# PHASE EQUILIBRIA IN THE {Zr, Hf}-Ag-AI SYSTEMS AT 500°C AND CRYSTAL STRUCTURE OF THE TERNARY COMPOUNDS

B. Ya. Kotur, Yu. V. Verbovytsky

Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla and Mefodia Street 6, Lviv 79005, Ukraine, kotur@franko.lviv.ua

#### **ABSTRACT**

The phase equilibria at 500°C in the {Zr, Hf}-Ag-Al systems have been investigated in the whole concentration region. Three ternary compounds were found to occur in each of the systems: ZrAg<sub>0.32</sub>Al<sub>2.68</sub> (AuCu<sub>3</sub> structure type, space group Pm3 m, a=0.41016(1) nm), ZrAg<sub>0.16-0.31</sub>Al<sub>1.84-1.69</sub> (MgCu<sub>2</sub> str. type, sp. gr. Fd3 m, a=0.75147(1)-0.75258(1) nm), Zr<sub>6</sub>Ag<sub>1.30-1.82</sub>Al<sub>5.70-5.18</sub> (W<sub>6</sub>Fe<sub>7</sub> str. type, sp. gr. R3 m, a=0.54017(3)-0.54072(3) nm, c=2.9021(5)-2.9055(3) nm); HfAg<sub>0.28-0.43</sub>Al<sub>1.72-1.57</sub> (MgCu<sub>2</sub> str. type, sp. gr. Fd3 m, a=0.74600(2)-0.74631(3) nm), Hf<sub>6</sub>Ag<sub>0.39-1.43</sub>Al<sub>6.61-5.57</sub> (W<sub>6</sub>Fe<sub>7</sub> str. type, sp. gr. R3 m, a=0.53098(3)-0.53375(3) nm, c=2.9151(2)-2.9086(3) nm), Hf<sub>4</sub>Ag<sub>1.10</sub>Al<sub>1.90</sub> (Zr<sub>4</sub>Al<sub>3</sub> str. type, sp. gr. P<sub>6</sub>, a=0.5332(1) nm, c=0.54279(7) nm). The crystal structure of these aluminides was studied using X-ray powder and single crystal diffraction data.

#### INTRODUCTION

Aluminides of 4a-metals possess valuable physical and chemical (relatively high melting point, low density, oxidation resistance) and mechanical (hardness, strenght, lightness, high corrosion-resistivity) properties [1, 2]. There is considerable interest in intermetallics of silver for their electrical properties [3]. Therefore, investigation of interaction between the components in the {Zr, Hf}-Ag-Al ternary systems will result in revealing new intermetallic compounds. Some of them may be of interesting for practical application.

Phase diagrams of the {Zr, Hf}-AI, {Zr, Hf}-Ag, Ag-Al boundary binary systems are studied and presented in Refs. [4-7].

Phase equilibria in the {Zr, Hf}-Ag-Al ternary systems are not studied to date. Previous investigations of separate alloys revealed the existence of the ZrAg<sub>0.32</sub>Al<sub>2.68</sub> (AuCu<sub>3</sub> structure type) and ZrAg<sub>0.16</sub>Al<sub>1.84</sub> (MgCu<sub>2</sub> structure type) ternary compounds [8]. Among the M-Ag-X related ternary systems, where M=Ti, Zr, Hf; X=Al, Ga, In, only the Ti-Ag-Al [9], Zr-Ag-Ga [10], Zr-Ag-In [11] and Hf-Ag-Ga [12] systems have been studied. Five ternary compounds were found in these systems:  $Ti_xAg_yAl_{100-x-y}$  (25≤x≤30, 8≤y≤14) (AuCu<sub>3</sub> structure type),  $ZrAg_{0.5-0.6}Ga_{2.5-2.4}$  (AuCu<sub>3</sub>),  $ZrAg_{0.4}In_{2.6}$  (AuCu<sub>3</sub>),  $ZrAg_{0.5}In_{2.6}$  (AuCu<sub>3</sub>),  $ZrAg_{0.5}In_{2.6}$ 

 $(Hf_5CuSn_3)$ ,  $HfAg_{0.72-0.85}Ga_{2.28-2.15}$  (AuCu<sub>3</sub>). This study was carried out to investigate the isothermal sections of the {Zr, Hf}-Ag-Al phase diagrams, to synthesize new ternary compounds, to determine their crystal structure and to evaluate regularities of interaction of 4a-elements with 3b-elements and Ag.

## **EXPERIMENTAL**

40 binary and 183 ternary samples were prepared by arc-melting of initial components under high purity argon on a water-cooled copper hearth. Starting materials were used in the form of pieces of high purity metals (Zr 99.95 wt.%, Hf 99.99 wt.%, Ag 99.99 wt.%, Al 99.997 wt.%). The samples were remelted twice for better homogenation. The alloys were afterwards sealed in evacuated quartz tubes and annealed at 500°C for 500-1000h. After heat treatment the samples were quenched by submerging the silica tubes in cold water.

Phase analysis was carried out by using X-ray powder films obtained in RKD-57.3 chambers (CrK-radiation) and diffractograms (diffractometers DRON-2.0, FeKa-radiation; DRON-3M, CuKa-radiation; HZG-4a, CuKa-radiation). The M<sub>6</sub>Ag<sub>x</sub>Al<sub>7-x</sub> aluminides were investigated by using single crystal X-ray diffraction (camera RKV-86, MoK- and CuK-radiation; diffractometer KUMA/Oxford KM4, MoKa-radiation). Precise lattice parameters and standart deviations were derived by least-square refinement using CSD softwave [13] and FullProf program [14].

## RESULTS

## **Boundary binary systems**

The existence of 19 binary compounds at 500°C has been confirmed: ZrAl<sub>3</sub> (ZrAl<sub>3</sub> structure type), ZrAl<sub>2</sub> (MgZn<sub>2</sub>), Zr<sub>2</sub>Al<sub>3</sub> (Zr<sub>2</sub>Al<sub>3</sub>), ZrAl (CrB), Zr<sub>4</sub>Al<sub>3</sub> (Zr<sub>4</sub>Al<sub>3</sub>), Zr<sub>3</sub>Al<sub>2</sub> (Zr<sub>3</sub>Al<sub>2</sub>), Zr<sub>2</sub>Al (InNi<sub>2</sub>), Zr<sub>3</sub>Al (AuCu<sub>3</sub>), HfAl<sub>3</sub> (ZrAl<sub>3</sub>), HfAl<sub>2</sub> (MgZn<sub>2</sub>), Hf<sub>2</sub>Al<sub>3</sub> (Zr<sub>2</sub>Al<sub>3</sub>), HfAl (CrB), Hf<sub>3</sub>Al<sub>2</sub> (Zr<sub>3</sub>Al<sub>2</sub>), Hf<sub>5</sub>Al<sub>3</sub> (Mn<sub>5</sub>Si<sub>3</sub>), ZrAg (TiCu), Zr<sub>2</sub>Ag (MoSi<sub>2</sub>), HfAg (TiCu), Hf<sub>2</sub>Ag (MoSi<sub>2</sub>), Ag<sub>2</sub>Al (Mg) [7]. Two other compounds exist in the limited temperature regions: Ag<sub>3</sub>Al ( $\beta$ ) (W structure type) exists above 603°C and Ag<sub>3</sub>Al ( $\beta$ ) ( $\beta$ Mn) is stable up to 450°C. In the Zr-Al system Zr<sub>5</sub>Al<sub>3</sub> (W<sub>5</sub>Si<sub>3</sub>) and Zr<sub>5</sub>Al<sub>4</sub> (Ti<sub>5</sub>Ga<sub>4</sub>) aluminides are stable above ~1000°C. The binary aluminides Hf<sub>4</sub>Al<sub>3</sub> (Zr<sub>4</sub>Al<sub>3</sub>) and Hf<sub>2</sub>Al (Al<sub>2</sub>Cu) were not found to occur at 500°C.

# Zr-Ag-Al ternary system

Isothermal section at 500°C of the Zr-Ag-Al phase diagram is presented in Fig.1.

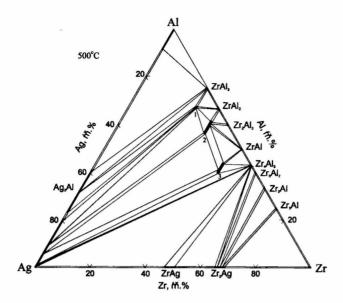



Figure 1. Zr-Ag-Al isothermal section at 500°C. Ternary compounds: (1)  $ZrAg_{0.32}Al_{2.68}$ , (2)  $ZrAg_{0.16-0.31}Al_{1.84-1.69}$ , (3)  $Zr_6Ag_{1.30-1.82}Al_{5.70-5.18}$ 

Practically no solubility of third components in the binary compounds was observed. Three ternary compounds were found in this system. The crystal structure of the ZrAg<sub>0.32</sub>Al<sub>2.68</sub> (AuCu<sub>3</sub> structure type) and ZrAg<sub>0.16</sub>Al<sub>1.84</sub> (MgCu<sub>2</sub>) was reported earlier [8]. The latter compound has a homogeneity region, which extends from 5 to 10 at.% of Ag along the 33.3 at.% Zr isoconcentrate. These aluminides were also detected in cast and in homogenated at 800°C alloys. The lattice paremeters of the compounds are presented in Table 1.

Table 1. Crystal structure data of the {Zr, Hf}-Ag-Al ternary compounds

| Compound                                          | Structure Space                |       | Lattice param | Ref.                  |        |
|---------------------------------------------------|--------------------------------|-------|---------------|-----------------------|--------|
| Compound                                          | type                           | group | а             | С                     | Rei.   |
| ZrAg <sub>0.32</sub> Al <sub>2.68</sub>           | AuCu <sub>3</sub>              | Pm3m  | 0.41016(1)    |                       | [8]    |
| ZrAg <sub>0.16-0.31</sub> Al <sub>1.84-1.69</sub> | MgCu₂                          | Fd3m  | 0.75147(1)-   |                       | [8], * |
|                                                   |                                | rasm  | -0.75258(1)   |                       |        |
| $Zr_6Ag_{1.30-1.82}Al_{5.70-5.18}$                | W <sub>6</sub> Fe <sub>7</sub> |       | 0.54017(3)-   | 2.9021(5)-            | *      |
|                                                   |                                | R3m   | -0.54072(3)   | -2.9055(3)            |        |
| HfAg <sub>0.28-0.43</sub> Al <sub>1.72-1.57</sub> | MgCu₂                          |       | 0.74600(2)-   |                       | *      |
|                                                   |                                | Fd3m  | -0.74631(3)   | OZ CO TOO ME HE MARKE |        |
| $Hf_6Ag_{0.39-1.43}AI_{6.61-5.57}$                | W <sub>6</sub> Fe <sub>7</sub> | . 45  | 0.53098(3)-   | 2.9151(2)-            | *      |
|                                                   |                                | - á   | -0.53375(3)   | -2.9086(3)            |        |
| $Hf_4Ag_{1.10}AI_{1.90}$                          | Zr₄Al₃                         | R3m   | 0.5332(1)     | 0.54279(7)            | *      |
|                                                   |                                | _     |               |                       |        |
|                                                   |                                | P6    |               |                       |        |

<sup>\*</sup> this work

The X-ray patterns of the samples containing 45-50 at.% Zr indicated the existence of unknown ternary compound. A single crystal was extracted from the cast alloy with a composition  $Zr_{50}Ag_5Al_{45}$ . Preliminary X-ray structure investigation showed that the crystal was of rhomboedric symmetry with lattice parameters a=0.5393(1) nm, c=2.9092(7) nm. These data indicated to the  $W_6Fe_7$  structure type. The following X-ray structure refinement confirmed this supposition. Composition of the single crystal was determined as  $Zr_6AgAl_6$  (= $Zr_{46.15}Ag_{6.86}Al_{46.98}$ ). Crystallographic data for the  $Zr_6AgAl_6$  are listed in Table 2.

Table 2. X-ray experimental details and crystallographic data for the ZraAgAla

| Structure type                          | W <sub>6</sub> Fe <sub>7</sub> |
|-----------------------------------------|--------------------------------|
| Space group                             | R3m                            |
| a (nm)                                  | 0.5393(1)                      |
| c (nm)                                  | 2.9092(7)                      |
| Cell volume (nm³)                       | 0.7328(4)                      |
| F(000) (electrons)                      | 1084                           |
| Number of atoms in the unit cell        | 39.0                           |
| Calculated density (g/cm³)              | 5.495(3)                       |
| Absorption coefficient (1/cm)           | 729.11                         |
| Radiation and wavelenght (nm)           | Mo, 0.70930                    |
| Diffractometer                          | KM-4                           |
| Mode of refinement                      | F(hkl)                         |
| Restrictions                            | F(hkl) > 4.00sig(F)            |
| Weighing scheme                         | Unit                           |
| Number of atomic sites                  | 5                              |
| Number of refined parameters            | 18                             |
| Two-theta and sinT/l (max)              | 102.96, 1.103                  |
| Number of measured reflections          | 5080                           |
| $R_{F}$                                 | 0.0667                         |
| Scale factor                            | 0.741(3)                       |
| Calculated composition Zr, Ag, Al, at.% | 46.15, 6.86, 46.98             |
|                                         |                                |

It's final atomic coordinates and displacement parameters are presented in Tables 3-4.

| Atoms | Site | Х         | у    | Z         | B <sub>iso</sub> |
|-------|------|-----------|------|-----------|------------------|
| M1    | 18h  | 0.8345(5) | -x+1 | 0.2582(1) | 0.6(1)           |
| Zr1   | 6c   | 0         | 0    | 0.1659(1) | 0.52(6)          |
| Zr2   | 6c   | 0         | 0    | 0.3506(1) | 0.76(6)          |
| Zr3   | 6c   | 0         | 0    | 0.4546(1) | 0.61(6)          |
| M2    | 3a   | 0         | 0    | 0         | 1.0(2)           |

Table 3. Atomic coordinates and displacement parameters for Zr<sub>6</sub>AgAl<sub>6</sub>

M1 = 0.084(4)Ag + 0.916(4)AI

M2 = 0.38(1)Ag + 0.62(1)AI.

Table 4. Anisotropic displacement parameters for Zr<sub>6</sub>AgAl<sub>6</sub>

| Atoms | B11     | B22 | B33    | B12    | B13    | B23   |
|-------|---------|-----|--------|--------|--------|-------|
| M1    | 0.6(1)  | B11 | 0.8(2) | 0.4(1) | 0.0(1) | - B13 |
| Zr1   | 0.45(7) | B11 | 0.7(1) | 1/2B11 | 0      | 0     |
| Zr2   | 0.67(7) | B11 | 0.9(1) | 1/2B11 | 0      | 0     |
| Zr3   | 0.66(7) | B11 | 0.5(1) | 1/2B11 | 0      | 0     |
| M2    | 0.5(2)  | B11 | 2.0(3) | 1/2B11 | 0      | 0     |

The annealed at 500°C alloy of the composition  $Zr_{46}Ag_7AI_{47}$  was unhomogeneous. X-ray analysis of the annealed at 500°C alloys on the section of 46 at.% Zr showed, that the homogeneity region of this ternary compound extends from 10 to 14 at.% Ag, i.e. it's composition is as follows  $Zr_6Ag_{1.30-1.82}AI_{5.70-5.18}$ . This discrepancy between stoichiometries of ternary compound  $Zr_6Ag_xAI_{7-x}$  obtained by X-ray single crystal and powder analyses indicated different homogeneity region of this compound at different temperatures. But this conclusion should be confirmed experimentally.

# Hf-Ag-Al ternary system

Interaction between the components in the Hf-Ag-Al system is similar to that in the Zr-Ag-Al system. Isothemal section at 500°C of the Hf-Ag-Al phase diagram is presented in Fig. 2.

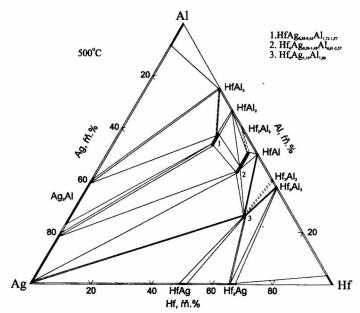



Figure 2. Hf-Ag-Al isothermal section at 500°C. Ternary compounds: (1) HfAg<sub>0.28-0.43</sub>Al<sub>1.72-1.57</sub>; (2) Hf<sub>6</sub>Ag<sub>0.39-1.43</sub>Al<sub>6.61-5.57</sub>; (3) Hf<sub>4</sub>Ag<sub>1.10</sub>Al<sub>1.90</sub>

Two ternary compounds isotypic with  $MgCu_2$  and  $W_6Fe_7$  were found to occur:  $HfAg_{0.28-0.43}AI_{1.72-1.57}$  and  $Hf_6Ag_{0.39-1.43}AI_{6.61-5.57}$  (Table 1). The crystal structure of the first one was investigated by means of profile analysis of X-ray powder pattern (Fig.3).

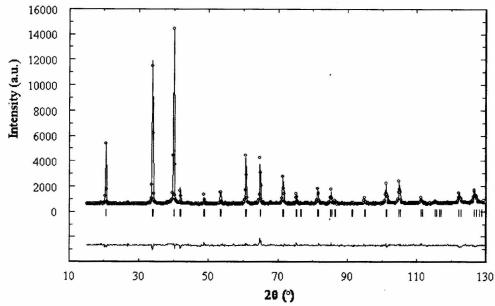



Figure 3. Results or the Rietveld refinement of the HfAg<sub>0.43</sub>Al<sub>1.57</sub> (observed (dots), calculated (line) and difference (bottom) profiles).

The sructure was refined for the sample of the nominal composition  $Hf_{33.3}Ag_{14}Al_{52.7}$  (= $HfAg_{0.43}Al_{1.57}$ ). Atomic coordinates and isotropic temperature parameters are given in Table 5.

Table 5. Atomic coordinates and isotropic temperature parameters for the HfAg<sub>0.43</sub>Al<sub>1.57</sub> compound (structure type MgCu<sub>2</sub>, Fd3 m space group, a=0.74631(3) nm, R<sub>p</sub>=4.14%, R<sub>wp</sub>=5.47%)

| Atoms | Site | Х   | у   | Z   | B <sub>iso</sub> |
|-------|------|-----|-----|-----|------------------|
| Hf    | 8a   | 0   | 0   | 0   | 0.44(5)          |
| M     | 16d  | 5/8 | 5/8 | 5/8 | 1.5(1)           |

M = 3.4(1)Ag + 12.6(1)AI.

The  $Hf_{6}Ag_{x}AI_{7-x}$  ternary compound was investigated by single crystal X-ray diffraction (first stage) and X-ray powder analysis (final stage). The XRD data of the  $Hf_{46}Ag_{10}AI_{44}$  (= $Hf_{6}Ag_{1.28}AI_{5.72}$ ) sample were refined in approximation of  $W_{6}Fe_{7}$  structure type with the lattice parameters a = 0.53338(1), c=2.9075(1) nm, space group R3 m (R<sub>I</sub> = 8.02%). Atomic coordinates and isotropic temperature parameters are given in Table 6.

Table 6. Atomic coordinates and isotropic temperature parameters for the  $Hf_6Ag_{1.28}Al_{5.72}$  compound (structure type  $W_6Fe_7$ ,  $R\bar{3}$  m space group, a=0.53338(1) nm, c=2.9075(1) nm,  $R_i=8.02\%$ ).

| Atoms | Site | Χ         | у    | Z         | Biso    |
|-------|------|-----------|------|-----------|---------|
| M1    | 18h  | 0.8338(8) | -x+1 | 0.2581(2) | 1.0(1)  |
| Hf1   | 6c   | 0         | 0    | 0.1656(1) | 0.70(4) |
| Hf2   | 6c   | 0         | 0    | 0.3506(1) | 0.91(5) |
| Hf3   | 6c   | 0         | 0    | 0.4541(1) | 0.96(5) |
| M2    | 3a   | 0         | 0    | 0         | 0.8(1)  |

M1=0.139(4)Ag + 0.861(4)Al M2=0.45(1)Ag + 0.55(1)Al.

Results of the Rietveld profile refinement of the  $Hf_6Ag_{1.28}AI_{5.72}$  XRD data are in Fig. 4.

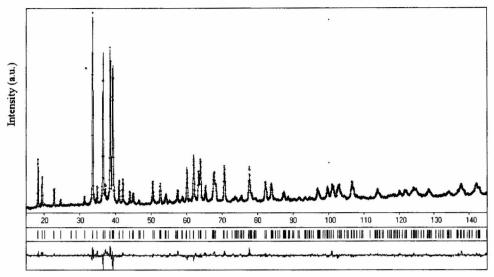



Figure 4. Results or the Rietveld refinement of the Hf<sub>6</sub>Ag<sub>1,28</sub>Al<sub>5,72</sub> (observed (dots), calculated (line) and difference (bottom) profiles).

One more ternary compound  $Hf_4Ag_{1.10}Al_{1.90}$  was synthesised in the system. It's crystal structure was determined from two phases' alloy of the composition  $Hf_{57}Ag_{14}Al_{29}$ . The binary compound  $Hf_5Al_3$  was the second phase which was present in the sample. The XRD data were indexed on the basis of a hexagonal lattice with the a=0.5332(1), c=0.54279(7) nm parameters. The observed intensities were corroborated by calculation assuming this phase to have  $Zr_4Al_3$ -type crystal structure (space group P6) with the final residuals  $R_p$ =3.69%,  $R_{wp}$ =4.90%. Atomic coordinates and isotropic temperature parameters are given in Table 7.

Table 7. Atomic coordinates and isotropic temperature parameters for the  $Hf_4Ag_{1.10}AI_{1.90}$  compound (structure type  $Zr_4AI_3$ , space group  $P\overline{6}$ , a=0.5332(1) nm, c=0.54279(7) nm,  $R_p$ =3.69%,  $R_{wp}$ =4.90%).

| Атомѕ | Site | х        | У        | Z        | B <sub>iso</sub> |
|-------|------|----------|----------|----------|------------------|
| Hf1   | 1b   | 0        | 0        | 1/2      | 0.43(8)          |
| Hf2   | 1f   | 2/3      | 1/3      | 1/2      | 0.43(8)          |
| Hf3   | 2h   | 1/3      | 2/3      | 0.259(1) | 0.43(8)          |
| М     | 3j   | 0.291(5) | 0.180(5) | 0        | 0.43(8)          |

M=1.10(5)Ag + 1.90(5)Al

## CONCLUSIONS

Analysis of phase equilibria in the M-Ag-X (M=Ti, Zr, Hf; X=Al, Ga, In) systems and compositions of the compounds and their crystal structures led to the following conclusions:

- 1. In all investigated M-Ag-X systems the ternary compounds occur up to 21 at.% Ag.
- 2. The {Zr, Hf}-Ag-Al and Zr-Ag-In systems are the complexest ones in contrast to the Ti-Ag-Al, {Zr, Hf}-Ag-Ga systems. Only one ternary compound occurs in each of the latter systems.
- 3. Formation of the ternary phases with the AuCu<sub>3</sub> structure type is typical for all investigated systems. These compounds have homogeneity ranges in Ti-Ag-Al, {Zr, Hf}-Ag-Ga systems. In the Zr-Ag-{Al, In} systems these compounds occur at constant compositions.
- 4. The ternary compounds belonging to the MgCu<sub>2</sub>,  $W_6Fe_7$  and  $Zr_4Al_3$  structure types exist only in the {Zr, Hf}-Ag-Al systems.

## REFERENCES

- [1] W. H. Tian, N. Nemoto, Intermetallics. 8 (2000) 345-352.
- [2] K. I. Moon, S. C. Kim, K. S. Lee, Intermetallics. 10 (2002) 185-194.
- [3] T. A. Gladstone, C. Moore, B. M. Henry et al., Supercond. Science and Tech. Online. 13(9) 2000 1399-1407.
- [4] H. Okamoto, J. Phase Equilibria. 14 (1993) 259-260.
- [5] Z. Kanghou, Z. Huazhi, Z. Yuehua, J. Less-Common Metals. 138 (1988) 173-177.
- [6] T. B. Massalsky, Binary Alloy Phase Diagrams. American Society for Metals. Metals Park OH 44073. Vol. vols. 1,2, 1986.
- [7] P. Villars, Pearson's Handbook. Desk Edition. Crystallographic Data for Intermetallic Phases. Vol. vols. 1,2, Metals Park OH 44073, 1997.
- [8] B. Kotur, Yu. Verbovytsky, Visnyk Lviv Univ. Ser. Chem. No39 (2000) 128-131 (in Ukrainian).
- [9] H. Mabuchi, K. Hirukawa, K. Katayama, H. Tsuda, Y.Nakayama, Sc. Met. et Mater. 24 (1990) 1553-1558.
- [10] Yu. Verbovytsky, V. Markiv, B. Kotur, Visnyk Lviv Univ. Ser. Chem. No41 (2002) 63-66 (in Ukrainian).
- [11] L. D. Gulay Phase equilibria, crystal structure and some physical properties of the compounds in Zr-{Co, Ni, Cu, Ag}-In systems. Thesis. Lviv Univ., 1997 (in Ukrainian).
- [12] Yu. Verbovytsky, VII International seminar on Physics and Chemistry of Solids. Book of Abstracts. 19-21 June, Lviv, 2002, 70.
- [13] L. G. Akselrud, Yu. N. Gryn, V. K. Pecharsky et al., Collected Abstract of XII Europ. Crystallographic Meet. (Moscow. August 20-29, 1989) - M.: USSR Academy of Sciences. 3 (1989) 155.
- [14] J. Rodriguez-Carvajal, Lab. Leon Brillouin. CEA-CNRS, 1998.