k-CONNECTIVITY

Jacek Jędrzejewski^{a,b}, Stanisław Kowalczyk^c

^aInstitute of Mathematics and Computer Science Jan Długosz University of Częstochowa al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland e-mail: j.jedrzejewski@ajd.czest.pl

> ^b Chair of Mathematics and Physics The College of Computer Science in Łódź ul. Rzgowska 17a, 93-008 Łódź, Poland e-mail: jmj@wsinf.edu.pl

c Institute of Mathematics
Academia Pomeraniensis, Słupsk
ul. Arciszewskiego 22, 76-200 Słupsk, Poland
e-mail: stkowalcz@onet.com

Abstract

The notion of some connectedness is introduced and it is compared with usual connected sets.

Subsets of a topological space that are called *i*-connected have been introduced by J. Knop & M. Wróbel in [2] in 2006. The reason of introducing this notion is based upon the fact that a subset of the space \mathbb{R} with nonempty interior is *i*-connected if and only if it is connected.

Definition 7 (J. Knop & M. Wróbel – 2006) A subset A of a topological space X is called to be i-connected if it is connected and Int (A) is connected.

We want to define the so called k-connected subsets of a topological space, which are a little different from i-connected sets, but have some interesting properties.

Definition 8 A subset A of a topological space X is called to be k-connected if its interior is connected and $A \subset \overline{\operatorname{Int}(A)}$.

Of course, each k-connected set is i-connected and connected as well, but not conversely.

Moreover, let us remark that each open connected set is k-connected as well.

It is quite easy to see that for Euclidean space of real numbers \mathbb{R} , a subset A with a nonempty interior is k-connected if and only if it is connected.

As we could observe, k-connected sets are similar to i-connected ones, so it is worth to compare these kinds of sets.

Theorem 11 A subset A of a topological space is k-connected if and only if it can be represented in the form

$$A = B \cup C$$

such that C is open and connected and

$$B \cap C = \emptyset$$
, $B \subset \overline{C}$.

P R O O F. 1. Suppose first that a set A is k-connected. Let $C = \operatorname{Int}(A)$ and $B = A \setminus C$. Then, of course, $\operatorname{Int}(B) = \emptyset$ and $B \cap C = \emptyset$. Since $A \subset \operatorname{Int}(A)$, then $B \subset \overline{C}$.

2. Suppose now that a set A has the form $A = B \cup C$, where C is open and connected and

$$B \cap C = \emptyset, \quad B \subset \overline{C}.$$

Then

$$C = \operatorname{Int}(C) \subset \operatorname{Int}(A)$$
,

consequently

$$\overline{C} \subset \overline{\mathrm{Int}(A)}$$

and

$$A = B \cup C \subset \overline{C} \cup C = \overline{C} \subset \overline{\mathrm{Int}(A)}.$$

Two considered possibilities complete the proof.

Theorem 12 If A is a k-connected subset of a topological space and C fulfils the following inclusions

$$A \subset C \subset \overline{A}$$
,

then C is also a k-connected set.

P R O O F. Since Int(A) is a connected set and

$$\operatorname{Int}(A) \subset \operatorname{Int}(C) \subset \operatorname{Int}(\overline{A}) \subset \overline{A} \subset \overline{\overline{\operatorname{Int}(A)}} = \overline{\operatorname{Int}(A)},$$

then Int(C) is a connected set. Moreover,

$$C \subset \overline{A} = \overline{\overline{\operatorname{Int}(A)}} = \overline{\operatorname{Int}(A)} \subset \overline{\operatorname{Int}(C)},$$

which proves the theorem.

Theorem 13 If $\{A_s : s \in \mathcal{S}\}$ is a class of k-connected subsets of a topological space and there exists an index s_0 in \mathcal{S} such that

$$\operatorname{Int}(A_s) \cap \operatorname{Int}(A_{s_0}) \neq \emptyset$$

for all s from S, then the set $\bigcup_{s \in S} A_s$ is also a k-connected subset of X.

P R O O F. Each of the sets $\operatorname{Int}(A_s)$ is connected, so is A_s . In view of our assumptions, the sets $\bigcup_{s \in \mathcal{S}} A_s$ and $\bigcup_{s \in \mathcal{S}} \operatorname{Int}(A_s)$ are connected as well. Since each of the sets A_s is k-connected, then $A_s \subset \overline{\operatorname{Int}(A_s)}$ and

as well. Since each of the sets A_s is k-connected, then $A_s \subset \text{Int}(A_s)$ and applying standard properties of interior and closure operations one can infer from the definition of k-connected sets that

$$\operatorname{Int}\left(\left(\bigcup_{s\in\mathcal{S}}\operatorname{Int}\left(A_{s}\right)\right)\right)=\bigcup_{s\in\mathcal{S}}\operatorname{Int}\left(A_{s}\right)\subset\bigcup_{s\in\mathcal{S}}\overline{\operatorname{Int}\left(A_{s}\right)}\subset\overline{\bigcup_{s\in\mathcal{S}}\operatorname{Int}\left(A_{s}\right)}.$$

From this and connectedness of the set $\bigcup_{s\in\mathcal{S}}$ Int (A_s) we can infer that the

set Int $\left(\left(\bigcup_{s\in\mathcal{S}}A_s\right)\right)$ is connected.

Moreover,

$$\bigcup_{s\in\mathcal{S}} A_s \subset \bigcup_{s\in\mathcal{S}} \overline{\mathrm{Int}\,(A_s)} \subset \overline{\bigcup_{s\in\mathcal{S}} \mathrm{Int}\,(A_s)} \subset \mathrm{Int}\left(\left(\bigcup_{s\in\mathcal{S}} A_s\right)\right),$$

which completes the proof.

As usual, one can ask whether a continuous image of a k-connected set is also k-connected. The following theorem gives the positive answer under some additional condition.

Theorem 14 If X and Y are topological spaces and a map $f: X \longrightarrow Y$ is an open and continuous injection of X into Y, then f(A) is a k-connected subset of Y whenever A is a k-connected subset of X.

P R O O F. If A is a k-connected subset of the space X, then it can be represented in the form

$$A = B \cup C$$

where C is open, connected and

$$B \cap C = \emptyset, \quad B \subset \overline{C}.$$

Then

$$f(A) = f(B \cup C) = f(B) \cup f(C).$$

The set f(C) is open, connected and

$$f(B) \cap f(C) = \emptyset, \quad f(B) \subset f(\overline{C}) \subset \overline{f(C)}.$$

In view of Theorem 11, the set f(A) is k-connected.

There is no difficulty to construct topological spaces and a continuous surjection for which the image of k-connected sets is not k-connected. So, openness of such a map cannot be omitted in the previous theorem.

If a topological space X fulfils the condition: for each element x of X there exists an open and connected set U such that $x \in U$, then we can define the notion of k-component of a point. Theorem 13 allows us to consider the biggest k-connected set containing a point x. It is called the k-component of this point in topological space X. It happens that in such spaces k-components coincide with components (in the usual sense). Let us notice that this condition is a bit weaker than local connectedness of the space.

Theorem 15 If X is a topological space such that for each element x of X there exists an open and connected set U such that $x \in U$, then k-component of any point x is equal to the component of this point (in the usual sense).

P R O O F. Since each k-connected set is connected (in the usual sense), then k-component of a point in any topological space is contained in the (usual) component of that point. It is left then that in topological spaces fulfilling our condition, the component of a point is contained in its k-component. Let C be the component of a point x_0 . For each point x from the set C there exists an open and connected set U_x such that $x \in U_x$. From the definition of components it follows that $U_x \subset C$ for each point x from C. Thus the component C is a union of all sets U_x , $x \in C$. Then the set C is open, hence it is k-connected and containing the component of the point x_0 .

Now we will consider some sufficient conditions for topological spaces in which the class of k-connected sets and the class of connected sets with nonempty interior coincide. Let us denote this class of topological spaces by \mathcal{K} .

Theorem 16 If X is a topological space from \mathcal{K} , then

$$x \in \operatorname{Int}\left(\left(\overline{U} \cup \overline{V}\right)\right)$$

for each disjoint open and connected sets U and V and x belonging to $\overline{U} \cap \overline{V}$.

P R O O F. Let us suppose in the contrary that there exist disjoint, open and connected sets U, V and a point x such that

$$x \in \overline{U} \cap \overline{V}, \quad x \notin \operatorname{Int}\left(\left(\overline{U} \cup \overline{V}\right)\right).$$

Since the sets U, V are not separated from $\{x\}$, then the set E, where $E = U \cup V \cup \{x\}$, is connected. Its interior equals $U \cup V$, which is not connected. In this way we obtained a connected set which is not k-connected. Contradiction.

Similarly, one can prove the next theorem:

Theorem 17 If X is a topological space from \mathcal{K} and U, V, and W are pairwise disjoint open and connected subsets of X, then

$$\overline{U} \cap \overline{V} \cap \overline{W} = \emptyset.$$

Let us remind the notions of cut points and strong cut points of a topological space.

Definition 9 Let X be a connected topological space. A point x from X is called a cut point if the set $X \setminus \{x\}$ is not connected.

Definition 10 Let X be a connected topological space. A point x from X is called a strong cut point if the set $X \setminus \{x\}$ has two components.

As a corollary we can obtain the following theorem:

Theorem 18 If X is a topological space from \mathcal{K} and x is a cut point of the space X, then $X \setminus \{x\}$ has two components.

We can formulate this theorem in other words: Each cut point of a space X from the class $\mathscr K$ is a strong cut point.

References

- [1] J.L. Kelley. *General Topology*. Springer, New York Heidelberg Berlin 1955.
- [2] J. Knop, M. Wróbel. Some properties of *i*-connected sets. Annales Academiae Paedagogicae Cracoviensis, Studia Mathematica, VI, Folia 45, 51–56, 2007.