (X,d),(Y,p) be metric spaces. Suppose A, B C X are closed,
intANintB = 0 and adjacent in the following sense: for any x € A, y € B
there exists a point z € AN B such that

d(z,y) = d(z,z) + d(z,y). (6)
If the functions f: A —Y and g: B —Y are Lipschitz continuous and

f(z)=g(z) forall z€dANJIB,
then the function h : (AU B) — Y defined by

| flz) for ze€A,
h(w) = { g(x) for ze€B

is Lipschitz continuous. (Here §A stands for the boundary of A.)
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Proof. Since f and ¢ are Lipschitz continuous, there is ¢ € R such that

p(f(x), f(y)) < cd(x,y) forz,y € A; plg(x),9(y)) < cd(x,y) forz,y € B.

Take z,y € AU B and assume that x € A and y € B. By assumption, there
is z € A N B such that (6) holds. Hence, by the triangle inequality,

p(h(z), h(y)) < p(h(z), h(2)) + p(h(2), h(y)) = p(f (), f(2)) +p(9(2), 9(y))
<cd(x,z)+ cd(z,y) = cd(z,y).
As the remaining two cases are obvious, the proof is complete. O

Example. Define a two-place function A : [0,1] x R — R by the formula

0 if y<o,
h(z,y) = % if 0<y<Va, (7)
1 if y>/x.

Observe that h is continuous in [0, 1] x R\{(0,0)} and discontinuous at the
point (0,0). In fact we have more, namely outside of any neighbourhood of
(0,0), by Lemma, the function h is Lipschitzian.

Denote by FJ0,1] the set of all functions ¢ : [0,1] — R. Let K : F[0,1] —
F10,1] be the Nemytskii composition (so locally defined) operator generated
by h, i.e.

K(p)(2) := h(z, o(x)), = €l0,1].
We shall show that K maps the space H1([0,1],R) of all Lipschitz continuous
functions ¢ : [0, 1] — R into itself.

Take p € Hy([0,1],R). If ¢(0) # 0, then as h is Lipschitz continuous outside
any neighbourhood of (0,0), the function K (), as composition of Lipschitz

continuous functions, is Lipschitz continuous in [0, 1], so K () € H1([0,1],R).
If (0) =0, then K(go)ha 1 is Lipschitz continuous for any ¢ € (0,1]. In view

of Lemma, it is enough to show that K(gp)ho . is Lipschitz continuous. To this
end assume that ¢ satisfies the Lipschitz condition with a constant ¢, that is

[p(x) — @) < clz -2, =T el0,1].
Setting x = 0, we hence get

o(z)| < ez, xe0,1],
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so the graph of the function ¢ is contained in the triangle set

D= {(z,y) : x € [0,1], |y| < cx}.
If ¢ is nonpositive on any subinterval of I C [0,1], then, by the definition of
h, we have K(go)|l = 0 and, obiously, K () is Lipschitz continiuous on I with

zero Lipschitz constant. Therefore, it is enough to confine our considerations
to the case when the graph of <p|[0 g is contained in the set

D, :={(z,y) :x € [0,¢e], 0 <y <cx}.

Let us choose € > 0 such that ¢ < —. Then, clearly cz < /z for all z € (0, ¢].

NG
Since for all (x,y) € D, we have
2 2 2
9 ha,p)| = |-~ < le)” Ve
Ox 2e\/x| T 2x\/x 2
and
0 2y 2cx
—h =2 <=2 <2
o] = 2L < 22 <o,

we infer that h|D5 is Lipschitz continuous. It follows that K(gp)}[o o a8 a
composition of Lipchitz functions, is Lipschitz continuous.
We claim that K is unbounded. To see this take a sequence of constant

functions convergent to zero, ¢ : [0,1] — R, k € N, defined by ¢i(x) = ﬁ

According to (7), we get

1
1 for 0<z< %
K(pr)(z) = (P R keN
—— for — <z
Vkx E— =
Since
er(@) — () _
1K ()l = T L_=z | BTE 0,1], z#uy,
setting © = %, x =0, for all k£ > 4, we get
k
1K (or) [l > 3 k>4,

which shows that K is not bounded. O
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