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The problem of the likelihood function calculation is examined at
parameter estimation of the stochastic process describing change of
interest rates in the financial market. Such problem arises, when it
is supposed, that process is not usual diffusion process, but possesses
continuous derivatives. In this case the increments of process become
correlated, and for the likelihood function evaluation it is necessary to
invert a matrix of the high order equal to sample size. As is known the
calculation of reciprocal matrixes of the high order either is impossible
or results in essential mistakes of calculation. In paper the way to
avoid this difficulty is offered.

One of the most important parameters of the financial market is
so-called the riskfree interest rate. Its changes in time are usually gen-
erated by stochastic process. More often as such process one chooses
a diffusion process. However the diffusion process, which is possess-
ing independent increments and not differentiated with probability
unit, not always adequately represents the real market changes of the
interest rate. In this connection in [1] for modelling of the interest
rate process r(t) it is offered to use the stochastic process having the
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first derivative 7/(¢), which is a diffusion process:
dr'(t) + 2ar' (t)dt + b[r(t) — 0]dt = cdW (t). (1)

As the real interest rates are observed in discrete time the difference
version of this equation is more convenient for practical application.
This can be written down in the form

Tho = (€1 + €2)rps1 — ereary + &1 (k) + & (k), (2)

where 7, = r(kh) — 0, h - an unit of discrete time; 6 - stationary mean
of process; e; = eM” ey = 2" X1, Ny - the roots of the characteristic
equation

M 420\ + b = 0; (3)

{&(k)} and {&(k)} — the sequences of normally distributed mutually
independent random variables with zero expectation and such, that
var[¢i (k)] = 0%y, var[& (k)] = 020, but cov[é (b + 1), & (k)] = o6k =
0,1,2, ... The sequence of random variables generated by model (2), is
similar to known process ARMA(2,1), but differs from it that there is
a correlation between & (k+ 1) and &(k). Let’s notice that the values
A1, A2, 7, 0, € are expressed in the analytical form (though also rather
bulky) through parameters of initial model a and b of process r(t) [2].
We shall mention them here for convenience:

e GEICENCE EES I 5]
o — A1 )2 21 2o Aot A
B 1 1—e3 1—e2 (e +e)(l —ege)
€ = B €1 €9 — .
O — M) 2 2\ Mo+ A

Let us consider a problem of parameter estimation of model (1) by
sample of observations of interest rates {r(kh),k = —1,0,1,2,...,n}.
For this purpose the relation (2) is more convenient to rewrite in the
form yp1o = 0Npy2, Where yp o = 1y — (€1 +e2)rpp1+e16278, N2 =
&i(k) + &(k).

The vector of random variables (1,73 ... 7,) is normally distributed
with zero expectation and a covariance matrix ¥, = (¥;;) with ele-
ments
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S =0,if |i —j| > ;1 <i,j < n. (4)

Therefore logarithmic function of likelihood will look like:
nlno? +1Indet ¥, + YIS 1Y, /0%, (5)

where YT = (y1, 92, ..., ¥n). Minimization (5) on o2 gives an estimate
62 =YY 1Y, /n (up to parameters a and b).

Substitution of the estimate in logarithmic function of likelihood
(5) results in a problem of minimization of expression

(det 2,)Y"(VI¥1Y,) (6)

by parameters a and b.

At great size of sample n direct calculation of expression (6) is
inconvenient and implies enough large computing errors.

The purpose of this paper in specifying the recurrent way of cal-
culation (6) which is not resulting the large errors, peculiar to usual
procedures of calculation of determinants of the high order and inverse
matrixes of the high order.

Let’s introduce the notations:

D,=det%,;Q, =YY 1Y,; of =(00...0¢) n-vector-row,

n

ch — TN -1 . Ty, . _ Tv—1, \—1
01 =60, =0, 5 0,;¢, =Y, X 0 i1 = (v + 9 — 0, X o)

Proposition 1. If a matrix X, it is composed of the elements
determined by formulae (4) the next recurrent relations take place

Dk:(V+5)Dk_1_€2Dk—27k> 1,Dy=v+0,Dy = 1;

@n = Qnot1 + tin1(Yn — Gu—1)?, Q1 = ¥3 /(v +0); (7)
Q. = ep(Ye — G1), k > 1, q1 = ey
pr =Dy /Dy pue = (v + 6 —vee1) k> L = (v +6)7
v =Y+ —ve1) k> 1Ly =E(y+ )

Proof. D,, is known the Jacobi determinant. The recurrent for-
mula of its calculation is known [3|. For the proof of other recurrent
formulae we shall use advantage of representation of an inverse matrix
for matrix A,, set in the block form [4]:



98 Functionals Based on Large Dimension Matrixes

Afl — An—k Ank - _
" g Ag
< [Ap—k — ankAlzlakn]il —A,ikank [Ay, — aknA;ikank]il )
=

-1 -1 -1 -1 -1
Ak: - ak:nAnfkank] aknAnfk [Ak - aknAnfkank]

(8)

More convenient representation of blocks of this inverse matrix can

be received, using the statement from [4]: if square matrixes B, A, P

are nonsingular, a matrix, inverse to A = B + X PY, is representable
as

Bl=A1 - ATX(P+YATIX) vy AL
Therefore in the presentation (8)
[Anfk - &nkAlzlakn]_l - A;ik + A;ikank(Ak - aknA;ikale_laknA;ik-

For receiving of the recurrent form of the inversion of a matrix
¥, = A, it is convenient to take A, 1 = X, 1,0 = On_1, 0ty =
of |, Ay =~ +4. Then

n—1

Yol =

n

< O S D R MRTC D YmP R ) D >
—HnOp_1 3 Hon,

where p, = (Y +6 — o Y1 0,.1)7 "
Further representing Y, in the block form VI = (Y.L y,) gives

YR, =Y B Y+ (Y, 20 000)? -

_2:unyn(YnT—12;i10n—1) + :uny?l
Applying the accepted designations for (), and ¢,, we have

Qn == Qn—l + ,un—l(yn - Qn—l)z-
Use of the block form for X1 V7 and ol gives
YIS on = epnyn — epnY,” 15, 00

Loe ¢, = Elun(yn - Qn—1)~
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Now we shall use advantage of the block form for X1 to calculate
ol'Y-1o,. Let’s notice, that the first n — 1 components of a vector on
are zero, and last is equal €. Therefore

022;10,1 = 62(")/ + 0 — 05,1272&107171)717
S0 v, = €2(y + 6 —v,1) "t v = €2(y + §)L. Furthermore v, = €2p,,.

Let us notice that the recurrent relation for D,, can be written as
Dy_o Dy 1 Dy 1

or = =

Dy
Dy

Di—y' Dy ’y+5—e2%’ﬁl_’7+5

=y+0—¢€

’

and these relations just also determine iy, i.e. we have uy, = Dy_1/ Dy,
or Dy, = ([T, )" Tt finishes the proof of the proposition.

Using recurrent formulae (7) it is possible to construct computing
procedure of logarithmic function of likelihood (6) enough simply and
conveniently.

Let us consider a problem of convergence of the received recurrent
relations. The basic recurrent procedure is a calculation of value v, as
through it are expressed Dy, and . For the analysis of convergence it
is convenient to enter values wy = v /(v +0) and p = €/(y +J). Then
for wy the simple recurrent relation is received

wr = p*/(1 —wp_1),wo = 0. 9)

Its properties depend on value only one parameter p. Let us notice,
that this parameter has the sense of a correlation coefficient and con-
sequently on absolute value never exceeds units. Limiting value wy at
k — oo it is determined by the equation w? — w., + p* = 0, having
two roots. The greater root is a unstable limit, therefore recurrent
sequence {wy} converges to a limit

weo = (1= /1 —4p2)/2.

For p < 0,5, that is usually carried out in practice, monotonous
convergence takes place {wr} — weo, and wy increases from zero up to
Weo- 10 characterize process of convergence in this case it is convenient
to examine the ratio wy/w.., which determines a degree of convergence
for every k. In table 1 the values of wy/w., are presented for various
p < 0,5. For 9 iterations convergence of 90% for all p < 0,5 is
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guaranteed, and for p < 0,4 convergence up to 99% is reached after
4 iterations. The slowest convergence is observed for critical value
p = 0,5. In this case convergence of 95% is reached after 19 iterations,
and of 99% after 94 iterations.

Table 1

Values of the convergence parameter {wy} — ws (in percentage) for
various p

p=01 p=02 p=03 p=04 p=049 p=—05
98,99%  95,83%  90,00% 80,00% 59,95% 50,03%
99,99%  99,82%  98,90% 95.24%  78,89%  66,71%
100,00% 99,99%  99,.98% 98,82%  87,64%  75,05%
100,00% 100,00% 99,99% 99,71%  92,37%  80,05%
100,00% 100,00% 100,00% 99,93%  95,15%  83,39%

T = W N |

The analysis of explicit expression for p = €¢/(y+4) as functions of
parameters a, b and h shows, that p € (0,1/4), and the maximal value
p = 1/4is accepted in a limiting case, when h — 0,a — 0,0 — 0. Then
from tab. 1 follows, that in a problem examined by us the recurrent
procedure (9) converges for 4 iterations.

As it was noted earlier [5], the equation (1) can be considered as
expanded the Vasicek model in the sense that model (1) and the Va-
sicek model will generate processes with the constant (not dependent
on r) volatility o and a variance o?/2k = var[r(¢)]. In the literature
there are results of parameter estimation of the Vasicek model for real
financial processes [6-9]. In tab. 2 these estimations and results of
calculations on their basis of roots of the characteristic equations used
above, and also values 7 + ¢, ¢, p are resulted. (Roots A; and Ay of
characteristic equations (3) can be complex. It turns out for models
from [8-9|. In this case in the table real and imaginary parts of these
roots are resulted with use of a designation \; = o — i3, Ay = a+1i.)

As in real problems the recurrent procedure (9) practically con-
verges for 4 iterations, in formulas for calculation of logarithmic func-
tion of likelihood it is possible to use limiting values of sizes Dy, ti, qi
and wy that are calculated recurrently when the size of sample n is
great enough.
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Table 2
Numerical values of parameters of models described in papers [6-9]

Parameter | CKLS Bali Ait-Sahalia Ait-Sahalia
(1992)  (1999) (1996) (1999)
0 0,0866  0,0642 0,0891 0,0717
o 0,020  0,0077 00,0467 0,0224
a 0,5 0,5 0,5 0,5
k 0,1779  0,0436 0,8584 0,2610
h 112 1/12 1/365 1/12
AMora | 07685 09543 0,5 0,5
XNpor B | 02315 0,0457  0,7800 0,1049
lg(y+6) | -3,3572 -3,4496  -7,8642 -3,4497
lg(e) -4,3311  -4,0517 -8,4662 -4,0518
p 0,1062 0,24992 0,2500 0,24996

CKLS (1992): the annualized one-month U.S. Treasury bill yield from
June 1964 to December 1989 (306 observations). Ait-Sahalia (1996):
the 7-day Eurodollar deposit spot rate, daily from 1 Jun 1973 to 25
Feb 1995 (5505 observations). Bali (1999): annualized one-month
U.S. Treasury bill yield from June 1964 to December 1996 (390 obser-
vations). Ait-Sahalia (1999): the Federal Reserve System funds data
monthly from January 1963 to December 1998.

Let us designate

Hele= o) ™ 2+ " 2p
Then
—1 n
- 1 20 (v +9)
det¥, =D, = H,uj) zn:< —
<j=l K 1 —/1—4p?

= [(y+6)(1+ /14 4p2)/2]".
g = > (=1 g [ [ () =

j=1 i=j
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k k—1
> (=D y(en) T = e Yy j(—ep).
7=0

Jj=1

n n k—1 2
Qn =Y, 5,1, = Z,uk(yk — 1)’ & MZ (Z yk—j(—ﬁﬂ)j> -
k=1 k=1 \j=0

Thus we receive an approximation logarithmic function of likeli-
hood as

n

(det X))/ (VI5,1Y,) = ) (Zyk _i(—ep) ) , (10)

k=1 =

which is essentially easier, than the formula (6). However expression
(10) yet is not completely ready for calculations.
Let us notice that by definition r;, = r(kh) — 0. It means, that

Ykt2 = Thro — (€1 + €)1 + ereary =

r((k+2)h) — (€1 + e2)r((k+ 1)h) + erear(kh) — (1 — e1)(1 — e3)0.

Thus the observable values are r(kh), k = —1,0,1,2, ..., n. It means,
that expression (10) implicitly includes one more unknown parameter
of model 6, which needs to be estimated. It directly is not connected
to parameters of model a and b and consequently can be estimated
irrespective of them, however this estimation will depend on a matrix
Y, 1.e. finally, from estimations of parameters a and b.

Let us receive an explicit dependence of expression (10) on 6 and
also we minimize it on this parameter. We shall present vector Y,, as

Yn = Rn — 9(1 — 61)(1 - 62)].”,
where 1,, vector composed of units, and RZ = (Ru1, Rnz2, -, Run)
vector not dependent on € with components R, = r(kh) — (e; +
ea)r((k — 1)h). Then it is possible to write down

YnTElen == (Rn—G(l—el)(l—eg) )TZ (Rn—6(1—€1>(1—€2>1n>
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Minimization of this expression on 6 gives estimate

1 1'51R,

0= .
(1 — 61)(1 — 62) 1;{2;1171

A

This estimation is unbiased, E[f] = 6, and its variance is

e (e >)

Submitting value 6 in expression for Y, instead of 0, we receive new
representation for Y,,, already independent from unknown parameter.

1,175 1

where [ - an unit matrix.

Using representation (11) in expression (6), we receive expression
for logarithmic function of likelihood through a vector R,,, determined
by observable values r(kh), k = —1,0,1,2, ... :

TS —1 2
(det 2,) " (YIS, 1Y,) = (det B,) /" (Rgznl R, — M) .

17311,
(12)
For simplification of calculation of this expression again we shall
use advantage of recurrent procedures.
Proposition 2. The following recurrent relations take place

15251111 = 12—1E;i11n—1 + pin (1 — 15—12531071—1)27 1{21_111 = Ha;

152;1071 = epn(1 — 12—12531071—1) =

= > (=0 ] ] (), 175 N on = p;
m=1

k=m
'S 'R, =1r Y LR, o+

Hpn (1= 15130100 1) (Ron — 051571 R),

n—
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1{21_1}%”1 = ,UJanl;
n n
nggan = €fin(Run — 05—12;£1Rn—1) = Z(_l)niman H (€i),
m=1 k=m
oIS 'Ry = pRy.
Proof of these relations practically repeats proofs of similar rela-
tions of the proposition 1 and consequently here is not resulted.
Using the property of fast convergence of recurrent procedures for
enough high n it is possible to find the approached values of the values
determining a relation (12):
n n

175 1o, = Z(—l)”_ H €fLg) GMZ —ep)" % 7 —El—ﬂe,u’

m=1 k=m

2
11, ~17 vt 1, 41— F )~
n“~n n—1n—1 1 K 1+€M (1+€M>2

n

M n—m
(—en) Ry =~

14+ €en —

[ n
~ oo an?
(14 ep)? mzzl

1ZE;1RH ~ 12—121;}11%7%1 +

n n
R'S'R, ~ 1—/(Aeu)2 Z Z Roi R (—ep) 71,
i=1 j=1
Now we use the received results in expression (12) for logarithmic
function of likelihood that gives the following approximate formula
convenient for calculation of minimizing function

1/n Ty —1 (1227:1Rn)2 ~
(det 22,)Y ((ann R, — W ~

2
| il _
I;RmRm eV +€M (ZRW) :

(13)

Let us remind that in formula (13) components of vector R, are

determined by equality R, = r(kh) — (e; + ex)r((k — 1)h), where

r(kh),k = —1,0,1,2, ..., are market observations of the interest rates.

The formula (13) is represented more simple for calculations rather
than initial expression (6) for logarithmic function of likelihood.

=
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