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Abstract. In 16th and 17th century, the need for speed in complex calculation
spurred the invention of a powerful mathematical tool known as LOGARITHM. The
reduction of multiplication and division to addition and subtraction (likewise the
reduction of a complex mathematical structure to more simple ones) is in the spirit
of "prosthaphaeretic rules6f ancient Greeks. We discuss some mathematical ideas
related to logarithms and present some historical notes.

Rarely in the history of science has an abstract mathematical idea been
received more enthusiastically by the entire scientific community than the in-
vention of logarithms. The sixteenth and early seventeenth centuries saw an
enormous expansion of scientific knowledge in every field. Discoveries in geo-
graphy, physics and astronomy, rapidly changed man’s perception of the uni-
verse: Copernicus’s heliocentric system, Magellan’s circumnavigation of the
globe in 1521, the new world map published in 1569 by Gerhard Mercator,
inventions and needed new knowledge in numerical computation, in formula-
ted new physics laws, for example mechanics (Galileo Galilei) and astronomy
(Johannes Kepler, his three laws of planetary motion).

These developments involved an ever increasing amount of numerical data,
forcing scientists to spend much of their time doing numerical computation.
The times called for an invention that would free scientists once and for all
from this burden. Napier took up the challenge. We have no account of
how Napier first stumbled upon the idea that would ultimately result in his
invention. He was well versed in trigonometry, e.g. he was familiar with

sin Asin B = % [cos (A — B) — cos (A + B)]

This formula and similar ones for cos Acos B and sin Asin B are known
as the prosthaphaeretic rules, from the Greek word meaning addition and
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subtraction". Their importance lays in the fact that the product of two tri-
gonometric expressions such as sin Asin B could be computed by finding the
sum or difference of other trigonometric expressions, in this case cos (A — B)
and cos (A + B). Since it is easier add and subtract than to multiply and di-
vide, these formulas provide primitive system of reduction from one arithmetic
operation to another, simpler. Roughly, this was originally the idea of John
Napier.

1. Invention of logarithms

This idea is better illustrated for the terms of a geometric progression, i.e. a
sequence of numbers with a fixed ratio between successive terms. For example,
the sequence 1, 2,4, 8,16, ... is a geometric progression with the common ratio
2. If we denote the common ratio by ¢, starting with 1, the terms of progression
are 1,¢,¢%,¢%,... (note that the n-th term is ¢"1).

Long before Napier’s time, it had been noticed that there exists a simple
relation between the terms of a geometric progression and the corresponding
exponents. Nicola Oresme in his book De proportionibus proportionum gene-
ralized some rules for combining proportions in year 1360. Nowadays expressed
as ¢"q" = ¢™™ and (¢™)" = ¢"™". These relations are exactly formulated by
Michael Stifel in his book Arithmetica integra as follow : "If we multiply any
two terms of the progression 1,q,q>,. .., the result would be the same as if we
had added the corresponding exponents... dividing one term by another term
is equivalent to subtracting their exponent."

The problem arises, if the exponent of the denominator is greater than that
of the numerator. To get around this difficulty, we simply define ¢7" = q%
and ¢ = 1, so that & = ¢ = L and & = ¢° = 1. With this defini-
tion, we can extend a geometric progression indefinitely in both directions,

0 3.¢72%,9¢7% 4 ¢ 4%, .... Each term is a power of the common ratio
¢, and that the exponents ..., —3,—-2,—1,0,1,2,... form an arithmetic pro-
gression. This relation is the key idea behind logarithms. Stiffel had in mind
only integer values of the exponent, but Napier’s idea in his book Mirifici
Logarithmorum Canonis descriptio was to extend it to a continuous range of
value’s .

His thoughts proceeded as follows: If we could write any positive number
as a power of some given fixed number then multiplication and division of
positive numbers would be equivalent to addition and subtraction of their
exponents. We illustrate the idea with number 2 as the base.

Suppose we need to multiply 16 by 64. We look in the table for the
exponents corresponding to 16 and 64 and find them as 4 and 6. Adding these
exponents gives us 10. We now reverse the process, looking for the number
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whose corresponding exponent is 10. This number is 1024 and we have the
desired answer. As the next example, suppose we want to find 4*. We find
the exponent corresponding to 4, namely 2 and this time multiply it by 4 to
get 8, then look for the number whose exponent is 8 and find it to be 256.
And indeed 4% = (22)" = 28 = 256.

Of course, such an elaborate scheme is unnecessary for computing strictly
with integers. But, for this to happen, we must first fill in the large gaps
between the entries of our table. We can do this in one of two ways:

e using fractional exponents

e choosing for the base a number small enough so that its powers will grow
reasonably slowly.

2. Napier logarithms

Napier choose the second option. A question arose, how to choose the base
so that a change of exponent causes a small change of powers of the base.
It seems that it should be a number close to 1. Napier decided 0,9999999 or
1—10"". Napier spent twenty years of his life to complete the task, that it will
do the job. His initial table contained just 101 entries, starting with 107 and
followed 107 (1 — 10_7) = 9999999, then 107 (1 — 10_7)2 = 9999998 and so on

up to 107 (1 — 10_7) 190 = 9999900. The difference between two sides is only
0,000495, which we neglect. Each term being obtained by subtracting from
the preceding term its 0,9999999 = 107 (1 —10~7)""" — 107 (1 - 1077)" =
(1 — 10_7)2. He then repeated the process again, starting once with 107, but
this time taking as his proportion the ratio of the last number to the first
in the original table, that is 999900 — () 99999 or 1 — 10~°. This second

10000000

table contained 51 entries. The first was 1 — 1077, followed 107 (1 — 107°) =
9999900, the last being 107 (1 —107°)*" = 9995001. A third table with 21
entries using the ratio 299500 the last entry in this table was 107 (0, 9995)% =
9900473. Finally, from each entry in this table Napier created 68 additional
entries using the ratio 190%00%%7030 ~ 0,99 and the last entry then was 1070, 99% ~
49986009, it is roughly half the original number.

In modern notation, this amounts to says that if N = 107 (1 — 10_7)L,
then the exponent L is the Napier logarithm of N. Napier’s definition of loga-

rithms was different in several respects from the modern definition (introduced
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in 1728 by Leonhard Euler). If N = b", where b is a fixed positive number
other than 1, then L is the logarithm (with the base b) of N. Hence

L=0, Nap log 10" =0

L=1, Nap log 9999999 = 1, etc.

Notice that the computations using Napier logarithm are more complicated
then those using the modern logarithms. for example :
If L1— Nap log Ni, hence 10" Ny = 107 (1 — 10’7)L1 and

Ly— Nap log Na, hence 107Ny = 107 (1 — 1077)"2,

_\Li+L NP
then 282 = 107 (1 —1077)"'"*, nL;= Nap log T
Relationship between the modern logarithm and the Napier logarithm :

N
n A
Nap log N = ln(lflfg_ﬁ,

Nap log N1 Ny = Nap log N1+ Nap log N2+1n(11n+1007_ﬁ.
3. Geometric definition of the Napier logarithm

The principles of his work explained in geometric terms have been presented
in first in the article about logarithms: Mirifici Logarithmorum Canonis de-
scriptio Assume that a point P moves along ACZ (starting from A) with the
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uniform speed B. Now, in the first moment, let P move from A to C, in the
second moment from C to D, etc. Let SQ be a line segment and let AZ be a
halfline, see picture.
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Let a point R start from S and move along SQ with variable speed decre-
asing in proportion to its distance from Q. During the same time let a point
P start from A and move along ACZ with uniform speed. Napier called this
variable distance AP the logarithm of the distance RQ.
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"The Logarithme therfore of any sine is a number very neerely expressing
the line, which increased equally in the meane time, whiles the line of the whole
sine decreased proportionally into that sine, both motions being equal-timed
and the beginning equally swift."

Napier’s geometric definition is, in agreement with the numerical descrip-
tion given above. Let |RQ|=z and |[AP|—=y. If |[SQ| is taken 107 and if the
initial speed R is also taken 107, then in modern calculus notations we have

‘fl—f = —x and ‘fl—? = 107. The initial boundary condition are zy = 107 and
yo = 0. Then g—g = —% or y = —107 In cz, where c is found from the initial
condition ¢ = 10~7. Hence y = —107 In 107 = 107 log1 107

4. Conclusion

The creation of the idea of logarithm by Napier (connection greek’s words
Aoyos - ratio, aptTpo¢ - number) is a revolutionary milestone in history. His
invention was quickly adopted by scientists all across Europe and even in
faraway China. Henry Briggs (professor of geometry at Gresham College in
London) was impressed by the new invention and has said to Napier : "My
lord, I have undertaken this long journey purposely to see your person, and to
know by what engine of wit or ingenuity you came first to think of this most
excellent help in astronomy, viz the logarithm ..."

At that meeting, Briggs proposed two modifications that would make Na-

pier’s table convenient
to have the logarithm of 1, rather than of 107, equal to 0 and
to have the logarithm of 10 equal an appropriate power of 10.
The beauty and the power of logarithm can be presented for example by

. 2 .
computing r = ¢ %. To perform the computation it suffices to use

"the table of logarithms from 10 to 52".
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