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In standings related with didactical experiments we have often need to use sta-
tistical check of our hypothesis. Though we consider that our method is correct or
that some other method is wrong, we cannot make any claim whiteout mathematical
background. Statistical proving of didactical hypothesis enables as to put our stan-
dings on mathematical standings. A most of didactical theories in some of their part
use statistical proving.

Mathematical statistics enable as this goal to fulfill. Problem on which we could
come upon when we start to chose statistical method which is most adequate for our
needs, or our experiment needs, is fulfilling conditions which must be satisfied before
we use some method. One of the most often conditions is condition than our sample
is from normal distribution. This problem can be solved with central limit theorem
of mathematical statistics.

In this work I would like to make more observation about cases where is not proper
to use central limits theorem. This could be happening from several reasons: maybe
sample that we have in not enough big, maybe we have interest, or our didactical
experiment demand, knowing preciously to which distribution function belong our
sample.

One of the very useful methods is Pearson’s x? test of congruence. Benefits of
using this test are that this test can be applicable on every distribution function,
which make our job much more easier. Other thing is that correspondent statistics
are relatively easily countable, actually we have relatively easy calculation. But first

take a look at method of maximal likelihood.

1. Method of maximal likelihood

We can estimate unknown parameter, with big size sample, of the numeric
value distribution. Procedure of estimating unknown parameter depends on
real or asymptotic (limiting) statistics. These statistics are functions of the
sample.
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Let’s assume that theoretical distribution of numeric value is distribu-
tion function F, which belongs to set P = {F(xz,v) : v € O} accepta-
ble of permitted distributional functions and let sample (X1, Xs,... ,X,,) be
from distribution F. We can get point estimator of the unknown parameter v
from sample (X7, Xo,...,X,,) by following steps: we have to select statistics
T, =T(Xy,Xo,...,X,) and they name is estimator of the unknown parame-
ter wv. If realized value of the sample is (z1,29,...,2,), then for
approximation of the number v number T'(X;, Xo,... ,X,,) is taken. There
are several methods how to get estimator, but basic is method of exchange.
If unknown parameter v can be presented with functional v = G(F'), and
we can mark with F;, empirical distributional function defined according to
sample (X1, Xo,...,X,,). Estimator of the unknown parameter v is statistics
T, = G(Fy).

If we want to have the most optimal properties we need to use the method
of maximal veracity.

Let take a look at distribution L(X) of numeric value X, which belongs to
the set P = {f(z,v)|v € ©} of acceptable distribution. Veracity function is

n
L(zy,xe,... ,xp;v) = [] f((zk,v), when v is fixed this is density of random
k=1

vector X. It can be observed that realized values of random vector X are
mostly where veracity function take big values. Therefore we take statistics
Up = Unp(X), for unknown parameter estimator. o, = 0,(X) is defined with
condition

L(X : 0,) = max L(X;v).

Because function In : Rt — R is increasing function L(z,v) and In L(z,v)
have the same maximal value, we can make maximal veracity estimator from
equation

Oln L(X;v)

Ee =0.

Theorem. Let T, is efficient™ estimator of parameter v. Then T), is the only
solution of veracity equation.

Example 1. (X, Xo,...,X,,) is a sample from B(1,v) distribution. Let’s
find maximal veracity estimator of unknown parameter v. Distribution of nu-
meric value is defined by f(x,v) = v®(1 — v)}=%, where x € {0,1}. Function
of veracity is

L(w1,29,. .. ,2p;v) = 07100 (1 — )t 781700,

“Estimator is effecient if stands: DT, = G, where G = %.
nE(m ln(f(z,v)))
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Equation of veracity is

Jdln L 0 Spn N — Sy
= 2zl —s)In(1 —v)) =2 -
50 80(3:” nv+ (n— sy)In( v)) » T 0,

where s, = x1 + ...+ x,. Solution of this equation is v, = 22 = T,,. Maximal

veracity estimator of the unknown parameter v is 0, = X .

Example 2. (X1, Xo,...,X,,) is a sample from N (m,c?) distribution, where
m and ¢? are unknown parameters. Let’s find maximal veracity estimators of
this parameters. Function of veracity is:

1 1 «
L(z1,22, ... ,Tn;m,0?) = 53 OXP l—ﬁ Z(l‘k — m)zl )
k=1

n
Equations of veracity are 861%’: =24 > (2 —m) =0, and
k=1

Oln L n 1 <« 9
07 = "3g7 T g1 2 (@ —m)? =0,
k=1

3=
3=

n n
and their solutions are my, = + > oy = T, and 02 = = " (7}, — ¥,)%. From
k=1 k=1

this we derive that maximal veracity estimators of parameters m and o? are

n n

A — 1 ) 1 _
mk:Xn:ﬁZXk and aiz;Z(xk—xn)g.
k=1 k=1

Note: If in distribution N(m,o?) parameter o2 is known, and parameter m is
unknown, then mj; = X, is the maximal veracity estimator of unknown parameter

m. And if m is known and o2 is unknown, then the maximal veracity estimator of
n

unknown parameter o2 is given by 62 = L 3~ (X —m)?.
k=1

2. Pearson y>-test

Hypothesis Hy is to be tested on the sample (X1, Xo, ..., X,,) from the distribution
L(X). Distributional function of distribution X is equal to distributional function F.
This can be written as: Hy : F,, = F. Alternative is hypothesis H; that distributional
function of statistic numeric value X is not equal to F'. Significant value is o. Benefits
of Pearson y2- test are that it can be used on every distributional function, there
is no extra condition, and in comparison with other test calculations it is relatively
simple.

Based on the sample (X7, Xs, ..., X,,) from distribution L(X) we have to verify
hypothesis Hy that distributional function of distribution X is equal to distributional
function F. We can write that as Hy : F, = F. Alternative hypothesis H; stands that
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distribution function of our population is not equal to F. Level significant value
is . Let R = S;USyU...U S, be fragmenting of set of real numbers. For
k € {1,2,...,m}, let My be number of elements from sample that have values in
set M} and let pk = P{X € Sig|Ho}. Then M, € B(n,p,). We can define random

variable X2 = Z M . This random variable can obtain good view on variation
k=1
between random varlables My, Ms, ..., M,, and expected values npi,npa, ... ,Npm.

In this way we can find asymptotic distribution of random variable X2 when hypo-
thesis Hj is valid.

If hypothesis Hy : F,, = F'is true and if p; € (0,1) for k € {1,2,... ,m},
then is X%LX%_I for n — oo.

When we have to solve a specific problem, like testing the match of two
distributions, with Pearson x? test, we have to follow next reasoning: from
condition P{x3 ;| > X2 ,,_1|Ho} & a we obtain constant x1_q,m-1. We have

m
My, — 2
p {Z (M, — npy,) > X?x,m—l} ~a.

k=1 "Pk

If for given value of statistics the inequality Z % > Xa,m—1 holds true,
k=

then we dismiss hypothesis Hy. In practice we can use the following approxi-
mations, when n > 50 and n-py > 5 for k € {1,... ,m}.

With sample (X3, Xo,...,X,) from distribution L(X) we want to test
hypothesis Hy that distribution function of statistical numeric value belongs
to set {F(z,0)|0 € O}. In this case we can make the same conclusion as
we had with testing hypothesis that distribution function of numeric value
belongs to given distribution function. But here we have that probabilities
pr(0) = P{X € Si|Hp}, k € {1,2,... ,m} depend on parameter 6. For all
6 € © is valid p1(0) + ...+ pm(0) = 1. Similarly, we can define statistic X2, it

depends also on parameter 6:
Z (M, —npk ))2
mpy (0

k=

Let the parameter 6 be r-dimensional: § = (61,...,0,), and r <m — 1.
Then it can be proved: if #,, is maximal veracity estimator of the unknown
parameter 6, defined with sample dimension n, and if hypothesis Hy is true,

then X2(6,,) D, X2, 1, n— oo* is valid. By this we can, similar to the case

*Def: Series of the random variables X, is converging in distribution to the random
variable X if is valid lim F,(X) = F(X) for Vz (functions are continous).
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without parameter, to test hypothesis Hy. From the condition P{X,Qn_r_1 >
X?y,m—r—l} = o we can find the constant x2,, . ;. If test statistics, found
out the value X2(6,), is bigger than the constant X2 m_r_1, then we dismiss
hypothesis Hy. In the opposite case we accept hypothesis Hy.

Example 3. At one faculty had been made test from mathematics. At the

test student can achieve at most 500 points. On the sample of 750 student
the following results are found:

Table 1
Grade 5 4 3 2 1
Number of points [0,100) | [100,200) | [200,300) | [300,400) | [400,500]
Number of students,
which have appropriate 15 140 370 190 35
number of points

On given sample, with significant value o = 0.01 test hypothesis that number of stu-
dents, which have appropriate number of points, on this test, has normal N (1, 852)
distribution (or is given sample from population with N (772, 852) distribution).
Solution:

In the case when we have to test hypothesis that some sample has or doesn’t have
given distribution, we can use Pearson y2-test. But before that, we must stop at
unknown parameter m.

If there was no parameter 7, if 7 is constant, we could apply Pearson y?2
test immediately. m is unknown, so we have, first, to estimate them. We have to
do that with maximal veracity method. Veracity function L(z1,xa,...,z,;m) =

n
1T f(xk), in this case is
k=1

n e
L(x17x27"' axnvm) = H (5\}%) - eXp |:_(X1252 ) :| =

=1
Ly [Eee
= <5m) €xXp — 557 s
further
n . 2 B n

. | ;(Xz m) | 9 L ( 2;1XZ +nm> ;
nL=n-In — an = — =

o\ 21 2462 om 2462 ’

> X —1in =0, m==L_ =X,

We can calculate X,,:

— 1
X, = ﬁ(15-50+ 140 - 150 + 370 - 250 + 190 - 350 4 35 - 350) = 262.
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Maximal veracity estimator of parameter m is 262. Now we can apply Pearson

np

m
my —
x2-test. In calculation of the value E kPR it is often practical to put values
npk

k=1
in table. In our case the table would be as follows:

Table 2
[0,100) | [100,200) | [200,300) | [300,400) | [400, 500]
P 15 140 370 190 35
Y 21.75 | 15341 329.78 206.38 39.18
% 1.84 1.17 4.90 1.30 0.48

Probabilities pr k = 1,...,5 are probabilities defined on adequate intervals of the
function which have N (1, 852) distribution, e.g. p; = P{—o00 < x < 100}, because

—00 — 262 100 — 262
x has distribution N (1, 85%), p1 = P{OOTG <z < %} has N(0,1)
distribution, because m = 262, further p; = ® (1008;262) - (’008?62) and at the

end p; = ®(—1.9058) — &(—00) =1 — $(1.90) — 0 =1 — 0.9713 = 0.029. Number of
students n, in sample is 750, so n - pr = 21.75. Similarly,

_ 100—262 200—262
p2 = P{ 55 <T < T }

po = © (200:262) — ¢ (1092262 — §(—0.7294) — ®(—1.9058) =

=1—®(0.7294) — (1 — $(1.9058)) = —(0.7294) + (1.9058)) =
= —0.7666 + 0.9713 = 0.2045

and n - pr = 153.41 and so on.

m
mp —mn
When we summarize the last line we get Z b Pl _ 9.66.

npk
k=1
Now there is only to calculate Xa,m—r—b m = 5 (number of columns), r = 1
(number of unknown parameters, which are estimated), o = 0.01, from table

m
for x? we find value X(2).01,3 = 11.345. We see that Z Mk = TPk

= 9.66 <
—1 Pk
11.345 = X%,01,3a it means, that we can accept hypothesis Hy. Given sample
belongs to population which has N(r,85%) distribution. We can say that
students’ point numbers have normal N (1, 85%) distribution.

Note 1. Note that all values in the third line in table (values for npy) are bigger
then 5, so condition n - p; > 5 is fulfilled. If this wouldn’t be the case, then we would
have to use another test or we could modify table in the following way: column where
value n - py is smaller then 5 will be joined with column near by, values my and my41
would be summarized, and probability p; would be calculated from the beginning of
the interval in k column to the end interval in column & + 1. Situation is similar for
k — 1. This should be repeated in all columns until condition n-pg > 5 is not fulfilled.
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Note 2. Interval [0,500] defined additionally on R, we need function f on whole R
so we can calculate probabilities p; 1 =1,... ,m.

Example 4. We have given results from entering exam in 2006 at the Faculty
of Mathematics, Informatics and Physics, Comenius University in Bratislava.
Entering exam attended 862 students. Maximal number of points was 20.
Let’s divide interval (0,20) into 10 parts:

(—00,2),[2,4),[4,6),[6,8), 8, 10), [10,12), [12, 14), [14, 16), [16, 18), [18, +00).

With given sample on size 71 with significant value o = 0.01 test hypothe-
sis that numbers of students that have adequate number of points are selected
from population whit normal distribution.

Solution:
In this case we have two unknown parameters m and 0. We will estimate these
two parameters with maximal veracity method. In the previous example we have,
Xn: Xi

that maximal veracity estimator of unknown parameter m is i = =— = X,,. Now

we have to find maximal veracity estimator for o.

n
Veracity function L(x1,xa,...,2n;m,0) = [ f(xk,m, o) is

n )2
L(x17x27"' ,xn,m,&) H ( )-ex |:_(X7262 ) :| =

= P
i=1
Lon - ¥ (Xi—m)®
= <5m eXp = 252 )
further
n X — ) .
nL=n-In - a (xr —
Gv/2m 262 962 2622 6r P b
and at the end we have parameter estimator 62 = §2 =1 Z (X — X,)? Then

we get X, = 10464 and S = 32.69652. We will test ‘rha‘r sample is from

N (10.464; 32.696522) distribution. Similar to the previous example, we have to calcu-

late numbers my, (numbers of students that have points number in adequate interval),

probabilities pi and finish table filing

oy = P{2 < x < 4} = p (21040 - 21609:565> _ (72 - 216%(;*565) — F(=0.1977) —

F(—0.2589) =1 — F(0.1977) — (1 — F(0.2589)) = 1 — 0.578 — 1 4+ 0.601 = 0.023, etc.
Then we obtain the table:
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Table 3
(—00,2) | [2,4) | [4,6) | [6,8) | [8,10) | [10,12)
M 0 4 4 11 13 13
Pk 0.339 0.023 | 0.025 | 0.025 | 0.028 | 0.0195
NPk 24.069 | 1.633 | 1.775 | 1.775 | 1.988 | 1.3845
(mik—npi)®
NPk
[12,14) [14,16) | [16,18) | [18,20) | [20,400)
13 9 3 1 0
0.023 0.025 0.026 0.024 0.448
1.633 1.775 1.846 1.704 31.808

Condition n > 50 is fulfilled, but condition n-p; > 5 doesn’t hold true in columns
2,3,4,5,6,7,8,9,10. Table has to be changed in the way that condition n - py > 5,
ke {1,...,m} is true. We will join columns 2,3,4,5,6,7,8,9,10, values my, and npy,
will be summarized and other date must be calculated again. Then we obtain the
next table:

Table 4
mi 0 19 | 39 13 0
Pk 0339 [ 0.073 [ 0.0705 | 0.075 | 0.443
npr 24.060 | 5.183 | 5.005 | 5.325 | 31.808
2
{me—npe) | 94,07 | 36.83 | 230.87 | 11.06 | 31.81

Both conditions are fulfilled, so we can continue. We had two unknown parame-
ters during calculation, so when we look for X2 . 1, 7 =2.X2 01501 = Xe.012 =

9.21. Tn the other side Y "5 "% — 334.6.
npg
k=1

m
— _ 2 _\2
We have 1;::1 TP = 334.6 > 9.21 > X{.015-2-1 = X{.0152-
It means that we dismiss hypothesis Hy. Given sample is not from population which

has normal N (10.464;32.696522) distribution, with significance level a = 0.01. With
given sample we can not claim that number of points at the exam has normal distri-
bution.
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