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Abstract

In the present paper we investigate queueing systems of different types with
customers having some random space requirements, connected via common
memory space. For such systems combinations we determine stationary loss
probability and the distribution of customers present in each system.

1 Introduction

Queueing systems with non-homogeneous customers have been used
to model and solve the various practical problems occurring in the
design of computer or communicating systems [1 3]. The above non-
homogeneity means that each customer (independently of others) has
some space requirement (, and the service time £ of the customer
generally depends on his space requirement. So, the non-negative
random variables ¢ and ¢ are generally dependent.

Let F(z,t) = P{( < 2, < t} be the distribution function of the
random vector ((,&). The space is occupied by the customer at the

*Extended version of a talk presented at the IX Conference “Applications of
Algebra”, Zakopane, March 7 13, 2005.
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epoch he arrives and is released entirely at the epoch he completes
service.

Denote as o(t) the sum of space requirements of all customers
present in the system at time moment ¢. The process o(t) is called the
total (customers) volume. In real systems the values, that the random
process o(t) can take, are limited by some constant value V' > 0,
which is called the memory volume of the system. The limitation of
the total volume leads to additional losses of customers. In fact, a
customer having the space requirement x, who arrives at the epoch
7, when there are idle servers or waiting positions, will be admitted
to the system, if o(77) + 2 < V. Otherwise (if o(77) + 2 > V) the
customer will be lost.

Different queueing systems with limited memory volume were ana-
lyzed in the papers [4-10|. In the present paper we investigate combi-
nations of (may be different) queueing systems with non-homogeneous
customers and common limited memory space. It iss clear, that such
models can be used in computer and communicating networks design-
ing.

Consider, for example, two independent classical M /M /n/m queues,
denoting as M /M /n;/m;, where i = 1,2, 1 < n; < oo, 0 < m; < 0.
Let a;, u; be the rate of customer arrival process and service time pa-
rameter of the ith queue respectively. Now we additionally suppose,
that each customer of ith queue has some space requirement (;. De-
note as L;(z) the distribution function of {; random variable and as
o(t) the sum of space requirements of all customers present in the both
systems at time moment ¢t. Suppose, that service time of the customer
not depends on his space requirement and the both queues have the
common memory space, which is limited by the memory volume V.
Due to the last supposition the queues under consideration become
obviously dependent.

We first determine the stationary customers number distribution
and loss probability for each queue from the considered combina-
tion. Next we shall analyze a combination of M /M /n/m queue and
processor-sharing system with service time dependent on customer
space requirement.
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2 Process and characteristics

Let 7;(t) be the number of customers present in ith queue at time
moment ¢, 7 = 1, 2. Denote as a§ (t) the space occupied by jth customer

of ith queue at the moment ¢, 7 = 1,7;(¢). Then the combination of
queues under consideration may be described by the next markovian
random process

(m@im@: o}, = Lm@: 030, =Tm®), 1)
2 mi(1)
where Z:l z::l oi(t) = o(t).

The process (1) we shall characterize by the following functions.
G k1, ko, z,t) = P{ni(t) = k1, ma(t) = ko, 0(t) < x}; (2)
P(kla k27 t) - P{?h(t) - kla 772(t) - kQ} = G(kla k?a ‘/7t>7 (3)

ki=0,n;+m, ki + k> 1,10=1,2;

Fy(t) = P(0,0,t) = P{m(t) = 0,mx(t) = 0}. (4)
It’s clear, that steady state conditions for the model under consid-
eration are always satisfied, if V' is finite. Then n;(t) = n;, o(t) = o
in the sense of a weak convergence, where 7,, o are the stationary

number of customers present in ith queue and stationary customers
total volume respectively. So, the following limits exist

g(klak%x) = tlggo G(klak%x:t) = P{Ul =ki,m2 = kg,0 < I}§ (5>
p(kla k2) == tli{&P(kb k27t> - P{nl - klan = kZ} == 9(/{17 k?v V)7 (6)

ki=0,n; +m;, ki + ko > 1,1=1,2;
po = p(0,0) = lim Fy(t) = P{m = 0,7, = 0}. (7)

3 Stationary customers number distribution

0, i#k,
1, i=k
use the next notations: x; = min(k;,n;), v = min(k; + 1,n;). It

Let ;5 be Kronecker’s symbol: 6; = Further we shall
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can be easily shown by means of process (1) analysis, that the functions
(2)—(4) satisfy the following differential equations:

Pé(t) = — (a1 L1 (V) + axLo(V)) Po(t) + 1 P(1,0,t) + o P(0,1,2); (8)

v
P/(O, 1, t) = CLQP(O, O, t)LQ(V) — ap / G(O, 1, V- xZ, t)dLl(x)—
0
\4
—ag/ G(0,1,V —z,t)dLy(x) — e P(0,1,1)+
0

\4
P’(l,O,t) = CL1P(0,0,t)L1(V) - al/ G(]_,O, V- x,t)dLl(x)—
0

\%4
—a2/ G(1,0,V — 2, )dLs(x) — p P(1, 0, 1)+
0

+2u1P(2,0,1) + paP(1,1,8); (10)
\%4
P/(k'l, k‘g,t) = (1 — (507]“) Cll/ G(kl — 1, kQ, V — l’,t)dLl(l'>+
0

14
(1= o) aQ/ ks, by — 1,V — 2, t)dLo()—
0
v
—(]_ —5m1+n17k1)a1/ G(k?l,kg,v—x,t>d[/1($>—
0
v
- (]_ - 5m2+n2,k2) CLQ/ G(kﬁl, k?g, V- Z, t)dLg((L’)-
0

—(krpr + Roptn) P(k1, ko, t) + (1 — Oy g ky) Yipn P(ky 41, ko, 1)+

+ (1 = Omotno ko) Yoto P (1, ko + 1,1,
ki=0m;+n;, k1 +ke>2,10=12. (11)

If steady state conditions take place, from equations (8) (11) when
t — oo we obtain the following equations for the functions (5) (7):

0=—(a1Li(V) + azLa(V)) po + prap(1,0) + p2p(0, 1); (12)
0 = asp(0,0)La(V) — al/o 9(0, 1,V —x)dLi(x)—

v
—a2/ 9(0,1,V —x)dLy(x) — pop(0, 1) + pap(1, 1) 4+ 2u9p(0, 2); (13)
0
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O—mmamhﬂﬁ—mL:MLQV—@ﬂM@—

—ag/o g(1,0,V —x)dLy(z) — pap(1,0) + 2u1p(2,0) + pop(1,1); (14)

|4
0= 1 — 50 kl / g —1 ]{32, — [L’)dLl([E)—f-
0

v
1 _(501@ / q kl,]ﬂz 1 V—.T)dLQ( )

0
1%
= (L = Oy k1) @1/ gk, ke, V — x)d Ly (x)—
0
1%
- (1 - 5m2+n2,k2> a2/ g(kl’ k% V- ZL’)dLQ(ZL')—
0
(

—(Kipr + Kopo)p(ka, ko) + (1 = Oy sny ey ) Yrpap(ky + 1, ko) +

+ (1 - 5m2+n2,k2> 72M2p(k1’ ko + 1)7
kZ:O,mZ+nZ, k1+k222,221,2 (15)

Denote the Stieltjes convolution of the ith order of the function
Li(x) as Lgk)(x), i.e.
LZ(-O) (x) =1, L") (x) = Lgk_l) x L;(r) =

7

= / L V(e —w)dLi(u), k=1,2,.. ..
0

We shall use the next notation for the Stieltjes convolution of func-
tions Fy(xz), i =1,r:
T
Fix - xF.(x)= % F(x)

i=1
We also introduce the following notation:

N;(k) = nik!k} 7 (16)

where p; = a;/(nip;).
We can easy verify by direct substitution, that the solution of the
equations (12)—(15) can be represented as

g(ky, ko, ) = polNy (k) N (ko) LS % LS (2), by + ke > 1, (17)
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whence we obtain
p(kla kz) = 9(/91, ko, V) =
= pONl(k’l)Ng(kg)Lgkl) * Lgkg)(‘/), k’z = 0, m; + n;. (18)

ni+mi n2+msa

From the normalization condition > > p(ky, ko) = 1 we also
k1=0 k2=0

have that

ni+mi na+msz -1

= | >0 D Nilka)Na(ko) L™« LY (V)

k1=0 ko=0

(19)

4 The loss probability

The stationary loss probability pi for customers of ith queue (i = 1, 2)
can be obtained from the following equilibrium equation [2|, which will
be written out for the case of i = 1:

ni—1 ni—1
ay (1=pp) =m > kipy, +nam (1 -y Pil) o (20)

k1=1 ki=1
n2+m2 ni+mi
where Pk Z P(klij) pkz Z P(lﬁ,l@)
ko=0 k1=0

It follows from (20) and analogous equation for ¢ = 2 that
n;—1 n;—1
pp=1—(nip;)” Z kivh, — pi! (1 - ZPL) . (2

5 Arbitrary number of queues with common
memory space

In the present section we consider an evident generalization of analyzed
combination of queues. Suppose, that we have a combination con-
sisting of r, r = 1,2,..., M/M/n/m queues with non-homogeneous
customers connected via common memory space. Let a;, pu; be the
rate of customer arrival process and service time parameter of the ith
queue respectively, i = 1,7, L;(x) be the distribution function of ith
queue customer space requirement, V' be the memory volume. Then
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for stationary probabilities p(ky,..., k) = P{m = k1,...,n, = k.},
that there are kq, ..., k, customers in corresponding queue, we obtain
the following relation:

p(kla"'a pOHN ] * L )(V>7

where the function N;(k) is determined by (16) relation, in which
i = 1,7. The relation (19) for py in this case has the next form:

-1

ZHNi*L)(V) ,

ki,...kr =1

where the summation for each subscript is carried out from 0 to n;-+m;,.
The loss probability of ith queue customer is determined by rela-
tion (21), where

P, = p(k’l, ce ki—lu ]CZ‘, ki—l—l, “e ey ]Cr>, k= O,ni + m;.
kl,...,ki_1,ki+1,...,kr

6 The case of single-server queues with common
memory space

In the present section we shall analyze the case of two queues con-
nected via common memory space (r = 2). The generalization for ar-
bitrary r is obvious. If n; = 1, we obtain from (16), that N;(k) = p;*,
i = 1,2. Then, as it follows from (18)—(21),

m1+1mo+1 -1

Z Z pFpf2 L LI vy (22)

k1=0 ko=0

plky, ko) = popr™ o2 L 5 LY (V) ki = 0,m; + 1, (23)

) 1 )
pp=1——(1-p)),i=12 (24)
pi

The obtained relations are generally not convenient for calcula-
tions because of Stieltjece convolutions presence. These convolutions
can be generally estimated by Monte Carlo technique. They can

precisely calculated in some special cases. For example, let ith
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queue customer space requirement has gamma distribution with the
following density

Li(w) = yy(as, @) = F(J;‘)w““efx, a; >0, f>0,i=12

(the parameter f is supposed the same for both queues). It’s known,
that in this case the convolution L{) « Lg@)(x) is the gamma distri-
bution function Yy(a, z) with parameters f and a = kjoq + koo, i.e.
we have

p(k1, ko) = popr™ po*2Y s (kray + ko, V),

[m1+1 mo—+1 -1

Z Z P P2 Yy (kran + kaa, V)

k1=0 Fk2=0

In this case the relation for the first queue customer loss probability
has the following form:

1 mao+1
pr=1-— [1 - Z P2k2yf(k?2062; V)

P fea=0

7 Some special cases

In this section we consider the case of Li(x) = Ly(x) = L(x) (the cus-
tomers space requirements distributions are the same for both queues).
Then from (18), (19) relations we obtain

p(k1, k) = poNy (k1) Na(ko) LE TR (V) ey = 0, my + g, i = 1, 2;
-1

> Z Ny (k1) Ny (ko) L1 +k2) (1)

[n1+m1 nz2-+msz
0 ko=

Now suppose addltlonally that ny = ny = 1, m; = my = 00 and
customer space requirement has an exponential distribution with the
parameter f: L(z) =1 — e~ /*. Suppose also, that p; # 1, p, # 1 and
p1 # pa. Then from (22), (23) relations we obtain

k1+ko— 1

p(k17k2)_p0p1klp2k2[ eV Z
7=0

Y

ki =0,1,...,i=1,2
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_ oo 00 — o k1+ko— 1 7y !
=14 > phpt (1 Z . (25)

k1=0 ko=0 J
Let us calculate the sum

00 00 k1+ko— 1
Z Z Plkpok eV Z =
k1=0 k2=0 L _
- e*fV i i p1k1p2k2 [er _ kl+§1 (f‘{)ﬂ _

k1=0 ko=0 j=0 J:

Jj—k1

al Z Z I,
7=0 k1=0 ko=0

where
d d P1 M P2
Zpklp] k1+1_p3+1z () — - ( J+1 p]+1)7
k1=0 k1=0 P2 P2 — pP1
J g 1— Az
Z Pro= T
k1=0 P1
whence
Z (fV) Z plkl _ ioz (fV)J . 1— p1j+1 _ @fV _ pleplfV
i i _ _ ’
=0 ) k=0 =0 ) L=m L=nm
(V) ~ P (VY -
Z .' Zplklﬁhj il = - Z ; (p? ™ = p?™h) =
=0 J: f1—0 P2 — P1 = J:
) (P2€p2fv — P1€p1fv)
a P2 — M '

By substitution of calculated sums to relation (26) we obtain after

simple transformations

1 p126_(1_p1)fv p22€_(1_p2)fv -1

L=p)A=p2) Q=p)(pr—p2) (L= p2)(p2—p1)

Po =
(27)
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The loss probability can be determined from the relation (24),

where for ¢ = 1 we have

& =] - (V)
po=_p(0.5) =) pops! |1—eTV ) 2| =
=0 =0 L i=0

7!
i=0 i

%) j—1 . 00 00 ;
B ) V)i B ' V)i
= Poc fVE:'OQJ [er_Z(f' ) = Poc fVE P2J§:(fz’!> B
7=0 7=0 j=7

1—py*!

- e’} fV i 7 . - e’} fV i
= ppe fv E (/L—') E p2] = poe fv E ( Z‘ ) 1 — p2 —
i=0 T j=0 i=0 :

v

__ Dbo€ v p2 fV
€ — p2€ )

L= po ( )

whence
1 1 — pye—(=r2)fV
L po(l=p ) (28)
L —p2

and analogously

2
=1- =
pr 1—p

L, po(L=per V)
P2

The relations (27), (28) can be generalized for the case of arbitrary
r (where p; # p; for i # j and p; # 1 for i = 1,7). The relation (27)

in this case have the form
-1

r pire_(l_pi)fv

" 1
Po = HH_Z(l—Pi)H(Pi—Pj)

i=1 i=1 y
JFi

The loss probability p’ is determined by the relation (24), where

1t =1,r and

p; 7~ le=(=piIV

- .
Po = Po Hl—pj Z(l—pj) [T (pj—rx)
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8 M/M/n/m and processor sharing systems
connected via common memory space

In present section we consider more complicated combination of two
queueing systems connected via common memory space. The first of
them is M/M/n/m queue with non-homogeneous customers, which
was represented in section 1. Let a;, p be the rate of customer ar-
rival process and service time parameter of this queue respectively
and Li(x) be the distribution function of customer space requirement
¢; of the queue. The second one is processor-sharing system [12].
Denote as & and & the service time of the first and second system
respectively. Let (5 be the customer space requirement of the second
system and F'(z,t) = P{(; < z,& < t} be the distribution function
of the random vector ((s,&5). So, in second system the space require-
ment and service time are generally dependent and Ly(x) = F(x, ),
Bs(t) = F(00,t) are the distribution functions of random variables ¢,
and &5 respectively. Let r be a maximum number of customers present
in the second system (it is possible, that r = o). Suppose, that all
customers present in the second system are numbered in random order
[1]. Let n1(t), n2(t) be the number of customers present in the first
and second system at time moment ¢.

Denote as & (t) the length of time interval from the moment ¢ to the
epoch of jth customer service completion (in the second system). Let
a](-i) (t) be the memory space occupied by jth customer of ith system,
1 = 1,2. Then the combination of queues under consideration may be
described by the next markovian random process

(m®, @) (), j = L), i = 1,25 €40), j = Lm(®)) . (29)

Denote the total customers volume in the combination of the systems
2 ni(t)
—_ (@)
at the moment ¢ as o(t) = Z_Zl ]; ;" (t). Let V be the memory volume
of the combination.
Below we shall use the following notation for vectors:
Yk: (yb"'?yk) YkZ: (y17“‘yi—17yi+17yk>‘
Sometimes we shall write y; or the value of this component instead of
Y1 if k=1, and (y1, y2) or their values instead of Y5 if k = 2. We also

shall use the notation (Y, z) = (y1, ..., Uk, 2).
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We shall characterize the process (29) by the following functions

G(kla k?ax7y1? s "yk27t) =

=P {n(t) = ki, ma(t) = ky,0(t) < x,8(t) <yj,j =1, ka},

ki=0,n+m, ko =1,r1;

(30)
W(ky, kos Y1y ooy Ykys t)
=P {n(t) = kp,ma(t) = ko, €l (1) < ;5,5 = 1, ka}
=Gk, ko, Viyr, . ..

P(ky, ko, t) =P {ni(t) = ki,m2(t) = ko,
k’l :O,n+m, kQZW

If k’g :1,—7", then
P(kl,kg,t) = W(kl,kQ,Oo, .. .,OO,t),

where ooy, = (00,...,00) is a k-component vector.
The steady state conditions for the model under consideration are
obviously always satisfied, if V' is finite. So the next limits exist:

g(kb k27$;y17 s 7yk2> - tli)Ig)G(kb k27x7y17

")ka)t)a

ki =0,n+m, ko =1,7; (33)
w(k;l,k:Q,yl, .. .,yk2> = tlilgj W(k?l,kg,yl, R ,yk2,t) =
= g(k1, k2, V1,

..,ka), k1:O,n+m, k2:1,7“;

p(ki, ko) = tli)rgoP(kl,kQ,t), ki =0,n+m, ke =0,r.

If ky = 1,7, then p(ky, ko) = w(ky, ke, 00, ..., 00).
Let us introduce the following notation:

k =min(k,n), ~v=min(k+ 1,n).
It can be easily shown by means of process (29) analysis, that the
functions (30) (32) satisfy the following partial differential equations:

813(2207” = —[a1 Ly (V) + a2 L2(V)] P(0,0, )+

oW (0,1,y,t)
P(1 EARReL L1N
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P(1 1%
W = a1 Ly(V)P(0,0,t) — aI/ G(1,0,V — z,t)dL (z)—
0
y
—pP(1,0,1) — —az/ G(1,0,V — x,t)dLy(2)+
0

ow(1,1,y,t)
dy

§
% - al/ Gk —1,0,V — 2, )dL (z)—
0

+21P(2,0,t) + (37)

)
y=0

.
—(1- 5k7n+m)a1/ G(k,0,V —x,t)dLi(x) — kuP(k,0,t)—
0

v
—ag/ G(k,0,V —x,t)dLo(x) + (1 — O o)y P (k + 1,0, )+
0

k,1,y,t S
—I——aW( 1.y.?) Jk=2n+m; (38)
dy y=0
ow(0,1,y,t)  OW(0,1,y,1) N oW (0,1,y,t)
ot oy oy y=0

%
=ayP(0,0,t)F(V,y) — al/ G(0,1,V —z,y,t)dL(x)—
0

v

—ag/ G(0,1,V —z,y,t)dLy(x)+
0

oW (0,2,y, z,t)

1,1 :

+ILLW( J 7y7 t) + az 2:07 (39)

aW(o k Yk, - lz’“: OW (0, k, Vi, t)  OW (0, k, Vi, 1) B
k — 8:% ayl y;=0 N

=1
a k
= EQ G(O, k— 1, V- x,YkZ,t)dxF(x7yz)+

=1
|4
W (L, Y t) — al/ G0, 5,V — 2, Yo, t)dLa (2)+
0

OW(0,k+1,(Yy, 2),t
+(1—5k,7“)|: ( az( k2)t)

z=0

%
—ag/ G(0,k,V — x,Yr, t)sz(a:)], k=2 (40)
0
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OW (ki ks, Yiy t) 1 ’“Z OW (k1. k2, Y, )

i=1
OW (ky, ks, Y,, t)
Oy

v
] = al/ G(kl — 1, kg, V- x,YkQ,t)dLl(x)—l—
yi=0 0

ko VvV
ag ;
—E Gk, ko — 1,V —2,Y,  t)d, F(x,y;
+l€2 '_1/0 ( 1, v2 ) €T, ko ) (‘1' y>+
+(1 - 6k1,n+m) |:7MW(I€1 +1, kQ’ Yk2’t)_

\%4
—&1/ G(kl,kg,v — l',YkQ,t)dLl(l’)]—
0

8W(k:1, kQ + 1, (YkQ, Z), t)
0z

z=0

—li,U,W(kl, kQ, Y]Q, t) + (1 — 5k2,r> |:

v
_CLQ/ G(klak%v —x,Yk2,t>dL2(I>:|, kl - 17m +n7 k? = 1,7". (41>
0

It follows from equations (36) (41), that the stationary functions
(33) (35) satisfy the following equations:

ow(0,1,y)

0= ~[arLa(V) + azLa(V)]p(0,0) + 1p(1,0) + —-

; (42)

y=0

0=a1Li(V)p(0,0) — a1/0 9(1,0,V — x)dLy(x) — up(1,0)—

ow(1,1,y) ,

y=0

v
—(12/ g9(1,0,V —x)dLy(z) + 2up(2,0) +
0

1%
0= al/ g(k—1,0,V —x)dLy(z)—
0
Vv
(1 = Senem)an / (5,0, — 2)dLy ()~
0

v
—rkup(k,0) — ag/ g(k,0,V —a)dLy(x)+
0

ow(k,1,y) e
gLy ~3 L (44
dy , k ,n+m;  (44)

+(1 - 5k’,n+m)’ylup(k: + 17 O) + 0
y:
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ow(0,1,y) N ow(0,1,y)
oy dy

Vv
— ap(0,0)F(V,y) — ax / 9(0,1,V — 2, y)dLy ()~
0

y=0

ow(0,2,y, 2)
0z

yi:0:|

k
a )
- ?2 Zg(o’k o 1’V - x7Y/€Z)d$F(I’y’L> +/'Lw(1)k)y1) s 7yk>_
i=1

; (45)

2=0

Vv
a / 9(0,1,V —, y)dLa(x) (1, 1, ) +
0

1= [ow(0,k,Yy)  0w(0,k, Yr)
dy; y;

_E ‘ _
=1

1%
ar / 90,5,V — 2, Y )dLy () +
0

aw(ou k + ]-’ (Yka Z))
0z

z=0

+(1— 5,”){

\%
—Q2 / 9(07 ka V — x, Yk>dL2(x>:| ) k= 27 T, (46>
0

yi:0:|

y
_ al/ gk — 1, ks, V — 2, Ve, )dLa ()+
0

1 [ ow(ky, ko, Ya,) _ Ow(ky, ko, Yy,
9y Ay
1
as < [V :
+kf2 Z/ g(k1 ke — 1,V — 2, Y} )d, F (2, y;)+
2 1 0
+(1 o 5k1,n+m) |:P)/:U“w(kl + 17 k27 Ykz)_

\%4
_al/ g(kl,kg,V—x,YkQ)dLl(x)}—
0

GUJ(k‘l, ]{52 + 1, (YkQ, Z))
0z

z=0

—kpw(ky, ko, Yiy) + (1 — 6y ) {

v
—&2/ g(ki, ko, V — x,YkQ)dLQ(:B)], ki=1,m+n, ke =1,r. (47)
0
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We also have to take into account the following boundary condition

(1 - 5k17n+m)7ﬂw(kl + 17 k% Yk2>+

ow(ky, ke + 1, (Y
+(1_5k277‘) U}( 1, ng 7( k272>> 2:0:

%4
= (1~ G )t / 9(kr, o, V = 2, Vi )dLa (2)+
0

Vv
+(1— 5,6277“)@2/ gt ko, V — 2, Vi )dLa(),
0

ki=1m+n, ko =1,r,

(48)

which follows from the fact that in the analyzed combination admitting
to the system during some time interval of k customers probability is
equal (in steady state) to probability, that & customers complete their

service during this interval.

The normalization condition for the combination has the following

form:

Let us introduce the following notation:

k
(nzll) k=0,
N(k) = ot
'1, k=n+1,n+m,
n!

where p; = a1 /(npu).
We also introduce the following functions:

) =Pla<n&zop= [ [ dreu-

=P{G <z} —P{G <z,& <y} = Lao(x) — F(2,y);

B, () = /OyH(x,u)du — Lo(x) /Oyu ~ By(u|Gs < )]dy,

where B(u|(y < z) = P{& < u|( < x}.

(49)
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Taking into account the symmetry of the functions

g(kla k?axayla <o 7yk2) and w(kl? kQ?yla .- '73-/162)

with respect to the variables v, . .., yx, (because of random numbering
of customers in the second system), it can be easy shown, that the
functions defined by the relation

g(kr, ko, 2, Vi) = p(0,0)N (ks [Lg’“)*( 'fkl cpyi)} (@) (50)

1=

satisfy equations (42)—(48). It follows from relation (50) that

=1

ko2
il Vi) = p0.0N et |10 (¥ e, )| ) o)
Denote as |9

D() = lim ,(x) = Ly(x) /Oou ~ By(ulGo < )]du —

Y—00 0
[ [ aptuy)
u=0 Jy=0

Then from (50), (51) we obtain
plk, ko) = wks, iz, 00g) = p(0, )N (k)L™ 5 D (V).
The coefficient p(0,0) can be determined from the normalization

condition (49):

n+m r -1

p(0,0) = [Z Z N(k,l)a2k2L§k1) « D(kz)(v)

k1=0 ko=0

If we denote the probability that there are k; customers in the first
T
queue as p1(k1) = > p(ki, k2), the loss probability for this queue have

k=0
obviously the following form:

pp=1—(np)™" Z_: kipi (ki) — pi 7! (1 - z_:pl(/ﬁ)) )

k1=1 k1=1
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We introduce the following notation:

m+n
wg(k‘g, YkQ) = Z w(kl, k‘g, Y]Q) =
k1=0
m+n ks
50,0 Y Nka [0 (2@, )00 62
k1=0 =1

The loss probability for the second system can be obviously ob-
tained from the next equilibrium equation:

T

w1 ) = 3 2k (00smr.2)

0z
ko=1

0z
finally obtain the loss probability for the second system in the following
form:

Then from (53), (54) and from the fact that 22:2) ‘ = Lo(z) we
=0

r—1 m+n

pr=1=p0,0)Y "> Nk)a? L™ « D) s Ly(V).

ko=0k1=0

It is clear that we can always analyze other types of queueing sys-
tems with non-homogeneous customers connected via common mem-
ory space.
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