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Abstract. The article presents a didactic proposition of introducing the definition
of the absolute value of a real number.

1. Introduction

This paper is a continuation of research into understanding of the absolute
value of a real number. In the article (Major, Powazka, 2006) the neces-
sary and sufficient conditions for the existence of the solutions of equations
contained the absolute value functions were given. This paper contains the
examples of didactic conceptions of the implementation of the definition of
the absolute value of a real number at different levels of mathematical educa-
tion. There were used functional equations of one or several variables. The
didactic propositions described in this paper could be exploited by teachers
of the secondary schools or the university teachers and mathematics students
especially teaching oriented ones.

During their studies students learn different definitions of the absolute
value of a real number. These definitions are based on the distance between
two points on the number line, maximum of two real numbers or a square
root of a nonnegative number. In the secondary school level one proves the
following properties of the absolute value of a real number

|':Uy| = |£L'| ' |y|7 T,y € R7
|z]| = ||, € R,

laz| = alz|, € R,a € RT.
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Let a function ¢ : R — R satisfy the following equations

¢(¢(x)) = ¢(x), =€ R, (2)
pla-x)=a-¢(x), € R,acR". (3)

In this paper we study the conditions for which a solution of the system of
equations (1), (2), (3) is in the form

o) =], € R. (4)

2. Main results

In this part we prove four theorems. All of them could be use as a didactic
proposition of introducing of the definition of the absolute value of a real
number.

Proposition 1

We start with the following theorem of Cauchy [1].

Lemma 1. If a continuous function h : R — R s for all real x,y a solution
of the Cauchy functional equation

h(z +y) = h(x) + h(y), (5)
then there exists a real number A such that
hz) =Xz (6)
for all real x.
Now we prove the following theorem.

Theorem 1. If a nonconstant and continuous function ¢ : R — RT U {0} is
a solution of equation (1) for all real x,y with ¢(a) = a, where a denote a
constant number and a € RT \ {1}, then ¢ is the absolute value function (4).
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Proof. Let a nonconstant and continuous function ¢ : R — R satisfy equation
(1). Putting in (1), z = y = 0 we get #(0) = ¢*(0) < (¢(0) = 0 or ¢(0) = 1).
If $(0) =1, then ¢(z) = 1 for all real number z, which is impossible, because
¢ is a nonconstant function. Hence we have

¢(0) = 0. (7)

Let x,y be positive real numbers. The substitution x = e*,y = €¥, where
u,v € R transform (1) into

¢ H)) = p(e") - d(e?). (8)
Putting in (8) g(u) := ¢(e") where u € R. We get equation

gu+v) = g(u) - g(v). 9)

Because g is a positive function, we have

In(g(u +v)) = In(g(u)) + In(g(v))- (10)

Let h : R — R by the function given by h(u) = In(g(u)),u € R. Then it
follows from (10), that h is a solution of the Cauchy functional equation (5).
By the definitions of functions g and h we get

h(u) =1In(¢(e")), u € R. (11)

The continuity of the function (11) follows from the continuity the function ¢
and the logarithm function or the exponential function. It implies, that the
function (11) is continuous solution of the Cauchy functional equation (5). In
view of (6) and (11) there exists a number A a such that

¢(z) =M 2 e RY,
thus
¢(x) =ax*m =z € RT. (12)

Putting in (1) x = y = t or x = y = —t, where t # 0 we have
B(t?) = ¢2(t) or ¢(t?) = ¢?(—t), respectively. It follows that ¢?(t) = ¢?(—t).
By the assumption of Theorem 1 the function ¢ is a nonnegative solution of
equation (1). Therefore

¢(t) = ¢(=t), te R\{0}. (13)

From (7), (12), (13) we get that continuous, nonnegative solution of equation
(1) is given by
¢(x) = e[, @ €R. (14)
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Since a is a positive fixed point of the function ¢, we get from (14), a = ¢(a) =
la]* = a*. From this we get

A=1. (15)

From (14) and (15) it follows that the solution ¢ of the functional equation
(1) is in the form (4).

Remark 1. If we replace in Theorem 1 the continuity assumption by
(i) ¢ is continuous at a point,
(i1) ¢ is bounded from above on an interval,

then the Theorem 1 holds true.

Proposition 2

The following results is generalization of Theorem 1.

Theorem 2. If a nonconstant and continuous function ¢ : R — R with

¢(a) = ¢(—a) = a, (16)

where a denote a constant real number and a € RT \ {1}, is a solution of
equation (1) for all real x,y then it is the absolute value function (4).

Proof. Let ¢ : R — R satisfy the assumption of this theorem. Similarly as in
the proof of Theorem 1 we have (12). Since ¢(a) = a,a € RT \ {1}, we get
A = 1. From this it follows that

¢(x) =z, xz€R. (17)

Now, putting in (1) 2 = y =t orxz = y = —t,t # 0 we have
d(t?) = ¢%(t) or ¢(t?) = ¢?(—t), respectively. Thus ¢?(t) = ¢?(—t). Hence
o(t) = ¢(—t) or ¢(t) = —p(—t). This and (16) yield that the function ¢ is
an even function in R. Hence by virtue of (17) the function ¢ is the absolute
value function.



Some remarks on definition of the absolute value 287

Proposition 3

In this part we will show the method of defining the function given by (4),
using a solution equation (2). We start with following.

Lemma 2. If the function ¢ : R — R have the inverse function, then the
function (6) with X\ =1 is a solution of equation (2).

Theorem 3. If an even function ¢ : R — RT U {0} is a solution of equation
(2) and the restriction of this function to the interval [0,+00) have the inverse
function, then ¢ is given by the formula (4).

Dowdd. et an even function ¢ : R — R U {0} satisfy equation (2) and the
assumption of this theorem. Then ¢(x) = ¢ 1(¢(x)), x > 0, where ¢! is
the inverse function of ¢. Hence we get ¢(z) = x, x > 0. Because ¢ is an
even function, formula (4) holds. 0

Proposition 4

Now we will define the absolute value function using the solutions of the
functional equation (3).

Theorem 4. If an even function ¢ : R — R satisfy the condition

is the solution of equation (3), then ¢ is given by the formula (/).

Proof. Putting x = 1 in (3) we have ¢(a - 1) = a- ¢(1), where a is a positive
real number. From this and (18) it follows that

¢(a) =a, a>0.

Putting in (3) z = 0 we have ¢(0) = ¢(a -0) = a - ¢(0). Hence,
#(0) - (1 —a) =0, a > 0. Because a > 0, we get that ¢(0) = 0. There-
fore, we have the condition (17). Because ¢ is an even function, the formula
(4) holds.
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