Prace Naukowe Akademii im. Jana Dlugosz w Czestochowie

Matematyka X, Czestochowa 2005

On Associative Rational Functions

Katarzyna Domariska

Institute of Mathematics and Computer Science,
Jan Dtugosz University of Czestochowa,
al. Armii Krajowej 13/15, 42-200 Czestochowa, Poland
e-mail: k.domanska@ajd.czest.pl

Abstract

We deal with the following problem: which rational functions of two vari-
ables are associative? We shall determine all of them provided that at least
one of the coefficients in question vanishes.

1. Introduction

The term associativity is usually used in connection with a map F
defined on the whole of the product A x A of a certain nonempty set
A with values in A. That operation is called associative if for every
x,y, 2 € A the following equation is satisfied:

F(z,F(y,2)) = F(F(x,y), 2), x,y,z €A (E1)

Equation (E1) is then termed as the associativity equation.
For example, let us consider a map F' : [ x I — [, where [ =
(—1,1), defined by the formula

Tty
1+azy

F([L’,y) =

It is an operation in set [ and it is associative which can easily be
checked by a direct calculation.
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It turns out that each map F': I x I — I in the form

F(z,y) = f'(fx)+ fy), zyel

is associative for any bijection f : I — J, where I,J C IR are
intervals such that J+ J C J.

Moreover, in the class of continuous and bilaterally cancellative
maps, these are the only associative ones. Namely the following the-
orem, proved by J. Aczel [1], (see also R. Craigen, Z. Pales [3]| and
others) is true:

Theorem CP. Let I be a nontrivial real interval and let F : I X
I — I be a continuous bilaterally cancellative associative operation.
Then there exist a continuous bijection f : I — J such that

F(z,y) = ' (f(x) + fv), =yel, (1)

where J is a (necessarily unbounded) real interval.

We notice that the above mentioned rational map is of the form
(1), where f: (—1,1) — IR, is defined by

1.1
f(x) := arctanhz = =log T

-1,1
log— re(=L1)

(clearly f is a bijection of (—1,1) onto IR and

e’ —1

-1
f~ (@) = tanhz e + 17

r € R).

In practice, one is frequently faced to a situation where the map F
considered is not necessarily defined on the entire ,, rectangle" A x A
but only for some pairs (z,y) € D C A x A. Nevertheless, one may
still search for solutions F' : D — A of the conditional associativity
equation

F(z, Fy,2)) = F(F(x,y),2) (E2)

assumed to be satisfied for all triples (x,y,z) € A x A x A such that
(z,y),(y,2), (z, F(y,2)) and (F(x,y),z) all belong to D. And even
in the case where D = A x A the values of F' need not fall into A,
therefore, we still have to deal with a conditional associativity. For



K. Domaiiska 43

example, taking a map F' : (—1,1) x (—=1,1) — IR, given by the
formula
Tty

1—ay

F(l’,y) = 9 T,y € (_L 1)7

we have e.g. F(1,1), F(%, 5) off (—1,1). Nevertheless, F' is condition-
ally associative which may easily be proved.
It turns out that a map of this type can be described analogously

to (1), as proven by Gy. Maksa [4]:

Theorem M. Let I be an open interval, e € I andlet F : Ix] —
IR be continuous and strictly increasing in each variable. Suppose that

F(x, F(y,2)) = F(F(z,y),2),  z,9,2 F(z,y),F(y,2) €l

and
F(z,e)=F(e,x) =z, x€l.

Then there exist a,b € I such that a < e < b and there exists a
continuous and strictly increasing function f : [a,b] — [—1,1] such
that

Flz,y) = f'(f(x)+ f), z.y,F(z,y) € la,b] (2)

and

We notice that a map defined above is of the form (2), where
I [—\/Lg, %] — [—1, 1], is defined by

1 1
f(z) = §arctanhx, T € [——, —],

a V3 V3

which is easy to prove.

This paper concerns maps which belong to the field R[z, y| of quo-
tients of the integral domain of all polynomials of two variables z, vy,
i.e. rational functions of these two variables. The domain considered
is supposed to be of the form IR? \ M, where M C IR? is a set of pla-
nar Lebesgue measure zero (usually a curve). We will consider a family
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of maps of that kind defining them as operations. Rational function
F € Rz, y|, which is of the form

aW(z,y)

F(r,y) = m,

where W is polynomial of two variables z,y and a € R,b € IR\ {0}
(M = {(z,y) € R*:  W(x,y) = 0}) we will consider as constant
F:R> — R

Definition. Operation F: R*\ M — IR, where M C IR? is a
given set, is called associative iff F' satisfies equation

F(x, Fly, 2)) = F(F(z,y), 2) (E)

for all (z,y, z) € IR? such that (z,v), (v, 2), (z, F(y,2)), (F(z,y),2) &
M.

It turns out that in order to be associative a rational function
F € TR[z,y] has to be of special form, which is presented by the
following theorem, proved by A. Chéritat [2|:

Theorem C. If the rational function F € R|x,y] is associative,
then there exist a,b,c,d, e, f,g,h € R, e+ f2+g?>+h? > 0, such that

axy +bxr+cy+d
exy + fx+gy+h

Fz,y) = (3)

The theorem gives only a necessary condition for a rational func-
tion to be associative. Not all operations of this form are associative,
e.g. the following ones (on naturals domains)

axy

F(ﬂf,y):m, (Z,G,hGIR,\{O},
bx
F(xvy)zmv bae7h€]R'\{0}v
F(g:,y):w a,b,e,h € R\ {0},

exy +h’
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bx

F(%y):m, b, f,9 € R\ {0},
Flag) = 550 b fge R\ )
Ploy) = “PE2 e fg e R\ (o)
Flay) = 20— adefgeR\ {0}

fail to be associative.

A sufficient condition allowing to choose associative operations
from among those of the form (3) has not been formulated yet.

We find associative rational functions which belong to class func-
tions of form (3), where at least one of the coefficients a, b, ¢, d, e, f, g, h
is equal zero.

2. Main result

In what follows, from among rational functions of the form

ary + bx +cy+d
exy + fr+gy+h’

F(z,y) =

where a,b,c,d, e, f,g,h € R, e+ f2+g*+h* > 0 we will be considering
only those for which at least one of the coefficients a,b,c,d,e, f, g, h
is equal to zero and, simultaneously, not more that 5 of them vanish.
The family of all such functions will be divided into the following
subclasses:

a1TY + axx + asy + ay
asTYy + agT + ary + as

Fi=A{F(x,y) = a; =0,a, #0,n # i},

ie{l,..,8};

a1xy + asx + asy + a
Fij=A{F(z,y) = Ly 2 syraa a; =a; =0,a, #0,
asTy + agx + a7y + ag

ned{l,..,8\{i,j}}, i#7 i,5€{l,...8};
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a1xyY + a2 + aszy + aq
asxy + agx + ary + as

a;=a;j=a,=0, a,#0, ne{l,.,8}\ {4,/ k}},

i,7,k e {1,..,8} i,j,k pairwise different;

E,j,k = {F(I7y) -

MY + ax® + azy + aq
asxy + agx + ary + as

a=aj=a,=a,=0, a, #0,ne{1,... .8\ {i,j,k}}

i,7,k, 1 €{1,...,8}, i,7,k,1 pairwise different;

Fijeg = 1F(x,y)

a1xry + axx + aszy + aq
E,j,k,l,m = {F(JU,?J) = D =a; =ap =aq =
asxry + agx + ary + as

am =0,a, Z0,n € {1,....,8\ {i,7, k. l,m}}, 4,5,k 1,me{l, .. 8},
1,7, k,[,m pairwise different.

In each of the classes F; (clearly we have 8 of them) there are
rational functions admitting exacly one zero coefficient from among
a,b,c,d,e, f,g,h. In each of the 28 classes F; ; there are rational func-
tions with exacly 2 zero coeffitients. Analogously, in case where exacly
3 coeffitients occurring in (3) are vanishing, the such a rational func-
tion belongs to the family of 55 (not 56 because F567 = Fs6,7.8) Fijk
classes; in case where exacly 4 coeffitients occurring in (3) are van-
ishing, the such a rational function belongs to the family of 65 ( in
practice, and 70 theoretically) F; ;x; classes; in case where exacly 5
coeffitients occurring in (3) are vanishing, the such a rational func-
tion belongs to the family of 46 ( in practice, and 56 theoretically)
Fijkim classes. We shall show that only some particular members
of the classes spoken of happen to be associative. Moreover, not all
elements of a given class are associative. For each of the classes in
question we shall formulate a necessary and sufficient condition for
the associativity of its members.

Equation (E) for a rational function of the form (3) may equiv-
alently be written as the equality between two three-place rational
function or as the equality of two polynomials of second degree in
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three independent variables. Such a polynomial yields a function of

the form
2

W(I7y7z) = Z Ci,j,kxiyjzkv

i,j,k=0

where ¢; ; ; are constants. Thus it is a linear combination of 27 second
degree monomials in three variables (the number of 3—element vari-
ations with repeatings from a 3—element set). The majority of the
function classes considered the equality of the corresponding polyno-
mials forces the coefficients of some monomials involred to be equal to
0. After the comparison of the corresponding coefficients one obtains
a system of 27 equalities concerning the parameters a,b,c,d, e, f, g, h,
which is equivalent to the validity of equation (E).

Theoretically, that system may be viewed as a necessary and suf-
ficient condition for the associativity of functions of the form (3). In
practice, for a concrete function considered with all the coefficients
nonvanishing, it is usually much simpler and faster to check its asso-
ciativity directly with the aid of equation (E).

However, in the case where at least one of the coefficients in ques-
tion is equal to zero, the system spoken of actually reduces to a smalles
number of equations. Even more, for the subsequent classes the ques-
tion of their solvability may easily be answered. More precisely, one
may classify these classes via a selection of those admitting associative
operations and to state readable necessary and sufficient conditions
equivalent to the associativity property.

A system in question is explicitely written in the statement of the
Proposition and proves to be useful in the proofs relevant theorems.
This system will be used to simplify the proofs presented. Plainly,
each assertion of the theorems estblished may directly be derived from
equation (E). Nevertheless, an appeal to this system allows one to
avoid numerous and tedious transfomations of (E) which would be
necessary otherwise.

The following lemma will prove to be useful in the sequel.

Proposition. [If a rational function given by formula

ary + br + cy +d
exy + fx+gy+h’

F(x,y) =
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where a,b,c,d, e, f,g,h € R, e+ f2+ ¢g*+ h?® > 0 is associative, then
the following equalities hold true:

(D)

abe? + a’eg + be’g = a’ef + ace® + ce?f,

(1)

a®f + a*eh + be*h + abeg + abef + befg
= ade® + de*f + a*be + a® f? 4 bee* + cef?,
(IIT)
b’e* + befqg + aceg + abeg + beg® = acef + abef + cef* + c*e* + cefy,
(Iv)
a’g? 4 bee? + beg® + a’ce + ade? + de*g
= aceg + acef + cefg+ a’g + a’eh + ce*h,
(V)
a’bf +befh +abfg+ bef +bf*g + a’cf + aceh + 2begh + abeh + adeg
= ab’e + adef + def* + beef + abf?® + cf® + abce + 2cde® + defg + cefh,
(VI)
2a’cf + a*gh + begh + abg® + beef + bfg* + aceh + 2adef
= 2adeg + acf* + beeg + cf?g + abeh + 2a*bg + a® fh + cefh,
(VII)
2bde* + begh + acg® + beeg + bg® + ac’e + adeg + deg® + abce + defg
= aceh + adef+ 2cefh + cfg® + a’cg + c*eg + cegh + a*bg + acfg + abeh,
(VIIT)
ab®f + abfh + bf*h + beh? + a*df + adeh
= ble+bdef + df? + abde + d*e* + defh,
(IX)
abef4acfh+2bfgh+b*eh+adfg = b*ce+2cdef +df*g+abfh+cf>h,
(X)
2abc.f + abgh +bf gh+bceh+ adf* = b*ce + 2bdeg + df*g +abfh+ ab’g,
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(XT)
ac®f+acgh+2cdef +bc*e+df g* = 2abcg+ adg® 4+ beeh +acfh+cfgh,
(XII)
acgh+2bdeg +bg*h+bc*e+df g* = c*eh+adf g+ 2cfgh+ abcg + abgh,
(XTIT)

acde + e*d* + degh + c*e + cdeg + dg®
= a®dg + adeh + ceh® + ac’g + acgh + cg”h,

(XIV)
a’bf + abeh + befh = ab*e + bde* + def?,
(XV)
acfg+bieg +bfg* = cPef +abfg+ cf?y,
(XVT)
ac’e + cde? + deg® = ac*g + aceh + cegh,
(XVII)

abdf + bfh® 4 cbfh 4 bgh® + 2acdf + adgh + b*cf + bdf* + cdeh + adfh
= b*de + bdeh + bede + 2d%eq + df gh + b*g + bdf g + b* fh + df*h + abdyg,

(XVIII)

acdf + ach? + 2bgh* + 2bdeh + adgh + bc2 f + ¢ fh + bdfg
= 2cdeh + adfh + 2cfh* + b*cg + cdf g + b*gh + abdg + abh?,

(XIX)

acdf + 2d*ef + bede + df gh + ¢ f + gh + cdf g + dg*h + cde + cdeh
= adgh + 2abdg + bdeh + begh + adfh + cfh*+ bc*g + acdg + cdg®+ cgh?,
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(XX)

bfh? + abdf + adfh = b*de + d*ef + df*h,
(XXI)

b f + begh + cdf? = b2cg + bdg® + befh,
(XXII)

Ade + d*eqg + dg*h = acdg + adgh + cgh?,
(XXIIT)

bdfh + bh® + ad® f + adh® + bedf + cdfh

= d%eh + bd*e + b*dg + d*fg + b*h* + df h?,
(XXTV)

bedf + d f* + Pdf + cdgh + cdf h = bdgh + bdf h + bedg + d*g* + b*dg,

(XXV)

Adf + h? + d*fg + cd®e + d*eh + dgh?

= cdgh + bedg + bdgh + ad*g + adh® + ch?,
(XXVT)

cd®f + edh® + d* fh+ = d*gh + bd*g + bdh?,
(XXVII)

a’df +beh® + bfgh + 2ac®f + acgh + 2bg*h + abef + acfh
+ adg® + b*ce + 3bdef + df*g + c*eh + adf g + acde + degh
= abde + adf® + 2cf?h + bc’e + 3cdeg + df g* + 2ab’g
+ adfg+b*eh + acfh + cfgh + abfh + abcg + a*dg + ceh® + defh.

Conwersely, any function of form (3) which satisfies all the condi-

tions (I)-(XXVII) fulfills equation (E).

Proof. Assume that a rational function F' given by (3) is asso-
ciative. We obtain equations (I),(II),...,(XXIV),(XXV) and (XXVII)
from equation

F(F(x,y),2) = F(z, F(y, 2))
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by comparison of the coefficients of monomials 2%y?22, 2%y?z, 2%yz2,
xy?2?, 2yz, vyPz, xy2?, 2%y, 2z, xy?, yiz, 122, g2t ay?, 12t yP R,
xy, vz, yz, ¥2, y*, 2%, x, y, z, vyz, respectively. The comparison of
monomials of degree zero leads to equation (XXVI). Obviously if a
function of form (3) fulfills the above conditions, then it is associative.
Thus the proof has been completed.

We notice that

Remark. The system of the equations (I)-(XXVII) has at least
one solution such that all coefficients are nonvanishing, namely a =
b=c=d=e=f=g=h=1. However a function defined by

Flz )_xy+w—|—y+1 _
T rrty 1

fails to be an associative, nontrivial operation of form (3) with all
nonwvanishing coefficients.

It turns out that in the class of rational function of form (3), where
exactly one of the eight coefficients is equal zero only the following are
associative:

bex + bey + bf . )
F = th b 0,be # —f~;
2 2 2 2
Flo,y) = a“exy + a‘ex + a‘ey + a’ f with e f40.a ]

(a — flefay + aefx + aefy
Namely the following theorem is true:

Theorem 1. In the class of the rational function of form

ary + br 4+ cy +d

F =
(z,y) exy + fx+gy+h’

where a,b,c,d,e, f,g,h € R, €*+ f2>+ ¢*> + h* > 0 and exactly one
(whichever) of coefficients is equal to zero, only following subclass con-
tains associative functions:

br +cy+d )
Flz,y) = th bed h£0. (1.1
(@) cxy+ frtgyth ¢, dye, f,g,h #0;  (1.1)
b d
Floy)= @Y T TYTE i abede fg£0.  (12)

exy + fr+ gy
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Moreover, operations of form (1.1) are asociative (on natural domain)
iffc=0,9g=1f d= %, h = # and operations of form (1.2) are

asociative (on natural domain) iff c =0, g = f, d = 5, e = “—.

Proof. First we show that no one of the functions is associative:

F(z,y) = ex;f_yf—;cf;i ; with a,c,d,e, f,g,h#0;  (1.3)
F(z,y) = ex;iyf—;?;;;i ; with a,b,d,e, f,g,h #0; (1.4)
F(z,y) = exzxj—/ ;mbi;yci ; with a,b,c,e, f,g,h #0;  (1.5)
F(z,y) = amg;;img—;— —T—yh+ d with a,b,¢,d, f,g,h #0;  (1.6)
F(z,y) = awzxj; (fg—;j_y; d with a,b,c,d,e,g,h #0; (1.7)
F(z,y) = axeyxz iwfchz d with a,b,c,d, e, f,h # 0. (1.8)

Assume the contrary: suppose that operation (1.3) is associative. By
Proposition equality (XTV) hold true. In case b = 0 this equation
gives def? = 0, which is impossible. For operation (1.4) (case ¢ = 0)
equation (XVI) gives deg? = 0; for (1.5) (case d = 0) equation (XX)
gives bfh? = 0; for (1.6) (e = 0) by (XIV) we have a?bf = 0; for (1.7)
(f = 0) by (XV) we have b*eg = 0 and for (1.8) (case g = 0) by (XXII)
we obtain c?de = 0. Therefore, all these cases lead to a contradiction.

Let function of form (1.1) be associative. By Proposition equalities
(I),..., (XXVII) are satisfied. On setting a = 0 in equation (I) we see
that

cf =bg (4)
and obviously
cf’h = bfgh. (17)
By (IX) (with a = 0)we obtain

20fgh + b*eh = b*ce + 2cdef + df*g + cfh,
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which, by (i), gives

bfgh = b*ce + 2cdef + df*g — b2eh.
However, by (X) (for a = 0) we have

bfgh = b’ce + 2bdeg + df*g — beeh.

Therefore, by (i) (which gives 2cdef = 2bdeg)

beeh = b2eh,
i.e. ¢c="band, by (i), g = f. Thus we have
c=1b, g=1f.
Further, by (IV) (with a = 0) and (i),

b2+ df = bh,

bef + def* = befh.

By (XVI) and (iii) we have

bde* + def? = befh.

Therefore, on account of (v) one has

bde? = bef,
le.
de = bf.
Further, by (iv) we obtain
v? + df
h pu—
b
and by (vi)
b
]
e
whence ,
P SO G
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This means that if function from class (1.1) is associative it must be
of the form

bex + bey + bf

i 2
e2xy + efx + efy + be + f2 with — b,e, f #0,be # f*.

F(r,y) =

A direct calculation shows that this function fullfils equation (E).

Now we assume, that function of form (1.2) is associative. By
Proposition equalities (I),..., (XXVII) hold true. On setting h = 0 in
equation (XXVT) we see that

cf =g (%)

i.e.

be’ f = bPcg (%)
and from (XXI) (with & = 0), by (xx), we have

cdf? = bdg?,

whence by (%) we get g = f and from (x) ¢ = b. So we have

c=b, g=f. (% * %)
Further, by (XXIII) (for h = 0) and (% x x), we see that
af =be + f2 (o)

Putting h = 0 in (XVI) and using (x x x) we have
ab’e + bde® + def* = ab’ f.
Therefore, by (e)
ab’e + (af — f?)de + def? = ab*f

i.e.

be + def = b2 f

and whence

bide + d*ef = b*df. (00)
Further, by (XXII) (with h = 0) and (% * x) we obtain

bde + d%ef = abdf.
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Therefore by (ee)
abdf = b*df

ie.
b=a. (eoe)
Putting h = 0 in (XIV) and applying (e e ®) we have
A f = a’e + ade® + def?
which jointly with (e) and (e e @) leads to
a*(ae + f?) = a’e + de(af — f?) + def>.

Therefore
a’f* = adef

which implies that

y_of

e

By (o) and (e e ®) we get

_af-f?

= —

This means, that if function from class (1.2) is associative then it must
be of the form

axy+ax+ay+%
Sy + fr+ fy

F(z,y) = with a,e, f#0,a# f

i.e.

a’exy + a’ex + a’ey + d’f
(a — flefxy + aefx + aefy
which was to be shown. It is easily to check, that the latter operation

is associative (on natural domain) whenever a,e, f # 0,a # f. Thus
the proof has been completed.

F(z,y) =

with a,e, f #0,a# f

Now we distinguish such subclasses of the class of functions of form
(3) for which exactly two coefficients are equal zero. The correspond-
ing result reads as follows:

Theorem 2. In the class of rational functions of the form

ary + br + cy +d

F —
(z,y) ery + fr+ gy +h’
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where a,b,c,d,e, f,g,h € R, €+ 2+ ¢ + h? > 0 and ezactly two
(whichever) coefficients are equal zero, no one is associative.

Proof. We shall consider 28 cases ( the number of choises of ex-
actly two elements from among eight). In each case we will assume
(for the indirect proof) that a rational function with exactly two wan-
ishing coefficients is associative and we will use Proposition to get a
contradiction. In case a = b =0 by (I) we obtain

ce’f =0,

which is impossible. Similary,
if b=e =0, (XVI) gives ac’g = 0;
if e=h =0, (XX) gives abdf = 0;
if f=h=0, (XXVI) gives bd*g = 0;

1fa—c—0, (T) gives b?eg = 0;

if a =d =0, (XVI) gives cegh = 0;
ifa_ =0, (T) gives be*g = 0;
1fa—g—0, (T) gives ce*f = 0;

if b=d =0, (XXII) gives cgh? = 0;
if b=c=0, (XVI) gives deg* = 0;
if b =h =0, (XIV) gives def? = 0;
if b = g =0, (XIV) gives def? = 0;
if c=d =0, (XX) gives bfh* = 0;

if c=e =0, (XIV) gives a?bf = 0;

(
(

ifc=h= O, (XVT) gives deg? = 0;
if c = 0, (XVI) gives deg* = 0;
ifd=e= O, (XX) gives bfh? = 0;

if d=f =0, (XV) gives b?eg = 0;
ifd = g =0, (XX) gives bfh2 =0;

if e = f =0, (XVI) gives ac’g = 0;
if f= g =0, (XX) gives b*de = 0;
if g=h =0, (XXVI) gives cd’f = 0;

if e = g =0, (XXI) gives bc*f + calf2 = befh,
whence

be + df = bh

whereas (X) gives 2abcf + adf? = abfh, whence 2bc + df = bh. There-
fore
bc = 0.
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In the remaining cases we proceed as follows.
Let d = h = 0. By (XVI) we get ac’e = ac’g whence

g=e. (2)
Putting d = h = 0 in (XIX) we obtain ¢ f = bc?g, i.e.
cf = bg. (17)
By (XIV) (with d = h = 0) we have a?bf = ab’e, i.e.
af = be. (1ii)
By (i), (i), (iii) we get af = cf, whence
c=a. (iv)
On setting d = h = 0 in (VII) and using (7), (iv) we see that
abe? + be® = afe® + a*e?

i.e.
ab+be = af + a’.

By (éi7) this means that b = a and, by (iii), f = e. So we have
b=a, c=a, f[f=e g=e. (v)

Therefore, in this case, a rational function considered has to have form

P, y) ary +ar+ay a
T, - =
4 exry + ex + ey e

which is impossible, because merely exactly two coefficients are equal
Zero.
Let ¢ = g = 0. By (XIII) we get d%¢? = adeh, whence

de = ah
and by (IX) we have b’ch = abfh, i.e.

be = af.
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Therefore, in this case, we infer that

ary +br+d  aery+bex + de
exy+ fr+h  e2xy+efr+eh
aery +afr+ah aexy+ fr+h a
2xy+efr+eh  eexy+ fr+h e

F(r,y) =

This is contradiction because merely two coefficients are equal zero.
Let now b = f = 0. From (I) we derive the equality

ag = ce
and therefore, by (V), we have aceh + cede = 2cde?; i.e.
ah = de.
Thus, in this case, we obtain

ary+cy+d  a’zy+acy+ad
exy +gqgy+h  aexy+ agy + ah
a*ry+acy+ad  alaxy +cy+d)  a

F(IL’,y) =

aexy +cey +de  elaxy+cy+d) e

)

which again is contradiction because merely two coefficients are equal
Zero.
Let now a = e = 0. From (V) and (VIII) we see that

and

bh = df.

Therefore, in this case, we get

Cbrtey+d  Vatbey+bd
 fr+gy+h  bfr+bgy+bh
b’ +bey +bd  blbr +cy+d) b
bfr+cfy+df  flbx+cy+d) f
a similar contradiction.

Let finally a = h = 0. We observe that in this case (I) gives
be?g = ce’ f whence

F(z,y)

bg = cf. (%)
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By (1) (with a = h = 0) we get befg = de* + bee? + cef?, which by
(x) leads to de*f + bce* = 0, i.e.

df = —be. (%)

Putting a = h = 0 in (IV) we obtain bce? +beg? +de*g = cefg, whence
by (%) bee? + de*g = 0, i.e.
bc = —dg. (% % *)

Now by (%x) and (* x %) we have dg = df i.e.

g=1
and by (x)

c=b.
Further, by (IV) (fora=h =0,b=c, g = f,) we conclude b*+de? f =
0, i.e. b* = —df. Therefore, by (%) we have b? = be getting

e=>0.

After settinga=h=0,e=c=0b, g= f in (V), we have bdf? = —b3d,
whence

f2 — —b2.

This contradiction finishes the proof of the theorem.

In the sequel, we consider such subclasses of class of functions of
the form (3), where exactly three coefficients are equal zero. Simulta-
neously, the case e = f = g = 0 is numbered among cases, where four
coefficients vanish (e = f = g = h = 0), because

b d
ary + xh+cy—|— — Ay + B+ Cy+ D,
__a _ b __c _d
WhereA—E,B—E,O—E,D—E.

We are going to show, that only the following functions from these
classes are associative:

aexy
F(z,y) =

e2xy+efr+efy+ f2—af

axry + bx + by
exy +b

with — a,e, f #0, [ # a;

F(x,y) = with a,b,e # 0;
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ary+d
ar+ay+h

More exactly we have

F(z,y) with a,d,h # 0.

Theorem 3. In the class of the rational functions of the form

ary +br +cy+d
exy + fx+gy+h’

F(w,y) =

where a,b,c,d,e, f,g,h € R, €2 + f2 4+ g> + h?> > 0 and exactly three
(whichever) of these coefficients are equal to zero, merely following
subclass cointains associative functions:

azxy .
F = th h #£0; 3.1
b
F(x,y) = W, with a,b,c,e,h #0; (3.2)
ary +d )
F = th d h #£ 0. 3.3
([L’,y) fx+gy+h’ Wil a, 7fag> 7é ( )

Moreover, operations of form (3.1) are asociative (on natural domain)

iffg=f, h= ftaf; operations of form (3.2) are asociative (on natural
domain) iff h = ¢ = b and operations of form (3.3) are asociative (on
natural domain) iff g = f = a.

Proof. First we consider classes (3.1),(3.2),(3.3). Assume that
function of form (3.1) is associative. By Proposition we have equalities
(I),....,(XXVII) (with b = ¢ = d = 0 ). From (I) we conclude that
a’eg = a’ef, i.e.

g=1f
and, by II, a®f + a?eh = a®f?, whence
po =k
e
Therefore
azry

Fl',y = )
(:9) exy—l—fx—i—fy—i—fz:faf
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which is associative (a straightforward verification), which was to be

shown. Now let a function of form (3.2) be associative. By Proposition
we conclude that equalities (I),...,(XXVII) (with d = f = g = 0 ) hold
true. From (I) we see that abe? = ace?, i.e.

c=b>

and, by (XIV), abeh = ab*e, whence

h = b.
Therefore ; ;
axy + ox + by
F(x7 y) - —7
exy +b

which is associative (a straightforward verification), which was to be
shown. Further let function of form (3.3) be associative. By Propo-
sition we have equalities (I),...,(XXVII) (with b =c¢=¢e =0 ). From
(IT) we obtain a®f = a®f?, whence

f=a
and, by (IV), a?¢9? = a®g, showing that

g =a.
Therefore d
azry
Flz,y) = ————.
(z.9) axr +ay + h
A simple calculation shows that F' is associative.
To show that no one from the remaining classes is associative func-
tions it suffices to observe that
for b=c= f =0, by (I), we get a’eg = 0;
forb—C—g—O by (1), we get a’ef = 0;
for b =c=h =0, by (XIV), we get def? = 0;

for b =d = e =0, by (XXII), we get cgh? = 0;
for b=d = f =0, by (XXII), we get cgh? = 0;
for b=d = g =0, by (XII), we get c’ch = 0;

for b =d = h =0, by (XXVII), we get ac’f = 0;
for b = f =g =0, by (XXII), we get c2de = 0;
for b= f = h =0, by (II), we get ade* = 0;
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for b =g = h =0, by (IX), we get cdef = 0;
for c=d=e =0, by (XX), we get bfh? = 0;
for c=d = f =0, by (XV), we get b’eg = 0;
for c=d =g =0, by (X), we get abfh = 0;
for c=d = h =0, by (XXVII), we get ab*g = 0;
for c= f =g =0, by (I), we get abe* = 0;

for c = f = h =0, by (XI), we get adg® = 0;
for c =g =h =0, by (XIII), we get d*ec? = 0;
for d = f =h =0, by (XIV), we get ab’c = 0;
ford=g=h=0, by (XV), we get c2ef = 0;
for f =g=h=0, by (XX), we get b*de = 0;
fora=c=d =0, by (XIV), we get befh = 0;
for a =b=d =0, by (XVI), we get cegh = 0;
for a =b=c=0, by (XIV), we get def? = 0;
fora =b=g =0, by (XIV), we get def? = 0;
fora=b= f =0, by (XVIII), we get cdeh = 0;
for a = b= h =0, by (XIV), we get def? = 0;
fora=c=e=0, by (XV), we get bfg* = 0;
fora=c= f =0, by (I), we get be’g = 0;
for a = c = g =0, by (III), we get b*e* = 0;
for a =c=h =0, by (I), we get be’g = 0;
fora=d=e=0,by (V), we get cf? =0;
fora=d= f=0, by (I), we get be*g = 0;
for a =d =g =0, by (XX), we get bfh* = 0;
for a =d = h =0, by (IX), we get b*ce = 0;
fora=e= f =0, by (VII), we get bg> = 0;
fora=e=g=0,by (V), we get cf> = 0;
fora=e=h=0, by (V), we get cf> = 0;
fora =g =h=0, by (I), we get ce’f = 0;
fora = f =g =0, by (XX), we get b’de = 0;
fora= f=h=0, by (I), we get be’g = 0;
for c=e= f =0, by (XI), we get adg? = 0;
for b =e = f =0, by (VI), we get a’gh = 0;
for c = e =g =0, by (XXV), we get adh?® = 0;
for b =e =g =0, by (X), we get adf? = 0;
for c=e = h =0, by (XXI), we get bdg? = 0;
for b=-e=h =0, by (XVI), we get ac’g = 0;
for d=e = f =0, by (XVI), we get ac’g = 0;
for d = e =g =0, by (XX), we get bfh? = 0;
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for d = e =h =0, by (XVI), we get ac*g = 0;
for e = f = h =0, by (XVI), we get ac’g = 0;
for e = g=h =0, by (XIV), we get a*bf = 0;
fora =0=e=0, by (XX), we get df*h = 0.

So, in each of the remaining cases we obtain contradiction with
the assumption that exactly three coefficients are equal to zero. This
ends the proof.

Using similar metods we can determine associative functions of
form (3) with exactly four wanishing coefficients. Clearly the case
e =f=g=h=0is excluded and because

F(x,y):W:Bx—l—Cy—l—D, with b,c,d,h # 0;
F(z,y) = W = Axy+ Bx+Cy, with a,b,c,h #0;
F(x,y):W:Amy+Bw+D, with a,b,d,h #0;
F(z,y) = W =Azy+Cy+ D, with a,b,c,h # 0,

WhereA:%,B:%,C’:%,D:%;thecaseswherea:e:f:
g=0,d=e=f=g=0,c=e=f=g=0,b=e=f=9g=0are
concidered in classes with 5 vanishing coefficients.

It is not hard to verify the following

Theorem 4. In the class of the rational functions of the form

ary + bx +cy+d
exy + fx+gy+h’

F(l’,y) =

where a,b,c,d,e, f,g,h € R, €+ f2 + ¢> + h? > 0 and exactly four
(whichever) of the coefficients are equal zero, merely the following sub-
class contains associative functions:

F(z,y) =

axy

ith 0; 4.1
e«ry‘i_fx‘i‘gy, Wi a’7€7f7g7é ’ ( )

axy

F(z,y) =
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_brtcy

F(z,y) = p— with b,c,e,h # 0. (4.3)
d
F(z,y) = %, with  a,d, fg#0.  (4.4)

F(z,y) = Azy+ Bx + Cy+ D, with A, B,C;D #0. (4.5)

Moreover, operations of form (4.1) are asociative (on natural domain)
iff g = f = a; operations of form (4.2) are asociative (on natural
domain) iff g = f = a; operations of form (4.3) are asociative (on
natural domain) iff h = ¢ = b; operations of form (4.4) are asociative
(on natural domain) iff g = [ = a and operations of form (4.5) are
asociative (on natural domain) iff C = B, D = @, B # 1.

Analogously, we can study the class of rational functions of form (3)
with exactly three nonvanishing coefficients and to prove the following
Theorem 5. In the class of the rational functions of the form

axy +bxr+cy+d

F —
(z,9) exy + fo+qgy+h’

where a,b,c,d,e, f,g,h € R, € + f*+ g*> + h* > 0 and ezactly five
(whichever) of the coefficients are equal to zero, merely the following
subclass contains associative functions:

Fla,g)= 2 for  a,fg#0; (5.1)
fx+gy
F(z,y) = axy + bx + cy, for a,b,c#0. (5.2)

Moreover, operations of form (5.1) are asociative (on natural domain)
iff g = f = a; operations of form (5.2) are asociative iff c = b= 1.

The only remaining case where at most 2 of the coefficients in
question do not vanish is trivial.
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