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Abstract

A review of studies concerning models of crystal defects in solids is pre-
sented. The emphasis is on describing imperfections in nonlocal elastic
continuum. Nonlocal theory reduces to the classical theory of elasticity in
the long wave-length limit and to the atomic lattice theory in the short
wave-length limit.

1 Introduction

At the present time, it is generally recognized that the deformation
process occurs at various structural levels with their own scale lengths.
Because of the peculiarities of deformation it is necessary to use spe-
cific physical concepts and mathematical tools at every structural
level, while events progressing at different scale levels are interdepen-
dent.

The perfect crystal is a completely symmetric infinite structure
with atoms placed precisely on the lattice points. Every error in
atom placement results in an imperfect crystal. Real crystals contain
a large amount of defects. The defects of crystal lattice can be classi-
fied according to their dimension.

*Extended version of a talk presented at the IX Conference “Applications of
Algebra”, Zakopane, March 7 13, 2005.
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— Zero-dimensional (point) defects. The lattice site which
contains no atom is called a vacancy. Atom in a nonlattice position
is called an interstitial. A foreign atom present on a lattice site is
called a substitutional impurity. A foreign atom present in a nonlattice
position is called an interstitial impurity [1, 2|.

— One-dimensional (line) defects. A chain of point defects
is the sipmlest example of line defects. An edge dislocation is the
result of the lattice distortion caused by the insertion of an extra
half-plane of atoms part way into the crystal. The distortion of the
lattice is primary localized in the vicinity of the edge of the plane. A
screw dislocation transforms the flat atom planes of the crystal into
a spiral ramp [3-5|. Along with dislocations (translational defects)
disclinations (rotational defects) also represent line imperfections [6,

7.

Two-dimensional (surface) defects. Since any real crystal is
finite, the ideal lattice structure must be terminated by a surface. The
atoms in the vicinity of the surface do not see a completely symmetric
situation, thus creating two-dimensional imperfection. In addition to
normal external surfaces, a crystal may also have internal surfaces,
such as stacking faults or grain boundaries [8, 9]. A grain boundary
is that region of disorder which separates a lattice of one orientation
from a lattice of a different orientation. It is possible to have a grain
boundary of a special low-energy sort, called a twin, in which the
atoms across the surface bear special relation to one another similar to
that in the perfect crystal. A stacking fault is related to the difference
between a face-centered cubic crystal and a hexagonal closely packed
crystal. Some of the atoms in the vicinity of the stacking fault bear
a relation to one another similar to the hcp crystal instead of the fce
crystal. Various type internal cracks, slits, slots and cuts are also
among surface defects [10].

Three-dimensional (volume) defects. Voids, foreign inclu-
sions and inhomogeneities fall into the category of volume defects [11,
12].
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2 Modeling of imperfections

In recent years the problem of modeling stress and strains fields pro-
duced by imperfections in a crystal has attracted much attention of
a number of researchers. An interaction between various kind defects
and an interaction of a defect with an applied loading are mainly
due to the elastic intercation. In an elastic solid the abovementioned
imperfections, as a rule, are modeled by certain distribution of concen-
trated forces or by certain distribution of the tensor of plastic strain
incompatibility.

The simplest model of point defect in an elastic body is the center
of dilatation |1, 11|. More complicated multipole model was proposed
in [13] (see also [14]).

Straight dislocations were first considered in [15, 16]. The Italian
mathematician Vito Volterra introduced [15] the theory of the elas-
tostatic stress and displacement fields created by dislocating solids.
This involves making a cut in a solid, displacing its surfaces relative
to one another by some fixed amount, and joining the sides of the cut
back together, filling in with material as necessary. In other words,
defect of the Volterra type can be formed by cutting a surface S in a
body and the subsequent rigid relative translation with the Burgers
vector b and the rotation with the Frank vector € of two sides of the
cut. The corresponding plastic distortion B° has the form obtained
by Mura [17]

B” = —6(S)(b+Q xr), (1)
where 0(S) is the vector delta-function lumped on the surface S.

In 1934 Polanyi [18], Taylor [19] and Orowan [20] realized that the
plastic deformation of solids could be explained in terms of the theory
of Volterra dislocations. The insight was critical in developing the
modern science of solid mechanics. Considerable study is being given
to dislocations in the frame-work of crystal imperfections and solid
mechanics [3 5, 21 25].

Dislocation loops of the prismatic type with the Burgers vector
normal to a loop plane may be produced after quenching or irradia-
tion and can play an important part in the formation of dislocation
networks and in the production of nuclei of a brittle fracture [26,
27]. Glide dislocation loops with the Burgers vector in a loop plane
are formed by Frank-Read source mechanism or by stress concentra-
tion and are of importance in investigation of plastic deformation |28].
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Stress field due to the circular prismatic dislocation loop in an infinite
isotropic medium has been obtained by Kroupa [26]. Corresponding
problem for the circular glide dislocation loop has originally been stud-
ied by Kroner [13] and Keller (their equations have been examined and
corrected by Marcinkowski and Sree Harsha [28]). In succeeding years
interest in dislocation loops in elastic media has been maintained |29|;
for a comprehensive review, see [30].

At the present time, in parallel with dislocations, disclinations have
attracted a large amount of interest in a variety of fields due to their
numerous applications. They have been receiving the attention of
many researchers, in particular in the context of their applications
to polymers [31], liquid crystals [32], biological structures [33], grain
boundaries [34|, amorphic solids [35], rotation plastic deformation |7]
(see also a review article of Romanov and Vladimirov [6] and a book
of Likhachev and Khairov [36]). Straight disclinations (Volterra dis-
torsions of the 4th, 5th and 6th kind [15] with the Frank vector )
have being studied intensively by de Witt [37 40] and Likhachev and
Khairov [36].

Elastic fields and energies of circular twist and wedge disclina-
tions have been investigated in the frame-work of classical elasticity
in [31,41 44] For comprehensive review and additional references, see
also a study of Kolesnikova and Romanov [30].

Classical elasticity solutions for cracks were obtained by many au-
thors; we refer to the works [45 49|. The elastic stress fields around
loaded cracks, slip bands, kink bands, twins all have qualitatively sim-
ilar features when viewed on a siutable scale. This is because they all
represent the same type of incompatibility in a solid that caused by
the Somigliana dislocation. Under appropriate condition, it is ex-
pected that any type of these defects to be a source of any of the
others [50]. The similarity of the piled up group of slip dislocations
to the freely slipping crack was recognized in the development of the
theory of crystal dislocations. A crack with a normal displacement
discontinuity can be descripted by a continuous distribution of freely
climbing dislocations. Arrays of dislocations and disclinations are also
used to describe stacking faults and grain boundaries. For details and
additional references, see |7, 50].

A limitation of the abovementioned solutions is that the stress
fields have nonphysical singularities and the elastic energy diverges
if one does not cut the defect core. The classical solutions cannot
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describe the situation in the strongly distored region in the vicinity of
the defect. Moreover, the classical elasticity is not valid in the imme-
diate vicinity of the imperfection and fails to explain the phenomena
at the atomic scale.

The pure discrete lattice method of calculation of lattice distortion
produced by a single vacancy was originally developed by Kanzaki [51]
and has been further applied and extended by Hardy [52] and Flocken
and Hardy |53, 54|. This method requires the extensive computer
calculations, especially for change in the material properties. The
current state of research on computer simulation of point defects in
solids is reviewed in [55-57].

In the semi-discrete approach [58, 59| a portion of a crystal cen-
tered on the point defect is treated as a discrete lattice, and for remain-
der of the crystal an elastic continuum model is used. Johnson and
Brown [60] have proposed more precisely version of the semi-discrete
method, in which crystal is devided into three regions: a discrete re-
gion, an elastic continuum and an intermediate region. In the discrete
region the atoms near the defect are treated as classical particles, one
deals with with the individual displacements of the atoms, and the
potential energy is calculated using interatomic potentials. In the in-
termediate region the displacements of atoms are determined by the
elastic displacement field, but energy is subject o the interatomic po-
tential. Finally, in the elastic region both displacements and energy
are calculated from the theory of elasticity. Various refinements of the
semi-discrete method have been described by Lidiard [61] (see also
62]).

However, one does not have any a priory knowledge of how large to
make the discrete region. At the same time, the equations governing
the displacements of the atoms of the discrete region increase rapidly
in number and complexity as the volume of this region increases. In
addition, there are an infinite number of solutions to the Lamé equa-
tion, and boundary conditions are needed to determine which are ap-
plicable to a given problem, but boundary conditions at the interface
between regions cannot be simply specified.

The discrete lattice methods have been used with success by Celli
[63], Boyer and Hardy [64]| for modeling an isolated screw disloca-
tion in crystals with various lattice structure. For review of the re-
searches on computer simulation of dislocation core, see also |62, 65,
66| and the references therein. Such an approach has shed light on



112 Modeling of Crystal Defects in Nonlocal Elasticity

the physical aspect of the problem, however, atomistic models, as a
rule, are concerned with the simplist geometry, depend on a choice
of interatomic potentials, require extensive computer calculations and
involve difficulties in passing from one scale level to another.

Resonably far from the dislocation line the distortion of the crystal
is adequately described by the elasticity theory, but in the vicinity of
the dislocation line the continuum elasticity description fails. The
dislocation core is defined as the region of the material where the
crystal lattice has significant distirtions and is practically of the order
of lattice parameter.

Many efforts have been made to improve classical elastic solutions
for dislocations, for instant combining the elastic and discrete ap-
proaches for better description of high distored region near defect. The
simplest model is the Frenkel-Kontorova model [67] in which the dislo-
cation is considered as a set of particles coupled by nearest-neighbour
elastic interaction and moving in a periodic potential. Another model
which takes into account the discrete structure of the crystal and de-
scribes the core of the dislocation is the Pierls-Nabarro model [68,
69]. In this model the dislocation structure is described by the mis-
fit function. The assumption of the model is that the dislocation is
characterized by the elastic energy due to a finite density of disloca-
tions and the misfit energy which results from the nonlinear atomic
interaction in the glide plane. A review of the Frenkel-Kontorova and
Pierls-Nabarro models for dislocations and their generalizations was
made by Hirth and Lothe [5] (see also [70-73]).

The semi-dicsrete approach according to which the crystal with
dislocation is devided into two parts (a discrete lattice and an elastic
continuum) has been discussed extensively in |14, 74, 75|. But as a
rule all improved solutions correspond to the straight dislocations.

Though the literature concerning various models of the dislocation
core is very extensive, that for the disclination core is not numer-
ous. We can only mention studies of Doyama and Cotteril [76] and
Mikhailin and Romanov [77] on computer simulation of straight discli-
nations (see also [78]). As far as we can judge, no other attempts have
been made to improve the situation in the vicinity of the disclination
line, especially for circular disclinations.

The solutions for the crack problems obtained in the frame-work
of classical elasticity have non-physical singularities at the crack tip.
The regular attempts to improve elastic solutions have attracted much
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attention. We mention models of Leonov and Panasyuk |79, 80|, Dug-
dale [81] and Barenblatt [82] in which compressional cohesive stresses
are introduced in a small region in the vicinity of the crack tip.

In recent years there has appeared a number of studies of cracks
in solids based on atomistic models. We may distinguish between the
following broad categories of such models. The lattice-statics approx-
imation [83-85| deals with an infinite number of atoms interacting
with highly idealized interatomic potentials. From the viewpoint of
idealized geometry and interatomic force laws this model surves to pro-
vide insight into those features which are introduced by the discrete
atomic character of crystalline material without entering into the char-
acteristics pecular to a concrete material. In the molecular-dynamics
approach [86-89| differential equations of motion are solved numeri-
cally for a sufficiently large number of atoms interacting with a given
potential. In connection with a choise of such a number the following
problem arises: how large enough should be this number for numeri-
cal simulation of the corresponding infinite system. It is only with the
advent of modern computers that atomistic investigation became pos-
sible. Both the lattice-statics and molecular-dynamics methods only
concern one-dimensional and two-dimensional cases because, even us-
ing modern computers, it is impossible to treat a three-dimensional
lattice of any reasonable size.

The hybrid approach [90-93| involves division of non-bounded
solid into two regions. The region I in the vicinity of the crack is
considered as a lattice crystal, and the remainder, the region II, is
treated as an elastic continuum. There is a question concerning the
size of the region I requiered for this to be a valid assumption. An-
other problem of the hybrid method consists in jointing descrete and
continuum solutions. Both the rigid interface method and the flexi-
ble interface method, extensively discussed in the literature [14], have
been used. The finite element atomistic coupling scheme [94 96] also
belongs to the hybrid methods. This scheme creats an atomistic model
embedded in the finite element continuum with a two—layer transition
zone in which the lattice and the finite element continuum overlap. In
the inner layer the lattice is made to dictate the boundary conditions
for the continuum. In the outer layer the atoms are made to coincide
and move in a coordance to the finite element solution. Merits and
demerits as well as plausibility of various atomistic models have also
been discussed in [85, 89, 97-100|.
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3 Nonlocal elasticity

Recently, great advances have been made in crystal defect research
by application of nonlocal elasticity. Several versions of non-local
continuum mechanics based on various suggestions have been proposed
by Kroéner [101, 102|, Podstrigach [103], Eringen [104, 105], Edelen
[106], Kunin [107], Rogula [108], and others.

Starting from interrelated equations describing elasticity and dif-
fusion (or heat transfer) Podstryhach [103| excluded the chemical po-
tential (or the temperature) from the constitutive equation for the
stress tensor and obtained the stress-strain relation containing spa-
tial and time derivatives. In the infinite medium this relation can be
integrated using the Fourier Laplace transform, and the final result
has the nonlocal form. Kroner [101], Kroner and Datta [102] and
Kunin [107] started from discrete lattice and interpolated functions of
discrete argument by special continuous functions. The stress-strain
relation in such a quasicontinuum is non-local. Comprehensive review
and additional references can be found in [109 110].

As a matter of fact, non—locality (in the broad sense) has various
origin. A medium with the couple-stress tensor and non-symmetric
stress tensor can also be considered as non-local. In this case the cor-
responding “weak non-local theory” (using the terminology of [107])
with its own scale length parameter is built. But stress and couple-
stress fields caused by imperfections in such a medium also have sin-
gularities.

The nonlocal theory of elasticity takes into account interatomic
long-range forces. The stress at a reference point in the body depends
not only on the strain at this point but also on the strains at all other
points of the body. Thus, the relation between the stress tensor and
the strain tensor has the integral form.

The governing equations for the static case and for a linear isotropic
non-local elastic solid are the following [104, 110]:
the equilibrium equations

Vo (x) = —fy(x), (2)
the integral relation between the nonlocal o1(x) and local o (x) stress
tensors

(%) = /V a(x — x|, ¢) o (x) AV (X)) (3)
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the Hooke law for the local stress tensors
o(x') = Xtre(x') I+ 2ue(x), (4)

the geometrical relation

e(x') = - [V'ux') + ux)V’]. (5)

1

2

the compatibility condition
V' xeP(x) x V =-n. (6)

Here x and x’ are the reference and running points, u is the displace-
ment vector, e is the linear strain tensor, f; is the body force, eP is
the plastic strain tensor, m is the incompatibility tensor, A\ and p are
Lamé constants, V and V' are the gradient operators with respect
to x and x’, correspondingly, I denotes the unit tensor. The volume
integral in (3) is over the region occupied by the solid.

The weight function (the nonlocal modulus) a(|x" — x|, ¢) depends
on a distance |x’ — x| between the reference x and running x’ points,
includes the parameter ¢ connected with a characteristic length ratio
a/l , where a is an internal characteristic length and [ is an external
characteristic length and has the following properties

(i) a(|x — x'|, ¢) has a maximum at x = x'.
(ii) a(|x — x'|, ¢) attenuates rapidly with |x — x'| to zero.

(iii) a(]x —x'|, ¢) is a continuous function of |x —x’| with a bounded
support V.

(iv) a|x —x'|, ¢) is a delta sequence and in the classical limit ¢ — 0
becomes the Dirac delta function

lir%a(|x — x|, ¢) =6(|x — x|).

(v) For ¢ — 1 non-local theory agrees with atomic lattice dynamics.

(vi) [y B(x=x'[,¢) dv(x) = L.
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Eringen [111] found several forms of nonlocal modulus giving a
perfect match with the Born-Karman model of the atomic lattice dy-
namics and the atomic dispersion curves. In the present paper we
employ the following two-dimensional

¥ ~xl.0) = s o (P2) 7)

27 c? c

and three-dimensional

x —X|

aljx — x|, ¢) = Wexp( T) )

nonlocal moduli. In Eqn (7) Ky(z) is the modified Bessel function.
The constant ¢ in Eqn (8) is connected with the nonlocality parameter
c.

The nonlocal kernel (6) is the fundamental solution of the Helmholtz

equation
% (A ~ 0—12) Ky (g) — () (9)

From Eqns (3), (7) and (9) we obtain

1 1
Ao — 2% =~ 50 (10)
In such a manner solving the nonlocal elasticity problem reduces to
solving the nonhomogeneous Helmholtz equation.
The nonlocal kernel (8) is the Green function of the diffusion equa-
tion in which the parameter ¢ plays a role of "time". This suggests
that the stress tensor satisfies the diffusion equation

8anl
ot

under the "initial" condition

— Aanl =0 (11)

t=0: o ,=o0. (12)

It should be noted that in fact the parameter ¢ is not the time, but the
nonlocality constant. Indicating the Laplace transform with respect
to the parameter ¢ by an asterisk we obtain

Aoy, —so} = —0, (13)
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where s is the transform variable.
In the case of vanishing body force the Kroner stress function ten-
sor k can be introduced

1
21

1
A
Unl KJ+1—V

[VV(trk — (Atr k)I)] (14)

where v is the Poisson ratio.
The tensor k satisfies the following equation

(A —5)A’k* = —n (15)
under the supplementary assumption
V.-k=0. (16)

In the case of vanishing incompatibility tensor the Boussinesq-
Galerkin vector w can be used

2pu = 2(1 —v)Aw — V(V - w). (17)
In this case
o= VIA-VV)V.-w+ (1 -v)A(Vw +wV) (18)

and .
(A - 5)A*W* = — f. (19)

1—v

Another method of solving nonlocal elasticity problems consists
in direct integration of the corresponding local elasticity solution. It
should be noted that equation (3) is written in invariant tensor form.
In Cartesian coordinates integration can be carried out immediately.
Otherwise, the nonlocal stress field is determined by transforming co-
ordinates from curvilinear at the running point x’ to the rectangular
at this point, shifting tensors to the reference point x, transforming
from rectangular coordinates at the point x to the curvilinear ones at
this point, and the subsequent integration over the region occupied by
the solid using an appropriate nonlocal modulus. It should be noted
that even in the case of simple kernels this methods needs calculation
of complicated integrals.
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For example, in the case of cylindrical coordinates the following
integrals [112] are of fundamental importance:

o0 ! 2
/ exp {—u — §|z'|] signz’' dz' =

. At

= —Vrtexp (t&%) S(&, |2|,t) signz,

00 I 2
/ exp {—u — f\z’\] |2/| signz’ d2’ =

. At

- % T exp (t€2) U(E, |2, ¢) signz,

00 I 2
[ e [T e a2 = Ve () Ti6 el ),

[ e |- -] 17102 -
= Lt exp (169) 2006, |2, 1) — T(E, |21, ). (20)

§

The functions Q(€, |21, ), S(&, |2],2), T(E, |2],1), U(E, |2, £) were intro-
duced in [113]. For the sake of convenience we present them here:

Q& |21, 1) = 5 (1 - 21€) T(€, |21, 1)~

1 26Vt
8IS |2l 0) + = P21, 1),

U(fa ‘Z|7t) = ;f‘zu—‘(f, ‘Z|,t) —|—t§25(€7 ‘z|,t)’
S(&, |2],t) = exp(€|z]) erfe (g\/{H_ 2|i\/|¥) _

— exp(—{|z|) erfe (5\/%_ 2|L\/|¥) 7
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T(&, |z],t) = exp(€|z|) erfe <§\f+ ‘\’[) +

+ exp(—€]e]) erfe (M 2’?)

PIE.I210) = xp (€t - —2) 1)

4t

It should be noted that these function also appear as inversions of the
Laplace transform with respect to the parameter ¢ [114]:

£t {exp <—\/§2 - s]z\)} = 2\/‘;’53/213(5, 2], 1),

Lo {—exp< \/527+8|Z|>}=%[ (& ]2],t) + 2e7¢],
e { e (~VERSIaI) b = L U6 el 0+ (16 — ela)e ),

@m)}

S S ex = z
c { o[- L P(E ),

£t {S\/;Texp< \/§2+s]z\>} [ T(&,]z\,t)+2e’5|z|},

o {32\/512? exp (—\/52 n syzD } _

253[ (€ 121,1) = (1 + || — 26€?)e 1. (22)

The functions Q(&,|2],t), S, |2].t), T(&, |z],t), U(E, |2],t) were
studied in [113], where their integral representations were derived al-
lowing us to obtain solutions more amenable to numerical quadrature.

Theory of nonlocal elasticity indicates its power in the study of
point defects [115-119|, straight edge [120] and screw [121, 122] dis-
locations, straight wedge and twist disclinations [123], circular pris-
matic and glide dislocation loops [113, 124], circular twist, rotation
and wedge disclination loops [125, 126], line cracks [127 130] and vol-
ume defects [131]. Additional discussion can be found in the papers
1132-137].
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4 Conclusions

1. Nonlocal elasticity takes into account interatomic long-range forces.
Nonlocal theory reduces to the classical theory of elasticity in the
long wave-length limit and to the atomic lattice theory in the short
wave-length limit.

2. The nonlocal theory of elasticity makes it possible to apply a unified
approach to the study of phenomena at the micro and macro levels.

3. In contrast to the many generalized models that improve the de-
scription of only one specific type of defects, in the context of non-
local theory of elasticity one can consider various types of defects
from a single point of view.

4. Nonlocal stresses, in contrast to the local ones, are not singular at
the point of defect location.

5. To compute the elastic energy of the defect in a nonlocal medium
there is no need to cut the region of its kernel.

6. The kernel of a defect is commensurable with the parameter that
characterizes the nonlocality.

7. As a rule, the stresses have a maximum at a certain distance from
the defect. The value of this maximum is completely realistic from
the physical point of view.
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