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ABSTRACT

Thermally stimulated relaxation (TSR) phenomena are analysed on the
basis of several analytical approximations. These approximations - e.g.
the general order kinetics (GOK) model and the mixed order kinetics
(MOK) are usually oversimplified with respect to the real phenomena
under study. Therefore, the application of these equations often leads
to erroneous results or misleading interpretations. Some recent papers
have shown the advantage of using certain formulae directly derived
from the simple trap model to the analysis of thermoluminescence (TL)
and thermally stimulated conductivity (TSC) experiments. These
equations allow to construct very fast and efficient algorithms to
determine trap parameters by application of nonlinear fitting methods.
The only disadvantage of this approach is a relatively high number of
unknown parameters. To overcome the difficulty we applied the
equations to simultaneous TL/TSC measurements, which are closely
related phenomena. Using some previously derived relations it was
possible to reduce the number of parameters of the model. To test the
accuracy of the method the fitting algorithm was applied to a series of
computer generated TL/TSC curves calculated from the simple trap
model equations.

INTRODUCTION

Thermally stimulated relaxation (TSR) phenomena are important tools
in characterising high-resistivity materials (for review see Chen and
McKeever, 1997). Using thermoiuminescence (TL), thermally
stimulated conductivity (TSC) or other methods one is able to get
information concerning trap structure of the dielectrics under study.
Unfortunately, the kinetics of the basic TSR processes is complex. This
makes the analysis of the experimental data very difficult. Recently, it
was shown by many authors (e.g. see Mandowski and Swigtek, 1999a
and Sunta et al. 1999a) that some classical approximations (e.g.
general order kinetics - GOK) are not so accurate as it was believed
earlier. For example - the GOK model would give very inaccurate
results when applied to numerical fitting of the model to experimental
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data. The error in estimation the activation energy would be greater
than 50%. In crystalline solids, it is usually assumed that trap levels
have discrete distribution within the band gap. The most acceptable
mode! for the description of charge carriers kinetics during thermal
stimulation is based on the following set of equations:
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where E; stands for the activation energy, N, n, and ms denote the
concentrations of trap states, electrons trapped in ‘active' traps and
holes trapped in recombination centres (RC). M stands for the number
of electrons in the thermally disconnected traps (deep traps), i.e. traps
that are not emptied during the experiment. A; and B; stand for the
trapping and recombination probabilities, respectively, and v; is the
frequency factor. Conductivity of the sample (TSC) is assumed to be
proportional to n, and luminescence (TL) is proportional to (-m). TSC
or TL spectrum usually consists of a series of peaks attributed to
different trap levels of the material. Many methods were developed for
evaluating trap parameters from these spectra, unfortunately the set of
equations (1) has no analytical solutions even for the simplest case of
one trap level and one recombination centre. Therefore to analyse TSC
and TL experiments one has to approximate eq. (1) to get analytical
expressions. In this paper, we propose a new curve fitting algorithm for
the analysis of the TL/TSC simultaneous measurements.

QUASI-EQUILIBRIUM APPROXIMATION

TL

Recently Mandowski and Swigtek (1998) suggested using approximate
equations that can be written in the form of ‘corrected initial rise’
method. It was proved numerically, that the validity of this
approximation is not limited only to an initial part of a TL peak, but
usually it covers the whole measurable TL curve. The first reported
approximation is:
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The variables L and U are defined as follows:
L(t) = —ri(v), (5)
Uy = [LO)dt = m, —m(), (8)

and U.=ny. L and U are directly proportional to observed TL intensity
Jr. and the area under TL curve respectively. It can be shown that the
equation (2) is mathematically equivalent to the well-known quasi-
equilibrium (QE) approximation of Kelly and Braunlich (1972) when
deep trap levels are also taken into account. The validity of QE
conditions were questioned by Lewandowski and McKeever (1992),
however more detailed numerical calculations showed later that their
objections were not justified by others (Opanowicz and Przybyszewski
1995, Mandowski and Swigtek 1996, Sunta et al. 1999b, 1999c).
Contrary, it was shown that QE conditions hold for most typical trap
parameters. Let us define new normalised variables for the TL intensity,
the peak area and other symbols:
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Now, equation (2) may be written:
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Mathematically, equation (13) is a non-linear integral equation with
respect to jr.(f).

TSC
The same approximation written for TSC has the form (Mandowski and
Swigtek, 1999b):
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S(f) and S.. denote areas under TSC curve. These are defined as
follows:

St = [n (. (17)
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Using definitions (7)-(12) allows writing equation (14) in the form:
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where ng(f) is a quantity that is proprtional to the TSC current Jrsc.
Considering that S is represented by the integral (17), hence (19) is
also a non-linear integral equation.

TL/TSC equation
Experimentally measured TL and TSC intensities are proportional to the

previously defined variables: J,, = j, /x, and J =n./x, , where

2z and g, are constants. Comparing the basic equations (13,19) and
using some earlier derived relations between TL and TSC (Mandowski
and Swigtek, 1992) one comes to the following equation:
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where R(f) defines the ratio:
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In the above equations w=pm,=M/N denotes the relative
concentration of deep traps. For an arbitrary TL/TSC measurement
data the plot of the right-hand side of eq. (20) should give a straight line
against (/kT). As the measure of linearity one may choose the
correlation coefficient, which in the case of eq. (13) depends only on
two parameters: § and R,. Therefore, it is easy to fit the parameters to
optimize the correlation coefficient .
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NUMERICAL VERIFICATION

For a given one trap - one recombination centre system the ratio R({) is
a decreasing function (fig. 1). To check the validity and usefulness of
eq. (20) we applied the method to a computer generated TL/TSC
curves. By using Monte Carlo optimization method, the best values of §
and R, were found (for which the correlation coefficient is closest to -1).
The slope of the fitted function gave us the activation energy E. For all
tested curves, the agreement was excellent. Several best values found
in the cycle of 10° Monte Carlo trials are listed in table 1. Typical
variation of the correlation coefficient r, with § and R, can be seen in
fig.2. Although the changes are only slight - here the plot of r.* was

done. Sharp boundaries indicate allowed range of fitted parameters.
The picture gives also a good explanation for why did we choose the
Monte Carlo method instead of many other ones (e.g. the steepest
descent or similar gradients methods). Simply the range of parameters
is easier to be kept under control. In fig. 3 it is shown the dependence
of the estimated activation energy on the correlation coefficient found
during a single run of the Monte Carlo algorithm for the same data as in
fig. 1 and the table 1. Looking at the diagram it is obvious that a
reasonable value of the activation energy could be determined by
averaging several of the best points of the plot. Such an average is
presented also in table 1.
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Fig.1. Typical TL and TSC glow curves and the ratio R(t)=TL/TSC calculated in the
framework of the simple trap model defined by egs. (1)
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Table 1. Several cases with the best values of the correlation coefficient r.
found %uring the Monte Carlo optimization calculations. The number of trials
was 10

correlation
coefficient r, E £ AEeV] g Fo

-0.999999807 0.91290 + 0.00005 -5.183E-0003 1005
-0.999999718 0.90612 + 0.00006 -2.935E-0003 1001
-0.999999268 0.87137 £0.00010  1.282E-0002 992
-0.999999239 0.87307 £ 0.00010  1.140E-0002 990
-0.999999212 0.92762 £ 0.00011 -1.118E-0002 1009
Average values: 0.898 + 0.012 0.001 +£0.005 999 +4
Input values: 0.9 0.0 -

It should be noted that no considerable differences were found due to
the range of the temperatures in which the basic equation (20) were
fitted. Nonetheless, somewhat bigger errors were noticed while
exploring the equation only in the linear region of A(f) (e.g. within a
narrow region near the TL maximum - see fig.1).

Fig. 2. 3-D representation of the dependence of the correlation coefficient r; on the
fitting parameters & and Ro. To illustrate more clearly the dependence, the surface
represents the fourth power of the correlation coefficient r.'. The diagram was
calculated for the data presented in fig. 1



Vlith ISPCS 2001 85

B L]
- [ L]
J e 00 o o e F 2o 1‘ ®
® ° -
i P °® ® 2
0.9 —| o ® . s
o ° ° o ° °e°,
4 L4 4 o P
> b ¢ ;. o ° L4 °° ® : o °
2, E oo ® @ L)
[ e® ©
5 08— o8 8%
S o °.,%p 00
5 N
= -
i}
]
0.7 —
i
0.6 T | T | T I T I T
-0.999990 -0.999992 -0.999994 -0.999996 -0.999998 -1.000000

Correlation r,

Fig. 3. The dependence of the estimated activation energy on the correlation
coefficient r; found by the Monte Carlo "best fit" algorithm. The dotted line
represents the true (input) value £=0.9 eV

CONCLUSIONS

A new equation for simultaneous TL/TSC measurement was presented
(20). It is valid for a single trap and a single recombination centre
system (with a series of "deep ftraps") under quasi-equilibrium
conditions. Analogous considerations relating simultaneous TL/TSC
measurements were presented also in earlier papers (e.g. Bindi et al.
1994, Opanowicz 1999) however the method presented here is
presumably the most accurate and simplest one with respect to the
estimation of the activation energy. Numerical calculation shows that it
is easy applicable to any TL/TSC measurements in every case when
the single-level trap approximation is valid. The method requires
calculation of only two unknown parameters: d and R,, therefore, the fit
is easy to be performed, and the obtained results are credible.
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