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INTRODUCTION

The electrical proporties of disordered solids depend in an essential
manner on the localized states in the energy gap. These states act as
traps or recombination centres for the excess charge carriers. There
were developed several experimental techniques for investigating the
gap states in amorphous materials. One of them is the method of
thermally stimulated currents (TSCs). It consists of the photogeneration
of excesss carriers in the sample at relatively low temperature and the
subsequent sample heating, usually with a constant rate. The TSC
course is determined by the kinetics of carrier trapping/detrapping and
recombination. Particularly extensive TSC measurements were made in
hydrogenated amorphous silicon (a-Si:H) [1 — 5], because of its
technological importance.

The information extracted from the TSC measuremenis depends
critically on the applicability of a theoretical model used for the
interpretation. So far, the analyses of TSCs in disordered solids are
usually based on the multiple-trapping (MT) model. A continuous trap
distribution in the energy gap is presupposed and only the carrier
transitions between extended and localised states are considered.
Since the corresponding MT equations cannot be solved analytically,
some approximations are necessary. In the most commonly used
theory by Fritzsche and Ibaraki [1] and other authors [4, 6] the carrier
retrapping was ignored or treated in approximate manner. In alternative
theories the processes of carier trapping/detrappinng were described
by simplified equations, corresponding either to strong non-equilibrium
[7 — 9] or to quasi-equilibrium [10] distribution of trapped carriers. Since
no assumptions about the rates of carrier capture, emission and
recombination have been made (except for [7]), these approaches
seem to be more adequate.

In the ‘usual’ TSC experiment the time of carrier photogeneration is
relatively short and the sample temperature is linearly increased after
the end of excitation (cf. Fig. 1 a). Sometimes, a more complex heating
schemes are also used. Among others, these are:

delayed heating, when there is significant delay between carrier
photogeneration ~and the onset of sample temperature
increase ( Fig. 1 b),
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step heating, when the sample temperature is raised in steps to
succesively higher temperatures (Fig. 1 c).

Such experiments provide additional information about gap states and
enable us to test the validity of TSC interpretation. As regards a-Si:H,
Zhou and Elliott [5] have questioned the applicability of the theory by
Fritzsche and Ibaraki [1], basing on results of their ‘delayed TSC’
experiments. Moreover, there exist some discrepancies between the
TSC curves, obtained in the step heating experiment and calculated
from the Fritzsche-Ibaraki theory. In the present work the theory [8] is
extended to above-mentioned modes of sample heating. The predicted
TSC features are compared with those established experimentally for
a-Si:H. For readers’ convienience, some formulae given in [8] are
repeated in Appendix.

Figure 1. Time dependence of the sample temperature T(f) in the case of a)
instantenous heating, b) delayed heating, c) step heating of the sample
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In the paper [8] the processes of carrier capture and emission from the
traps are described in terms of the function

o()-C. N Elexg - | 1

(cf. Appendix, Eq. (A1)). The meaning of the notations being used is: ¢
and ¢ - the time and energy variables; C, — the carrier capture
coefficient, Ni(¢) - the trap density per energy unit; & and & — the limits
of trap distribution. z(e, ) is the mean carrier dwell time in the trap of
depth e at the sample temperature T{({),
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with v, the frequency factor and k the Boltzmann constant. In general
case the frequency factor may be a function of temperature and/or trap
depth. The temperature-independent frequency factor relates to the
charged empty traps, which attract the carriers of opposite sign by
Coulombic forces. The function ®(f)dt is the probability that the free
carrier is captured in a time interval (0, df) and remains in the trap until
a time t In the following, for the purpose of exemplary calculations, an
exponential distribution of trapping states in the energy gap is
assumed,

N,(e)= N“"ex;{— e } g =, )

kT, kT,
where Ny is the total density of traps and T, is the characteristic
temperature, which determines the decay rate of trap density.
An important quantity in the approximate description of TSCs is the
demarcation level gy(t), defined by the implicit equation
v dt

zjy‘t, £, (t)t = “

The demarcation level separates the shallower states (& < &(t)), which
reached equilibrium ocupancy, and the deeper ones (& > &(t)),
characterised by non-equilibrium population. In the case of
‘instantenous’ carrier generation and linear sample heating, 7(f) = T, +
Bt (T — the initial temperature, S - the heating rate), as well as v, =
const, the demarcation energy is given by

&o(t) = KIc T(H)-T71, ®)

with

¢ =0.967Inv,/B)+3.7,

T =180,

where wy/f is expressed in K. Since the exponential function in the
integrand of Eq. (1) has a similar course as the unit step function, H[e -
&(t)], the function ®(f) can be approximated by

(t)=C, ?[yn(e)da e <e,(t)<e, ®)

Considering more complex heating schemes one has to notice, that the
formula (1) is valid for arbitrary time dependence of the sample
temperature. In any case, the TSC may be computed from the
equations given in Appendix and the Eq. (1). This can be done only
numerically. Nevertheless, the influence of sample heating regime on
the TSCs can be established in a simple way.

Let us assume that, following fast photogeneration of the carriers at f =
0, the sample is heated and cooled in an arbitrary manner and after
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some time t, the sample temperature reaches its initial value T,. Then,
the sample is heated with a constant rate . In this case the formula (1)
takes the form of

olt)= C‘:j;Nx(e)exL{— z‘%}ex;{— jﬂ%}d&. @

It is seen that both the first and the second exponential factors in the
integrand can be approximated by the unit step functions, H(e - &,) and
Hie - &(1)], respectively. Here, &, is the demarcation energy at { = ty,
determined implicitly by the Eq. (4), i.e.,
woodt

m 8

07T, (e t) ®
whereas g(f) is the demarcation energy for t > t,, given by the
approximate Eq. (5). Provided that &, > &°, the resulting formulae for
the function ®(f) have the form of

o()~C, [N,e)de, e,(t)<e,, (9a)

o(t)=C, cj()N‘(s)je e <& (D<e,. (9b)

In the initial time interval, when &(f) < &y, the function ®(f) does not
depend on time. This indicates that the carrier release from the traps
does not occur and the TSC is almost equal to zero. In the following
time region, when &(t) > &y, the function ®(f) is given by the same
formula as in the case of instantenous sample heating (Eq. (6)).
Therefore, the TSC course in this time interval is independent of the
sample heating regime up to the moment f,.
The above considerations imply that for &(t) = &, a sudden increase of
TSC should take place. According to the formulae (A4) — (A6), given in
Appendix, t)he TSC fulfills then the approximate relationship

do(t
0=~ (10)
(the time dependence of ®(f) is much weeker and can be ignored). The
derivative of ®(f) may be estimated as follows. Differentiating the Eg.
(7), replacing the first exponential factor in the integrand by the unit
step function H(e - &») and setting in the second factor t = t, yields

doft) - %N, _de
__J'C_~C(E{‘mde~C,N‘(sm)z£TY( o) (11)

The last approximate formula is obtained under assumption that Ni(e)
varies with energy much slower than z(e, #). Calculating the last integral
and assuming that & - g, >> kT() one gets the formula

. E%EL) - c‘N,(em)vokm)e"‘{_ ksﬁt)} -
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As follows from Egs. (10) and (12), the initial rise of TSC has, in the first
approximation, thermally activated character,

. exp*:— {ﬁt_)] (13)

where the activation energy &, is determined by the Eq. (8). A similar
formula for the initial increase of TSC was obtained in [7], but the
authors do not considered the influence of experimental conditions on
the activation energy.

For both heating schemes, mentioned in the Introduction, the activation
energy &, of the TSC rise can be easily calculated. We shall consider at
first the ‘delayed’ sample heating (Fig. 1b), when

TO=T,, t<t, (14a)

TM)=T. +pt-¢.) t=t. (14b)
Since the sample temperature is constant prior the onset of linear
heating, from the Eq. (8) one gets the formula
e, =kT,In(1.8v,t, ) (15)
(the correction factor 1.8 was introduced in [11]). Thus, the activation
energy increases with the temperature T, of sample excitation and the
delay time f,.
Let us consider now the step heating of the sample (Fig. 1c). For the i
th heating cycle the sample temperature is given by
T()=T, +B(t-t,) t,st<t, (16)
where f, = 0. For simplicity, the time of sample cooling after each
heating cycle is ignored. One can prove that this is acceptable when
the cooling rate f is sufficiently large, say f/f8 = 10. According to the
Eq. (8), the activation energy &, of TSC increase in the (m+1)-th
heating cycle is then given by the implicit equation
m b dt

—=1. 1é
et lemt) (7)
Provided that the maximum sample temperatures in the sequential
cycles increase remarkably, in the above sum only the m-th term is of
significance. One then gets the equation
W dt

& 1, 18

e e
Since the sample temperature increases linearly in the time interval f;,.4
< t< iy, the energy &, is given by the formula

e, =KcT, -T) (19)
which follows from the Egs. (8) and (5). Here
T, =T, +B(t, 1) (20)

is the maximum sample temperature reached in the m-th heating cycle.
The activation energy &, of TSC rise depends now linearly on the
maximum temperature T,
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It is worth noting that the influence of sample heating mode on the
TSCs can be described in alternate, mathematically equivalent, way. in
such a description the function ®(f) is given by the Eq. (6), in which the
demarcation level g(f) is determined by the Eq. (4) over the whole time
interval. The above-discussed features of TSCs are then related with
non-linear time dependence of the demarcation energy. This approach
has been reported in [12] and will be presented in detail elsewhere.

NUMERICAL RESULTS AND DISCUSSION

In order to verify the correctness and the accuracy of derived formulae
we performed the numerical calculations of TSCs, corresponding to
delayed and step heating of the sample. The numerical method was
similar to that described in [9,10]. The calculations were made for the
exponential distribution of traps (3) and both the cases of
monomolecular and bimolecular carrier recombination (cf. Appendix,
Egs. (A2) — (A3)). In the following figures, the TSC curves computed
analytically and numerically (marked respectively by lines and points)
are compared.

Fig. 2 a, b presents the TSC curves in semi-logarythmic scale,
computed for delayed sample heating and, respectively, for
monomolecular and bimolecular carrier recombination. The individual
curves correspond to different temperatures T, of sample excitation.
Despite some discrepancies between the analytical and numerical
results due to approximations involved in the theory, the general
features of TSCs remain the same. The initial part of TSC curve
depends on the excitation temperature T, and the initial slopes of
separate curves increase with T.. The following TSC course is
independent of the temperature T, and the TSC curves overlap in this
temperature region. These TSC features are in qualitative agreement
with the experimental results by Zhou and Elliott [5] in a-Si:H.

One should to note that the Fritzsche-lbaraki theory [1] predicts
somewhat different dependence of TSC on the initial temperature Te.
Namely, the initial part of the TSC curve should shift parallely towards
higher temperatures with increasing Te.
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Figure 2. TSC curves, corresponding to the delayed heating and the
monomolecular (a) and bimolecular (b) carrier recombination, for several
temperatures of sample excitation. The parameters: ©v0 = 103, tRv0 = 3x105
(a), CRnO/v0 = 5x10-6 (b), Tc /TO = 3, €t0O/kTO = 30, tmv0 = 3x1014, B /VOTO =
10-15, TO = 100 K
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Figure 3. TSC curves, corresponding to the step heating and the
monomolecular (a) and bimolecular (b) carrier recombination, for several
heating cycles. Tc /Te = 3, &t0/kTe = 30, B /vOTe = 10-15, Te = 100 K; other
calculation parameters are the same as in Fig. 2. The dashed line refers to the
first heating cycle with delay time tmv0 = 5x1013

This was the reason why Zhou and Elliott questioned the applicability of
the theory [1] in the case of a-Si:H. The differences between the results
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of both theories are due to another simplifying assumptions. As already
mentioned, the Fritzsche-lbaraki theory ignores the carrier retrapping.
However, from the theory developed in [8,9] it follows that in the initial
temperature region the rates of carrier capture and release are
approximately equal and the carrier retrapping cannot be neglected.

Fig. 3 a, b shows the TSC curves in semi-logarythmic scale, calculated
for several cycles of step heating of the sample and for monomolecular
and bimolecular carrier recombination, respectively. The curves are
identified by the maximum temperature T, reached in the previous
heating cycle. The TSC courses are similar to those corresponding to
delayed sample heating. However, in order to show the thermally
activated character of the initial TSC rise, the currents are plotted here
versus T /T. It is seen that the initial parts of the TSC curves computed
both analytically and numerically are approximately linear and that their
slopes increase with increasing temperature T,,. Such a behaviour was
established experimentaly for a-Si:H by Valentin et a/ [3] and Fritzsche
and Ibaraki [1].

According to the Eq. (19), the activation energy &, of initial TSC rise
should depend linearly on the maximum temperature T, of preceding
heating cycle. This can be verified for the experimental results given in
[1, 3]. The corresponding plot, shown in Fig. 4, is in fact approximately
linear. The value of the frequency factor calculated
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Figure 4. Dependence of the demarcation energy &, on the maximum
temperature T, of preceding heating cycle, determined from the TSC curves
obtained in the step heating measurements in a-Si:H [1, 3]. The points refer to
experimental results, the solid line is determined by the least-squares method

from the slope of straight line in the plot (cf. Egs. (19) and (5)), equals
to vy = 7x1 o" s“, which seems to be quite reasonable. It should bear
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in mind that the measurements in [1] and [3] were performed on
different samples and with different heating rates. However, the
coefficient ¢ in the Eq. (19) is the slowly varying, logarythmic function
of the ratio vy/8. Since the values of frequency factors for both samples
are expected to be of the same order of magnitude and the ratio of
sample heating rates in [1] and [3] do not excedeed 30 (in [3] only the
range of heating rates was specified), the possible differences in the
values of ¢ and &, could not be larger than 6%.

One point remains, however, unclear. It is seen from Fig. 4 that the
value of energy &, extrapolated to the temperature T = 0, equals to &y
=~ - 0.14 eV whereas its theoretical value, according to (19) and (5), is
equal 10 &y = - kT = - 0.015 eV. Possible explanation of this
discrepancy is the approximate character of the theory. As can be
recognized from Fig. 3, the initial, linear portions of TSC curves
calculated from the approximate formulae have somewhat larger slopes
than those computed numerically. Hence, the values of energy &,
determined from the experimental data on the basis of Eq. (13), are
lowered. The resulting deviations of demarcation energy depend both
on the trap distribution as well as on the carrier recombination kinetics
and are difficult to estimate. Alternative explanation is the relatively
strong dependence of frequency factor in a-Si:H on the temperature
and/or the trap depth, when the formulae (5) and (19) do not apply. For
example if the traps are electrically neutral when empty, the frequency
factor is quadratic function of the temperature, W(T) = v(7/T,)>. The
expression for the demarcation energy has then the form (5), with the
coefficients ¢ = 0.974 In( Vo/ﬂT +16.6 and T = 700 K [13]. In this
case the theoretical value of gno = - kT = - 0.06 eV, which is much
closer to that determined from Fig. 4.

CONCLUSIONS

In this paper we have studied the influence of sample heating regime
on the TSCs in disordered solids, characterised by a continuous
distribution of trapping states. Two cases have been considered in
detail: delayed heating and step heating. It has been established that
the initial TSC rise, during the sample heating with a constant rate, has
a thermally activated character. The activation energy equals to the
demarcation energy for trapped charge carriers at the onset of
corresponding heating cycle. The subsequent TSC course is
independent of the mode of previous sample heating. The analytical
results have been verified by numerical calculations of TSCs performed
for the exponential distribution of traps and the cases of both
monomolecular and bimolecular carrier recombination. The above-
described TSC features are consistent with those established
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experimentally in a-Si:H. This proves the validity and the usefulness of
demarcation energy concept in the description of TSCs in this material.

APPENDIX

The basic set of equations, used in [8] for the description of TSCs,
consists of the approximate equation for the carrier trapping/detrapping
kinetics [11, 13],

dit[t‘ar(g} ~nfg) (A1)

with the function ®(f) determined by the Eq. (1), as well as of the
equation describing the monomolecular,

d nft)

d—t[n(t)+n,(r)]=—t—:. (A2)
or bimolecular,

2 )+ n o= -Canlot} 0, () ()

carrier recombination. Here, n(f) and n(f) are the free and trapped
carrier densities, 7z is the mean carrier recombination time and Cg is
the recombination coefficient.

The approximate solutions of Egs. (A1) and (A2) as well as of Egs. (A1)
and (A3) have, respectively, the form of

= Mo | _ do(t)
(t)_ [<I>(t)+l/1:R ]2[ dt ] (A4)
and ) Y
n:( do(t
nt)= o <I>(t)+tCRn,(t) [‘ dt ] (A5)

with m(f) given implicitly by

I'{nl (t) /no]: -Gy, (t) /¢(t) (AS)

(no is the generated carrier density). The TSC intensity is proportional
to free carrier density,

I(t) = en(thES (A7)

(e is the elementary charge, uo is the free carrier mobility, E is the
electric field strength and S - the sample cross-section area,
perpendicular to the carrier flow direction). In Figs. 2 — 3 the TSC
intensity is normalized to /p = enguoES.
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