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Abstract.

The classical continuum theory is based on the assumption that each small
particle behaves like a simple material point and ignores the relative motions
of constituent parts of this particle. The development of the notion of a point
and the development of non-Fuclidean geometry is considered. The Cosserat
continuum is an example of medium with microstructure, in which “a ponit”
has an internal structure. Its motion is determined by the displacement and
rotation fields.

1. Introduction

We begin this article from the words of the noted physicist Yuval Ne’eman
“The passage in Plutarch about Plato’s credo with respect to God’s interest
in geometry is quoted whenever the birth of modern physics is touched upon,
even though the actual realization may differ considerably from Plato’s dream.
This does not reflect badly on Plato if we consider the state of experimental
physics around 400 BC...” [1] (see also [2]).

We can paraphrase these words: “The passage in Plutarch about Plato’s
credo with respect to God’s interest in geometry is quoted whenever the birth
of modern mathematics is touched upon, even though the actual realization
may differ considerably from Plato’s dream. This does not reflect badly on
Plato if we consider the state of mathematics around 400 BC...”
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2. Development of the notion of a point

Book 1 of Euclid’s Elements begins with 23 definitions such as point, line,
surface, etc. For example:

o A surface is defined as something that has a length and a width but does
not have a hight.

o A curve is something that has only a length but does not have a width
and a hight.

o A point is considered as something that has no parts.

In mechanics of continua a material point is treated, on the one hand, as a
very small particle to apply methods of calculus (the smoothness of continuum
means that we can use the notions of continuous and differentiable functions
of a point); on the other hand, a material point contains a very large number
of atoms to consider continuum instead of discrete lattice. The classical con-
tinuum theory is based on the assumption that each small particle behaves like
a simple material point and ignores the relative motions of constituent parts
of this particle. In other words, the internal structure of a material point is
not taken into account.

However, materials used in contemporary high technology are character-
ized by complex internal structure. The results of experiments also show that
“a point” may have an internal structure which can influence the behavior of a
medium, hence a point has parts (further discussion of a model of material
point can be found in |3, 4]).

A list of important examples of continua with microstructure contains:
granular media, laminated and layered materials, blocky structures, fibrous
materials, consolidated soils, rocks with inhomogeneous microstructure, poly-
crystalline solids, ceramic composites, functionally graded materials, continua
with voids, liquids with nondiffusing gas bubbles, liquid crystals, cracked me-
dia, bodies with continuous distribution of dislocations, etc.

The microstructured materials, i.e. materials with irregularities, cannot
be described by the classical theories. These facts have forced researchers to
build up generalized continuum theories that take into account the internal
structure of a small particle. Such a structure can be described using various
methods. The microstructure theory of Mindlin [5], the micromorphic theory
of Eringen and Suhubi [6], the director theory of Toupin [7], and the multipolar
theory of Green and Rivlin [8] should be mentioned.
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Worthy of mention are also the early works. Poisson [9] proposed to
regard the molecules as little rigid bodies capable of rotation as well as trans-
latory displacements (see also [10]). Voigt [11] introduced a model of the
medium with rotational interaction of its particles for studying elastic prop-
erties of a crystal.

Mindlin [5] suggested that each element (each “point”) of the material is
itself a deformable continuum. These continua are fitted together smoothly,
so all the simplicity of a field theory results. The macromedium is a collection
of particles, whith each of which a micromedium is associated.

Eringen and Suhubi [6] supposed that the material particle (“a point”)
contains IV discrete micromaterial elements. The position vector of a mate-
rial point in the microelement is expressed as a sum of the position vector of
the center of mass and the position vector of a point in the microelement
relative to this center of mass. Upon the deformation of the body, because
of the rearrangement and relative deformation of the microelements, we ob-
tain the new position vector of the center of mass and the new relative posi-
tion vector of the material point. The basic assumption underlying the the-
ory of Eringen and Suhubi is the axiom of affine motion according to which
the motion of the particle consists of a translation, a rotation about its cen-
ter of mass, and an affine deformation. Applications of this approach can be
found in [12-14].

Duhem [15]| noticed that microstructure could be described as effects of
direction, and suggested that materials can be considered as sets of points
having vectors attached to them, that is as oriented media. Various theories
based on this idea were analyzed by Green and Rivlin [8, 16]. Consider a
body that is a collection of material points to each of which N vectors called
directors are attached. The theory is valid for a greater number of directors,
but usually the range 1, 2 or 3 directors is considered.

For example, the theory of liquid crystals proposed by Ericksen |17, 18|
corresponds to a choice of only one director. Liquid crystals (a substance that
flows as a liquid but maintains some of the ordered structures characteristic
of a crystal) have rodlike molecules whose alignment influences their material
behavior.

Three main categories have been recognized: nematic, cholesteric, and
smectic. Nematic liquid crystals consist of cigar-shaped molecules with their
long axis parallel. They maintain their orientation but are free to move in
any direction. Cholesteric liquid crystals form thin layers and within each
layer the molecules are arranged with thier long axes in the plane of the layer
and parallel to each other, as a two-dimensional nematic structures. Smectic
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Fig. 1. The motion of a Cosserat continuum.

liquid crystals consist of flat layers of molecules with their long axes oriented
perpendicularly to the plane of the layer. During motion the sheets flow freely
over each other, but the molecules within each layer remain oriented and do
not move between layers [19]. In all these cases the orientation of the molecules
can be described by the directors.

A Cosserat medium [20] corresponds to a choice of three independent
directors under some additional condition which means that during the de-
formation process directors can only rotate as the rigid body. The motion
of a Cosserat continuum is described by both the displacement vector u and
the rotation vector w independent on the displacement field. The situation is
schematically shown if Fig. 1.

Additional degrees of freedom connected with the rotation vector cause
the appearance of couple-stresses (moment of force per unit of area) in addition
to the ordinary stresses (force per unit of area).

The Cosserat continuum is often used for modeling plastic deformation
in materials, propagation and interaction of elastic waves in solids with mi-
crostructure, for development of theories of rods and shells and for describibg
damage of materials (see [21 30|, among others).
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3. Non-Euclidean geometry

In Euclid’s Elements, the definitions followed by five postulates. We recall the
fifth:

If two lines are drawn which intersect a third in such a way that the sum of
the inner angles on one side is less than two right angles, then the two lines
ievitably must intersect each other on that side if extended far enough.

For two thousand years, many attempts were made to prove the parallel
postulate from the other four, in particular using the equivalent formulations
of the fifth postulate. One of such formulations is known from the time of
Proclus (V century), but became recognized as Playfair’s axiom after Playfair’s
commentary (1795) on Euclid’s Elements in which he proposed the equivalent
formulation of the fifth postulate [31]:

Given a line and a point not on the line, it is possible to draw ezxactly one line
through the given point parallel to the line.

Legendre proved that the fifth postulate is equivalent to the following one:
The sum of the angles of a triangle is equal to two right angles.
In Lobachevsky’s “hyperbolic” geometry the fifth postulate is replaced by:

There exist at least two lines parallel to a given line through a given point not
on the line.

In Lobachevsky’s geometry the sum of the angles of a triangle is less than two
right angles.

In Riemann’s “spherical” geometry the fifth postulate is replaced by:
Every line through a point not on a given line meets this line.

In Riemann’s geometry the sum of the angles of a triangle is greater than two
right angles.

History of non-Euclidean geometry can be found, for example, in [32 38|.

There are many applications of non-Euclidean geometry in various fields
of physics. Apart from well-known Einstein’s general theory of relativity, the
interesting reader can find other applications in [39-42|, among others. In
particular, the creation and progress of the continuum theory of imperfections
(dislocations and disclinations) in Cosserat continua is closely connected with
the use of the ideas and methods of non-Euclidean geometry.
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4. Gauge theory of defects in Cosserat continuum

A generalized understanding of media with microstructure, which combines
the development of the notion of a point and the non-Euclidean geometry
approach, can be achieved using the mathematical structure of fiber bundle
(see, for example, [43, 44]).

A structure of differential fiber bundle is a six-tuple
(E7 B7 F? G7 7T, l/))a

where the differential manifold FE is the total space, the differential manifold
B is the base, the differential manifold F' is the fiber, the Lie group G is the
structural group, the differential map « : £ — B is the projection, and ¢ is a
family of diffeomorphisms.

Recalling Cosserat results in contemporary language, one can say that
within their treatment the properties of the mathematical model are strictly
separated. All the geometrical properties are carried by the base manifold,
while all the physical properties are embedded within the standard fiber
structural group

T(3)>S0(3),

where T'(3) is the group of translations, SO(3) is the special orthogonal group,
> is the semi-direct product.

In Fig. 1, the based manifold is made of snails, whereas the shall corre-
sponds to the standard fiber.

In the gauge theory of defects, homogeneity breakdown of action of the
group SO(3) leads to apperaing of disclinations and rotation dislocations,
while homogeneity breakdown of action of the group 7°(3) leads to apperance
of translational dislocations (see [45-48| and references therein).
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