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The theory of finite expansions of functions is very helpful in evaluation
of complicated limits. One-variable functions are replaced by appropriate
polynomials. Extensive chapters in French textbook are devoted to the theory
of finite expansions and its applications. In Polish mathematical literature the
problem of finite expansions is omitted. More complicated limits are evaluated
using I"Hopital’s rule or Taylor and Maclaurin series. However, there exists
close connection between those series and finite expansions. The goal of this
paper is popularization of the theory of finite expansions on the Polish ground.

The symbol (DL)J:; (f) will be used for finite expansion of the nth degree

of a function f in the neighborhood of point x(, whereas the symbol d°(P)
means the degree of one-variable polynomial P with real coefficients.*

Definition 1.

a)
(DL), (f) =P & {do (P)<nA lim — [f (z) — P (2)] = 0};
b)

9(z) = f(z + z0) = (DL);° (f) = (DL)y(9);

*The symbol DL is an abbreviation of “developpement limite” (finite expansion).
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c)

If a function f is defined in the interval (zo,+00) and g (z) = f (1),
then (DL);™ (f) = (DL), (9).

According to the above definition the finite expansion of a function f in
the neighborhood of the point zq is a certain polynomial.

Example 1.
A polynomial P(z) = 1+x+x24...4-2" is the finite expansion of the nth degree
of the function f(x) = 12 in the neighborhood of zero, i.e. (DL)%(f) = P.

1—x

Actually, d°(P) =n, lim i[f(m)—P(:U)] = lim i[

o 2 ny] —
lim lim 7 (I+z+z*+...+a")]

: 1 2 n
1 n+1
= lim —— [1— (1 —2"")] = lim ——— = lim —— = 0.
z—0 z"(1 — x) =0 z?(l—2x) =0 1—=x

Theorem 1.

If a function f is defined on an open interval I and 0 € I, n > 0, then this
function has at most one finite expansion of the degree n in the neighborhood
of the point z = 0.

Proof.
Suppose that (DL)%(f) = P and (DL)%(f) = Q. Then according to Definition
(1a) we have:

d°(P) < n Ad°(Q) < n. (1)
.1 o1
lim [f(z) = P@)] =07 lim ~_[f(2) — Q(x)] = 0. (2)

Consider a polynomial R of the form:
R(x) = P(x) — Q(x) = Cy + C1x + ... + Cz, where v € I, k < n.

Suppose also by contradiction that R(x) # 0. Then at least one of coefficients
of this polynomial is non-zero, for example, Cj, # 0 (j1 < k).
Let | = inf{j : C;; # 0}.
Then we have:
R(zx)

xn

1 1
= w—n(o+o-x+...+0~xl*1+cﬁl+...+ckxk) = W(C;—&-Clﬂx—&-...—&-Ckxk’l).
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If [ = n, then:
1
T (LG — (o, + Crpiz + ...+ Ckx’f*l) =C#0. (3
z—0 x" z—0 "
If I < n, then:
lim M‘ =+ (4)
z—0| x™
However, we have:
i | B@) | [P@) = Q)| _ | 17(@) = Q) f(w) = Pla)| _
z—0| x" z—0 xh z—0 xm xm”
< iy |20 £ =P
x—0 wn $n
from which on the basis of (2) we obtain:
im |29 Z 0 and therefore  1im 28 — g
z—0| " z—0 ™

what contradicts (3) and (4). Hence, assumption that P(z) — Q(x) # 0 leads
to contradiction, so P(x) — Q(z) =0 and P = Q.

Definition 2.
If

P(x)=ap+ a1z + .. +a,z",0<m<n and ¢, : R"M[2z] — R" " [z]

and @ (P(x)) =ap+ a1z + ... + apa™,

then the polynomial ¢,,(P(x)) is called the mth degree restriction of a poly-
nomial P(z).*

Let us prove several properties of finite expansions which will be used for
evaluation of limits.

Theorem 2.

If a function f is defined on an open interval I and 0 € I, d°(P) < n, then:

DLy(f) =P 3 [lime(h) =0A Y f(z) = P(z) +2"(x)]

*R™*1[x] is a set of all polynomials in one variable = of at most nth degree.
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To prove it is enough to suppose that

@ { 0, if 2 =0,
e\xr) =
= [f(x) = P(x)], ifz#0.

At the end of this paper we cite Table 1 with finite expansions of important
functions in the neighborhood of the point x = 0, i.e. having the form of
f(z) = P(z) + z"e(x), where e(x) ~ 0.

Tr—

Theorem 3.
(DL)p(f) = PAO<m < n= (DL)(f) = ¢m(P).

Proof.
From the assumption and Theorem 2 it follows that f(z) = P(z) + z"&1(x),
where e1(z) — 0. Moreover, d°(p,,(P)) = m. A function f can be written

x—0

f(@) = @n(P(2))+a™ 1 -S(a)+a"e1 (2) = om(P(x))+a" 28 (x)+2" e (2)],

with lin%)[xS(a:) + 2" Meq(z)] = 0.
Tr—
On the basis of Theorem 2 we assert that (DL)2 (f) = o (P).

Theorem 4.
It (DL)Y(f) = P and (DL)(g) = @, then

a) (DL +Aag) = AP+ AaQ

(theorem about finite expansion of linear combination of two functions);
b) (DL)(f - 9) = ¢n(P- Q)

(theorem about finite expansion of a product of two functions);

c) if g(0) # 0 and x is a quotient of the nth degree from division of
a polynomial P by a polynomial @ according to growing powers (i.e.
P(z) = Q(x) - X(x) + 2" 1Qu(x) i d°(x) = n), then (DL)S(L) =
(theorem about finite expansion of the division of two functions).

Proof.
It follows from the assumption that

d°(P) < n, d°(Q) < n, (5)
1 !
lim —[f () = P(2)] = 0, lim —[g(x) — Q(x)] =0 (©)
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a) From (5) and (6) we have:
d°(MP + 2aQ) < n,
gﬁﬁﬂhﬂ@+Aw@%%MP@%+MQ@m:
= lim (/@) — P(2) + halg(e) — Q)] =

— M lim -~ [(f(z) — P(a)] + Aolim — [(g(x) — Q(a))] = 0

z—0x™ z—0x"

Hence, on the basis of Definition (1a) we assert that

(DL)p (ALf + A29) = AP + X2Q.

b) It follows from the assumptions of theorem that d°(¢,(P-Q)) < n

Moreover, on the basis of Theorem 2 we have:

f(x) = P(z) +a"e1(x), g(x) = Q(x) + 2"ex(2),

where lime; () =0, limes(x) = 0.
z—0 z—0

Hence,
f(@) - g(a) = [P(z) + 2"e1(2)] - [Q(x) + a"ea(2)] =

= P(z) - Q(z) + 2"[Q(z)e1(x) + P(x)ez(x) + 2™ e (

= u(P(2)Q(x)) + 2" 8(2) + 2" [Q(z)e1 (2) + P(w)e2(x)

Therefore, we get:

)ea(r)]

f(x) - g(x) = on(P(x) - Q(x))+
+ 2"[zS(z) + Q(x)e1(x) + P(x)ez(x) + a™eq(x)e2(x)],

where: ilir%)[xS(m) + Q(z)e1(x) + P(x)ez(x) + a™e1(x)ez(2)] = 0.

From Theorem 2 we assert that

(DL)5(f - 9) = ¢n(P- Q).
c) It follows from the assumption that d°(x) = n. Moreover,
iy I ) = (7 — (@) =

z—0 " g((E) z—0 (E"g((E)

1
= lim

z—0 éU"g(;v) [P(m) + x”el(m) - X(JU)(Q(.T) + -73”52(56))] =

+ z"e1(x)ea ().

147
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Hence, (DL)%(%) =X.

Theorem 5. (About finite expansion of composition of functions)

[(DL)%(f) = P A(DL)%,(9) = QA f(0)=0Af#0Am-k=n] =
= (DL)(g0 f) = ¢n(Qo P),

where k is the power of the lowest term of a polynomial P.

Proof.
It follows from the assumption and Theorem 2 that

f(z) = P(z) + 2"¢1(z), where ¢;(x) ij 0, hence f(0) = P(0) = 0.

There exists

k > 0, such that P(z) = 2" P (z).
Then we obtain:
f(z) = P(z) + 2"y (z) = 2" Py (x) + 2”1 (z) = 2F(Py(z) + 2" ey ().
On the basis of Theorem 2, a function g has the following property:

9(y) = Qy) +y™ea2(y), e2(y) e 0.
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From (7) we get for the composition of functions g o f
(90 f)(@) =g(f(x) = Q(f(z)) + [f(@)]"e2(f(2)) =
= Q(f () + [2"(P1(z) + 2" Fer (@)™ - ea(f(2))-

In the interval (f(x), P(z)) we use Lagrange’s mean value theorem for a po-
lynomial @)

Q(f(x)) — Q(P(x))
f(z) = P(x)

= Q' (Cy), where C, € (f(x), P(x)),

therefore,

A function g o f gets the following value:
(go f)(x) = Q(P(x)) + a"e1(2)Q (Cr) + & [Pi(x) + 2" Fe1 (2)] "ea(f (2)).
Transforming a polynomial Q(P(z)
Q(P(x)) = pa(Q(P(2)) + 2" 15 (x))
we obtain
(90/) (@) = pn(Q(P(x))+a"+1-S(2)+a"e1 (2)Q (Co ) +a* [Py (x) +a"*e1)ea (f ().

Hence,

lim (g0 )(@) — ¢al((Qo P)())] =

z—0

= lim {25(x) + &1(2)Q (z) + 2" " [Pi(w) + 2" Fer (@) "es(f (2))} = 0,

as km —n > 0.
On the basis of Definition 1a we assert that

(DL)) (g f) = n(Qo P).

Corollary 1.

(DL)p(f) = P A(DL)3(9) = QA f(0) = 0= (DL)j (g0 f) = ¢n(Qo P).

This corollary follows immediately from Theorem 5 for £ = 1 and m = n.
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Theorem 6. (The Taylor-Maclaurin finite expansion.)
If a function f is differetiable n times on an open interval I containing zero,
£ is continuous at zero and

n xk-
P(a) =y 25/®(0), then (DL)(f) = P.
k=0

This Theorem follows from Theorem 2 and the Taylor-Maclaurin theorem. It
should be noted that a finite expansion of a function f can exist, though the
derivative f(™)(0) does not exist. For example, a function f defined as:

) = 0, if x =0,
e w3sin(L), ifx #0,

does not have the derivative f”(0), since

0, if £ =0,
fl(x):{ 1 1 .

but the limit of

does not exist when x — 0.
On the other hand, the zero polynomial O is a finite expansion of the
second degree for the function f in the neighborhood of the point x = 0 as

d°(0) = —oc0 <2 and hmi[f(a:) — O(z)] = lim (z sin(z)) = 0.

z—0x2 z—0
Theorem 7 (about integration and differentiation of finite expansions):

a) If a function f is continuous on an open interval I, 0 € I, (DL)Y(f) = P,
[ is the derivative of a function g : I — R and Q(z) = g(0) + [ P(t)dt,
then D), (9) = Q.

b) If f(™ is continuous on an open interval I, 0 € I and (DL)Y(f) = P,
then DO _,(f) = P'.

Proof.
a) A continuous function f can be written as

f(z) = P(x) + a"e(x),
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where a function

@ { 0, if 2 =0,
elr) =
an(f(z) = P(x)), ifz#0

is continuous on the interval I. From the assumption we have ¢'(z) = f(z)
for x € I, therefore

/Oxg'(t)dt:/Oxf(a:)dt:/Oxp(t)dm/oxtng(t)dt’

g(z) — g(0) = /0 " p(ydi + /0 et dt

hence

g(x) — Qa) = /0 C ety

Let us show that

li !
11m
z—0gnT!

lg(z) — Q)] = lim

z—0xn !

/ t"e(t)dt = 0.
0

In fact, substituting v = % in the last integral we obtain:

1 o 1 1 1
t t)dt = —— n du = n du.
xn+1/0 e(t) x”“/o (uz)"e(uz)zdu /0 u"e(uz) du

Let e1(x) = fol u"e(ux)du. As a function £(z) is continuous at the point = 0,
i.e. the Cauchy condition is filfilled:

3 v 5. :
Vo3, Vel <b = @) <w)

hence, for |z| < d,, we have |g(z)| < w. Then for a function £1(z) we obtain:

1 1 1 un L 1 w
lei(x)] = /0 u"e(ux)du| < /0 u"|e(uz)|du < /0 wu"du = w [n+ JO =i
or iii%el(x) =0.
As
1 1
lim—lo(0) = Q)] = Jimy [ ue(ur)du = limer () = 0

and d’(g) <n+1, then (DL)?, (g9)=0Q.
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b) Under continuity assumption for a function f (") we can use the Maclaurin
formula

xn

1'2
F(@) = £0) +2f'(0) + 5 f(0) +... 4 — FM(0) + z"e(x)

On the other hand, on the basis of assumption (DL)%(f) = P we have
f(xz) = P+ 2"(zx). Therefore,

2 x"
P(x) = f(0) +2f'(0) + 5 £(0) + .. + — F(0).

Then f'(x) = P'(z) + 2" 'ei(x), where g1(x) — 0, and d°(P)<n-—1.

z—0
Hence, we get (DL)Y ,(f") = P'.

n—1

Example 2.

z - —_—
Evaluate the limit  lim - cos(x) — =
z—0 z —In(1+z)

using the finite expansion.

Individual functions can be represented by the following finite expansions of
the second degree (see Table 1):

e =14+x+ % + 22e1 (),
cos(x) =1— % + 22e9(x),
2
In(l+z) =2z — % 4 2?%e3(z),
e® —cos(z) — x = 22 + 24 (),
2
z—In(l1+42) =% + 2%e5(z).

The functions % — cos(z) —x, = —1In(1+z) have the finite expansions 2% and
%, respectively. Dividing the polynomial 22 by the polynomial ’32—2 we obtain
the polynomial 2. Therefore, it follows from Theorem 4c that

(m =2+ 2%¢(x), where (z) =, 0

x — pa—
hence, lim M

=2
z—0 x —In(1 + )

Example 3.

Find the finite expansion of the 5th degree for the function
h(z) = tan(x — sin(x))
in the neighborhood of the point x = 0.
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Let f(x) =z —sin(x), ¢(y) = tan(y).

As sin(z) =z — :g—? + “é—? + 2% (2) (see Table 1),
3

then f(z) =2 — & + abey(z),
where e2(x) % 0. A function f has the following finite expansion of the 5th
degree

3 2d

The least power in the polynomial P is k = 3. Therefore, using the condition
)
m -k >n =25 (Theorem 5) we obtain m > 3 orm = 2.

For the function g we calculate the finite expansion of the second degree. As
tan(y) = y + y2e(y) (Table 1), then this expansion is equal to Q(y) = ¥.

The composition of functions h(x) = (gof)(z) = g(f(x)) = g(z—sin(x)) =
= tan(x — sin(x)) has the following finite expansion of the 5th degree
(Theorem 5):

3 5 $3 $5
25((Q 0 P)(@) = 05 (Q(P(x))) = o5 (— - —> o

Example 4.
Find the finite expansion of the nth degree for the function g(z) = In ﬁ

using the finite expansion of the (n — 1)th degree for the function f(z) = 1.
Using the finite expansion of the function g evaluate the limit

1
lim(1—x)1 .
ti1 =i ()

f#) =) and f(@) = 10— = Tbata+. 2" " e(r) (Table 1),

we can use Theorem 7a.
The finite expansion of the nth degree for the function g is as follows:

Q(w)zg(0)+/0xP(t)dt, where P(t) =14t 4+ 4+ ...+t L

Then
Qz) =In(1) + [ A+t + >+ ... +t"1)dt =

= [t+5+5+ TR NI N R
S+ ] S
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The function g has the form:

1 2 3 n
):x+%+%+...+%+x”5(9@), where iiir})el(x):O.
1

The finite expansion of the second degree for the function h(z) = (1—2)In =
is:

22 " 1
1- o) = 2
cpg[( x)(x+2—|— +n>} x 2:U

Then
2
(1—2)ln L= + §x2 + 22e5(z), where ey(x) e 0)
and }?ii%(l —z)ln- =0.

It is obvious that this limit can be easily evaluated, but we would like to show
how to use Theorem T7a.

Table 1. Representation of several functions by finite expansions

No. | Function
L| & =1l4+z+2?+...+a2" +a"(z)
2 ele—l—x—i—%—l—...—i—%—i—w"s(w)
3. | cos(z)=1-— 2—? + % +...+ (—1)”{5:;! + a2t le(z)
4. | sin(z) =z — gg—?%—gg—?—i-...%—(—l)”%%—x%“a(x)
5. | tan(z) =z + % + Fab + 2% ()
6. |In(l+az)=z—% +2 4. . +(=1)" 12 4 a7(x)
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