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INTRODUCTION

Recent progress in low dimensional condensed matter physics
revealed that dimensionality has a great influence on the physical
characteristics. Many laminar systems like Ag/Cu(001) overlayer or
GaAs/Al, Ga,, As quantum wells and/or superlattices, as the layer
thickness decreases, show dimensional crossover from 3D to almost
2D behaviour [1-3]. Generally, the dimension of these systems changes
with the monolayer coverage, wire thickness or temperature. In the
case of rough interfaces, a nonintegral dimension of the stratified
system can be interpreted in terms of fractal geometry (Haussdorff
dimension [4]).

The aim of this paper is to study the indirect magnetic interactions in
multilayers which show nonintegral dimensionality. We will calculate the
RKKY exchange integral between magnetic ions in a metallic system of
nonintegral dimension. Having that, we will find expression for the
interlayer coupling between two ferromagnetic layers, with rough
interfaces, across metallic nonmagnetic spacer.

RKKY INTERACTION IN A SYSTEM OF FRACTIONAL
DIMENSIONALITY

The starting point for any description of metallic-like magnetic systems
is the case of dilute alloys, when a few TM or RE ions are immersed in
the sea of host conduction electrons. The effective interaction between
RE or TM localized moments is mediated via the free electrons. Within
perturbative approach, the RKKY interaction between magnetic
moments of the magnetic ions (fi, and {i;) can be written as [5]

1 =

EAZX(RL;)W'“J: (1)

where x(R,) is the nonuniform static susceptibility. The explicit form of

the x(R;) is given by [6]
xR = fT;G(im,,R)Z : )

HR,) =

where o ==T(2+1) are the Matsubara frequencies and the electronic
Green'’s function is
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with e, being the free electron spectrum. We find that the RKKY
exchange integral j(r) in a oD system is given by

JO =170 o keDY o (1) +) o (DY, (keD) , (4)

with J (x) and v, (x) being the Bessel and Neumann functions [7].

ROUGHNESS OF THE INTERFACES

The interfaces can exhibit roughness, which can modify the interlayer
coupling. Till now, only the special case of correlated steps on a
surface has been considered [8]. In the following, we will present an
alternative approach based on the concept of fractals. The
surface/interface roughness often exhibits a self-affine structure [9,10]
and different scaling behaviour can be found as a function of thickness
and lateral length scale L. In this case, the interface is characterized by
the mean-square average roughness (height-correlation function) &(L) :

&L =[%>:(z,—p>2] , ®)

and the scaling of the roughness parameter is given by &(L) = L*, with
being a fraction.

In our approach, we will consider a trilayer in which the outer
ferromagnetic layers are separated by a nonmagnetic of average
thickness p . We assume that at least one of the interfaces (F! or F!)
is self-similar and its dimension equals 2+ (with 0<B<1). As usually,
we assume that the interlayer coupling between layers is mediated by
the free charge carriers of the central layer. The restraint conditions
imposed (by the interface potentials) on the motion of free particles
cause that the k-space of their eigenstates shows fractional (spectral)
dimensionality. This means that the magnetic interaction between two
ionic moments, that belong to different magnetic layers, is described by
the formula (4).

The magnetic interlayer coupling can be obtained by summing
contributions from all pairs of moments fi, and f,, with / and j running

over F} and F}. The interlayer coupling energy E,, per unit measure of
the interface can be expressed by the formula
E,, =1%c0s0,, . (6)
The interlayer exchange coupling integral I} is given by
I3 =)o ZX.Rey) - (7)
EF}
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In view of Eq.(5), we find that volume element of F behaves as
dv? =|F-p [** d|F-p|. Thus, Eq. (7) can be rewritten as
qu(Ro,)*‘)J;B“ pI" xkend [T—p . (8)

The term |[F-p[** can be expanded in power series of |F| and [p].
Since B is a fraction, we should make use of the fractional version of
the Taylor formula [11]:

0 = $070@ (o _ayes 1R (. ©)

S la+j+1)
The symbol (D*'f)(x) denotes the derivative of fractional order j+o of
the real function f(x). The fractional calculus is a powerful tool in
theoretical studies of systems which show fractional dimensionality [1-

3,12,13]. The Riemann-Louville diffintegral DI* is defined as follows
[11,14,15]:

asf)(x )—%jo —

and is a fractional counterpart of derivative of fractional order
D* =d* /dx* (for o.>0) or fractional integral 1* (for a.<0).

For the case of large separations, the leading term of the interplane
coupling can be calculated if we limit ourselves to the first term of
expansion, i.e., |F-p [**=|F [**. Thus, if we make use of the identities [7
p. 111 Eq. 65 and p. 20 Eq. 56], the interlayer exchange integral (7)
and (8) reads

=1, j“'dxj;r""'”J,,l (2kpr chi)dr an

= ——— f(t)dts (10)

Integral (11) can be calculated strictly only for some values of o and B.
In the case of arbitrary o and B, only approximate formulae for the
interlayer coupling parameter I¥ can be obtained. To calculate I}, let

us recall the identity fulfilled by fractional diffintegrals of the Bessel
functions [11 p. 48]:

DX, (hOl = 22X | (x) . (12)

Having identity (12), we can integrate over p in Eq. (11) using the
formula for fractional diffintegration by parts [11 p. 42]:

[200017, wOadx = [Pw(aIzo0)dx.  (13)

If we account that I} x* = x** [11 p.140 ], Eq. (11) can be reduced to

122 = 1 (p)*' [ (chty2*2%) (2k.p chi)dt . (14)

In the case of arbitrary « and B, the integration over variable t in Eq.

(14) cannot be performed in a direct way. However, if we have
a.=2+B/2, Eq. (14) takes the following form:

i3 =1, p(P)Y, 2 (Kep) (15)
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where v=1+B/2. The condition a=2+B/2 seems to be very
restrictive. However, some layered systems exhibit continuous
dimensional crossover when external conditions (e.g., temperature or
magnetic field) are changed. This means that in such systems, this
peculiar condition can always be fulfilled. In the case of arbitrary o and
B, the integration over t in Eq. (14) cannot be performed directly.
Fortunately, with the help of fractional analysis, we can transform the
integral (14) to a more simple form, which allows us to draw some
conclusions concerning the interlayer coupling. Setting x = (2k.p cht)?
and using the ndenmy
& a_d 16

(2p chiy® T (16)
wh|ch results from the definition of fractional derivatives, we can rewrite
Eq. (14) in the foIIowing form:
I =1 @) (k) [ dtd(kz) ((ke)*) ,(2kp chi)) . (17
If we change order of differentiation and integration, the integration over
tleads to

ol -1 \
14 =J o (p) d(ka S )] alkep)Y, p (o), (18)

with A=a-2-B/2 and v=1+p/2.

Result (18) represents the leading term of the interlayer coupling
constant (i.e., term which dominates at large p). The other term of
expansion (8)—(9) can be calculated in a similar way as the result (18).
However, since we have assumed that the interface F! is self-affine, it
is evident that our calculations are valid for the superlattices with
relatively thick spacer layers. In this case, it suffices to study the
properties of the leading term (18). Both expressions (15) and (18)
show oscillatory behaviour determined by the oscillations of the Bessel
functions J,,(k.p) and Y,,(k.p). Similarly, as in the case of systems
with integral dimension, the oscilation period is directly related to the
2k. wave vector.

The fact that expressions (15) and (18) are analytical functions of o
and B allows us to discuss the effect of dimensionality on the interlayer
coupling. Detailed analysis indicates that interlayer coupling constant
I} is strongly influenced by changes of the spectral dimension of the
spacer layer. In the case of a.=3, B=0, the envelope function falls off
with the spacer thickness d as I, =d?, while for o.=2 it decays as
l,=d"'. Thus the strength of the interlayer coupling varies during
dimensional crossover. This indicates a new way, in which properties of
magnetic multilayers can be manipulated. In many layered system, the
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spectral dimension changes (dimensional crossover) when some
external parameters like, e.g., temperature or magnetic field are varied.
Thus, by proper choice of the external fields, we are able to influence
the strength of interlayer coupling, an effect important in the
construction of the electronic devices. The interface roughness B> 0
acts in a similar way as decreasing o .
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