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Abstract

Let X be a real locally convex linear topological space. A functional f :
X — 1R is called sublinear provided that f is subadditive and
fnx) = nf(z),x € X,n € IN. We establish a one-to-one correspondence
between the collection of all sublinear functional satisfying some mild re-
gularity conditions and the family of all nonempty convex and weakly*-
compact subsets of the dual space X*.

1. Introduction

A real functional ¢ on a real linear space X is termed sublinear pro-
vided that ¢ is subadditive, i.e.

or+y) <o) +ely), ryeX,

and
e(nx) =np(x), ze€X,nelN.

It is known (folklore) that the latter requirement my equivalently be
replaced by an apparently weaker condition

o(2r) =2p(x), =€ X.
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If D is a nonempty convex subdomain of X then a functional ¢ :
D — R is called Jensen-convez provided that

; (x—;y) < s@(w)-zw(y)

for all x,y € D.

Assuming that D is a nonempty open and convex subdomain of a
real linear topological space X one encounters numerous results show-
ing that whenever a Jensen-convex functional on D is supposed to
satisfy some additional regularity condition then necessarily it has to
be continuous and hence also convex, i.e. to satisfy the inequality

e(Az + (1= Ny) < Ap(x) + (1= N)ep(y)

for all x,y € D and all A € [0,1]. As an instance, let us quote some
of the conditions of that kind (see e.g. M.Kuczma |7, Chapter IX, §3,
Theorem 3|):

(a) o admits a measurable majorant on a set of positive measure (in
the case where X = IR);

(b) ¢ is upper bounded on a second category Baire subset of X;

(¢) ¢ is upper bounded on a set T" C IR" such that its Q-convex
hull Q(7) is of positive inner Lebesgue measure;

(d) ¢ is upper bounded on a set 7" C X such that Q(7') contains a
second category Baire set.

In 1975 E. Berz [1, Corollary 1.7| has proved, among others, that
every Lebesgue measurable sublinear functional ¢ : R — IR is nec-
essarily of the form

ox for =<0
(@f) O SN

where o, € R, a < 3.

With the aid of an entirely different and quite elementary method
B. Kocl/ega and the present author have proved in [5]| the following
generalization of this result.



R. Ger 69

Theorem A. A sublinear functional ¢ : IR — TR s of the form
(af) where a,B € R, a < 3, if and only if

() p satisfies any regularity condition that forces
Jensen — convex function to be continuous.

Observe that functions ¢ : IR — TR of the form («3) may alter-
natively be expressed in the form

(7) () =sup{yz: v€la,f]}, z€X.

Therefore, in higher dimensional spaces one could expect a kind of
interplay between mildly regular sublinear functionals and compact
convex subsets of the space in question. In what follows we shall show
that that is really the case.

The results spoken of in this paper were presented by the author

at the 36-th International Symposium on Functional Equations (Brno,
Czech Republic, 1998); see [4].

2. Main results

With no regularity whatsoever one can hardly imagine any reasonable
description of sublinear functionals even on the real line. Indeed, any
discontinuos additive selfmapping of IR may serve as an example of
nonmeasurable sublinear function that fails to be of the form (o) and
hence also (). It turns out that, likewise in Theorem A, condition
(J) is necessary and sufficient for getting the description desired.

Theorem 1. Let X be a real locally conver Hausdorff linear topo-
logical space and let p : X — IR be a sublinear functional satisfying
the (J) condition. Then, there ezists exactly one nonempty convex and
weakly*-compact set A C X*  such that

(A) p(x) =sup{z*(x): 2" € A}, ze€X.

Conversely, if X is a Baire space (i.e. is of the second Baire cat-
egory) for every nonempty convexr and weakly*-compact set A C X*
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formula (A) defines a real sublinear functional on X that is Jensen
conver and continuous.

In other words, in every locally compact Baire space there is a one-
to-one correspondence between the collections of all sublinear function-
als satisfying the (J) condition and all nonempty convex and weakly*-
compact subsets of this space.

Proof. Let ¢ : X — TR be a sublinear functional enjoying the (J)
property. It is easy to see that any sublinear functional is necessarily
QN(0, 00)-homogeneous. Since, for every x,y € X one has

SO(?&;H/) :%(p(x—l—y)g w(x)-gsa(y)7

we see that ¢ is Jensen convex and hence continuous. By a theorem of
E. Berz |1, Theorem 1.4 jointly with Remark 2.1] we get the formula

o(x) =sup{f(z): f: X — R is additive and f < ¢}, z € X.

Due to the continuity of ¢ all the additive functionals f occurring
under the sup sign above have to be continuous as well and then
automatically linear (recall that the space X is supposed to be a real
one). Consequently, one has

o(x) =sup{z*(z): =" € A}, =z € X,

where
A={z"(z) e X*: 2"(z) < p(x), x € X}.

Clearly, the set A is nonempty and convex and it is not hard to check
(using the net technique, for instance, and bearing in mind that the
weak*-convergence coincides with the pointwise convergence) that A
is also weakly*-closed.

Now, because of the continuity of the functional ¢ at zero and
the fact that ¢ vanishes at zero, one may find a convex and balanced
neighbourhood U of the point 0 € X such that |p(z)| < 1 for all
x € U. Then the polar set

U = {o* € X*: sup|z*(2)] < 1}
zelU

is weakly*-compact (a generalization of the celebrated Banach-Alaoglu
theorem, see e.g. K. Yosida’s monograph |8, p. 137|). Note that since
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U is balanced, for every functional z* € A and every x € U one
has |z*(z)| < |p(x)] < 1 showing that the weakly*-closed set A is
contained in the weakly*-compact set U°. Thus A is weakly*-compact
as well.

To prove the uniqueness of the representation (A), assume that for
some nonempty convex and weakly*-compact set B C X* we have also

o(x) =sup{z*(z): z* € B} , x€ X.

In such a case, for every * € B and every x € X we obtain an
inequality z*(x) < ¢(x), stating that B C A. Assume, for the indirect
proof, that B # A. Then there exists a member z of A that fails
to fall into B, i.e. BN {xz}} = (. Consequently, these two nonempty
convex and weakly*-compact sets B and {z}} can be strictly separated
in the sense that there exists a weakly*-continuous functional z§* on
X* such that

sup x" (%) < 25" (2p).

z*eB
It is well known that zj* being weakly*-continuous has to have the
form

gy (%) = " (xg), 2" € X7,

for some zy € X. Therefore

o(xg) = sup{a*(zg):a* € B} =sup{z}*(2"): 2" € B}
< zy(xh) = x5(m) < sup{z*(xg) : 2" € A} = ¢(xy),

a contradiction, which completes the proof of necessity.

Conversely, if a functional ¢ : X — IR is of the form (A) with
A being a nonempty convex and weakly*-compact subset of X*, then
it is obviously convex (in particular, Jensen-convex). Moreover, ¢ is
lower-semicontinuous as a pointwise supremum of a family of contin-
uous real functions. In particular, ¢ enjoys the (J) property because
any lower-semicontinuous Jensen-convex functional on a Baire space
is necessarily continuous (see e.g. Z. Kominek |6, Theorem 3.1]). Thus
the proof has been completed.

In the case where the underlying space is a Banach one we have

the following

Theorem 2. Let (X,|| - ||) be a real Banach space and let
¢ : X — R be a sublinear functional satisfying the (J) condition.
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Then, there exists a nonempty closed conver and bounded set A C X*
such that the equality (%) holds true. Such a set A is unique provided
that the space (X, || - 1) is reflexive.

Conversely, for every nonempty bounded set B C X* the formula

(B) o(x) =sup{z*(xz): 2" € B}, zeX.
defines a real Lipschitzian sublinear functional on X.

Proof. T.et ¢ : X — IR be a sublinear functional enjoying the
(J) property. We proceed like in the proof of Theorem 1 getting a
representation () with

A={z" e X": 2"(z) < p(z), z € X}

being nonempty and convex. To see that A is also closed it suffices to
observe that the convergence of a sequence of elements of X* in the
strong topology implies the pointwise convergence of that sequence.

To show that A is bounded observe that ¢ being continuous at zero
forces the existence of a positive 0 such that |p(x)| <1 for all x from
a closed ball B(0,§) centered at zero and having radius 6. Because of
the symmetry of that ball with respect to zero we infer that for every
member z* of A one has |2*(z)| < 1 whenever z € B(0,6), which
immediately implies that ||2*| < 1//§; therefore A C B(0,1//6).

The uniqueness of A may be derived along the same lines as in the
proof of Theorem 1 with the only exception that now the representa-
tion

xy (") = 2" (o), 2" € X7,

results from the reflexivity of X.

Conversely, if a functional ¢ : X — IR is given by the formula
(B) with B being a nonempty bounded subset of X*, then having

|lz*|| <o forall z*e B,
we obtain the inequalities
o(z) < sup{la*(2)| : 2* € BY < sup{|*| - |z : =" € B} < o]lall,
valid for all x € X. Since, plainly, ¢ is sublinear we conclude that

p(r) —oy) <plr—y) <olz—yl,
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for all z,y € X. Interchanging the roles of x and y we get finally

lo(x) —p(y)| < ollx —yl, z,y € X.

Thus ¢ is Lipschitzian, as claimed. This ends the proof.

Corollary 1. Let (X, (:|")) be a real Hilbert space and let
v : X — R be a sublinear functional satisfying the (J) condition.

Then, there exists a unique nonempty convexr and weakly compact set
A C X such that

o(x) =sup{(az): a € A}, ze€X.

Conversely, for every monempty conver and weakly compact set
A C X the foregoing formula establishes a real Lipschitzian sublinear
functional on X.

In other words, in every real Hilbert space there is a one-to-one
correspondence between the collections of all sublinear functionals sat-
isfying the (J) condition and all nonempty convex and weakly compact
subsets of this space.

Proof. Any Hilbert space is reflexive and selfconjugate. Therefore,
since closed convex sets are also weakly closed and in reflexive spaces
the sets that are bounded and weakly closed are weakly compact, it
remains to apply Theorem 2 and Riesz representation theorem for
continuous linear functionals.

3. Christensen measurable sublinear functionals

Christensen measurability yields a generalization of the classical Haar
measurability in locally compact groups onto the case of Polish topo-
logical groups. For the details the reader is referred to J.P.R. Chris-
tensen’s monograph [2].

Theorem 3. Let (X, | -||) be a real separable Banach space and
let p : X — IR be a Christensen measurable sublinear functional.
Then, there exists exactly one nonempty closed conver and bounded
set A C X* such that the equality (A) holds true.
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Conversely, for every nonempty closed convexr and bounded set
B C X* the formula (B) defines a Christensen measurable sublinear
functional on X.

Proof. Let ¢ : X — IR be a Christensen measurable sublinear
functional. Clearly, ¢ is Jensen-convex. P. Fischer and Z. S/lodkowski
[3] have proved, among others, that each Jensen-convex and Chris-
tensen measurable functional on a Polish linear space is automatically
continuous. Thus ¢ enjoys the (J) property and it remains to apply
Theorem 2.

The latter assertion results also from Theorem 2 and the fact that
any Lipschitzian and a fortiori continuous function on a Polish space
is Christensen measurable.

Corollary 2. Let ¢ : IR" — R be a Lebesgue measurable
sublinear functional. Then, there exists exactly one nonempty compact
conver set A CIR" such that

o(x) =sup{(alz): a € A}, z€X.

Conversely, for every nonempty compact convexr set A C IR"™ the
foregoing formula establishes a real Lipschitzian (and hence Lebesgue
measurable) sublinear functional on TR".

Remark. For n =1 Corollary 2 reduces to E. Berz’s theorem
spoken of in the Introduction.

4. Concluding remarks

We terminate this paper with a few observations based on the results
presented above.

(a) Taking A to be the closed unit ball in the dual space X* of
a normed real linear space (X, | - ||) we deal with a weakly*-
compact set in X* (Banach-Alaoglu theorem). The correspond-
ing sublinear functional (A) yields then nothing else but the
norm in X.

(b) Given a real Hausdorff locally compact space X, does any non-
empty symmetric (with respect to 0), convex and weakly*-com-
pact set A C X* produce a norm in X7In general, it does not.
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However, it produces a seminorm in X. Actually, if a set A C X*
enjoys all these properties, then formula (A) defines an even
sublinear functional on X and, according to E. Berz’s result |1,
Corollary 1.8 jointly with Remark 2.1|, there exist a real normed
linear space (Y, || -||) and an additive map L : X — Y such
that

o(x) :=sup{z*(x) : x € A} = ||L(2)||, x € X.

Obviously, because of the continuity of ¢, that additive map L
constitutes a continuous linear operator and the functional ¢
itself yields a seminorm in X.

Conversely, once ¢ is a seminorm on X, then there exists exactly
one convex symmetric with respect to zero and weakly*-compact
set A C X* such that equality (A) holds true; the existence of
A results directly from our Theorem 1 whereas the symmetry
follows from the evenness of a seminorm and the uniqueness
stated in Theorem 1.

(c¢) Taking two distinct members a*,b* of the dual space X* and
considering a segment A := {Aa*+ (1 —\)b* : A € [0, 1]} we get a
weakly*-compact set generating (via (A)) a continuous sublinear
functional on X

[ b*(z) whenever a*(z) < b*(x)
lr) = { a*(x) otherwise ()
In the case where A is symmetric (i.e. b* = —a*) we arrive at

the formula
o(x) = la*(z)], z € X,

which becomes a special case of the sublinear functional ¢ de-
rived in 2. in an entirely different way.
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