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INTRODUCTION

Due to mathematical complexity involved in the theoretical description of
thermally stimulated relaxation (TSR) phenomena — e.g. thermolu-
minescence (TL), thermally stimulated conductivity (TSC), thermally
stimulated exoelectron emission (TSEE), etc. — the analysis of the
experimental data is very difficult. The situation even complicates when
the measured spectrum consists of many overlapping peaks. To
determine activation energies, frequency factors and other trap
parameters from such spectra one has to deconvolute the curves for
individual peaks attributed to particular trap levels. For these purposes,
some approximate equations are used, usually based on the first or
second order kinetics. These approximate models do not cover the
variety of experimentally measured spectra. In crystalline solids it is
usually assumed that trap levels have discrete distribution within the band
gap. The most acceptable model [1,2] for the description of charge
carriers kinetics during thermal stimulation is based on the following set of
equations:
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where E; stands for the activation energy; N, n;, and m; denote the
concentrations of trap states, electrons trapped in ‘active' traps and holes
trapped in RC. M stands for the number of electrons in the thermally
disconnected traps (deep traps), i.e. traps that are not emptied during the
experiment. A, and B; stand for the trapping and recombination
probabilities, respectively, and v; is the frequency factor. Conductivity of
the sample (TSC) is assumed to be proportional to n. and luminescence

(TL) is proportional to (-m). TSC or TL spectrum usually consists of a

series of peaks attributed to different trap levels of the material.

Many methods were developed for evaluating trap parameters from these
spectra, unfortunately the set of equations (1) has no analytical solutions
even for the simplest case of one trap level and one recombination
centre. Therefore to analyse TSC and TL experiments one has to
approximate eq. (1) to get analytical expressions. In the case of
thermoluminescence, the most popular approximation is the general order
kinetics (GOK) model [3,4,5]. Unfortunately, it was proved numerically
that in many cases the model gives erroneous results [6]. In this paper we
propose a new curve fitting algorithm for the analysis of the experimental
data. The algorithm based on the fundamental kinetic equations allows to

analyse a single peak, as well as to deconvolute complex curves.

QUASI-EQUILIBRIUM APPROXIMATION

Thermoluminescence

Recently Mandowski and Swigtek [7] suggested to use approximate
equations that can be written in the form of ‘corrected initial rise’ method.
It was proved numerically that the validity of this approximation is not
limited only to an initial part of a TL peak, but it usually covers the whole
measurable TL curve. The first reported approximation is:

1
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where the constants L1 and Lo are defined by:

B-4
e 3
' AN + BM’ @)
AN + BM
L=—rp— (4)
vB

The variables L and U are defined as follows:
L (¢)=-m(1), (5)
U (0)= [T (t)dt’ = m, - m(1), 6)

and U,=n,. L and U are directly proportional to observed TL intensity J
and the area under TL curve respectively. It can be shown that the
equation (2) is mathematically equivalent to a well-known quasi-
equilibrium (QE) approximation of Kelly and Braunlich [8] when deep trap
levels are also taken into account. Typical application of the above
equation (2) consists in such calculation of two unknown parameters L,
and M occuring in the correction term

1
U,-U (t)+L’”’ i

that the plot of {In[J(T)]+®(T)} vs. 1/T gives a straight line. With all its.
simplicity and accuracy, this method can be used only to analyse a single,
well separated peak. Therefore it cannot be applied to deconvolution. |

1
M+U _-U (¢)

D(T)= ln{

Let us define new normalised variables for the TL intensity, the peak area
and other symbols:

Ju() =L (t)/ny, 8)
u(t)=U (t)/n,. 9)
r=A4/B, (10)
N =n,!N. (11)

=M/ n,. 12)
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E
e(t) = exp(— kT(t)) . (13)

Now, equation (2) may be written:

ve(t) ty +1-u()[1 - u(1)]
ty +7/m, +(1- ril - u(t)] '

Mathematically, the equation (14) is a non-linear integral equation with

Jn(t)= (14)

respect to j(t).

Thermally Stimulated Conductivity
The same approximation written for TSC has the form:

~E K
— =1 1 ‘ -1L+1In(K,), 15
kT(t) o|n.(0]+ n{l—explB(S(z)—Sw)J }+ n(Ks) i
where K1 and Ko denote:
- AN + BM ’ (16)
A(N + M)
and
AN+ M
K, = A+ M) . ), (17)

S(t) and S, denote areas under TSC curve [9]. These are defined as
follows:

S(t) = f n,(t")dt'. (18)

. 1 n,
A =}LrES(t)=Eln(1+—M—). (19)
Using the definitions (10)-(13) allows to write equation (15) in the form:
| xvIoE(@f 1+ 1y — y exp(BS)]
.]TSC(t) = . = ’
Bl(1=r)ny(L+ ) + (1 + 1oty exp(BS)]

(20)
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where jrsc(t) denotes the TSC current j..(f)= xn.(t), x is a

proportionality factor and B = xB . Considering that S is represented by

the integral (18), hence (20) is a non-linear integral equation.

THE ALGORITHM

Due to their mathematical complexity, equations (14) and (20) could not
be applied directly to the analysis of a given TL or TSC curve. However,
we can suggest a very effective algorithm for solving the equations. To
write it together for both processes, we will denote intensities jr () and
Jrsc(t) by j(f). The areas u(t) and S(t) we will denote by oft). Let us assume
that fitting algorithm requires computation of (keng+1) values ji=j(t) for
equidistant time intervals At=ty,s-t,. It is obvious to assume j,=0 and
o=0(tr)=0. Then, subsequent values can be calculated from the following
equation:

Ji =¥(0,), (21)
where W denotes the right-hand side of egs. (14) and (20). The key point
is the method of estimation of ¢. Below, some formulae are suggested:

(i) o not approximated

O = O - (22)
(ii) rectangular approximation
O =0p + jia AL (23)
(iii) trapezoidal approximation with derivative estimation

. U 3
O, =0, +Jj,_ At +l"¢2-iﬂAt =0, +—]""—'2—JﬁiAt : (24)

After calculating first estimation ;{", the following correction in the

variable ¢ is required:

.(1) 5

(2) — Ok-] + jk ;jk—l Af. (25)

Oy
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where ;" denotes the previously calculated intensity. Using these

methods, the process of calculating j, and then correcting ox may be
repeated many times to increase accuracy. Exclusively for eq. (14) an
additional method may be suggested:

(iv) trapezoidal approximation

e
O, =0, + %At. (26)
Using the last method (iv) one needs to calculate j, by solving quadratic

equation.

NUMERICAL CALCULATIONS

To verify accuracy of the methods (i)-(iii), many TSC and TL curves were
calculated for different trap parameters. In each case the results were
compared to exact numerical solution of the basic set of differential
equations (1). As the equations are of "stiff" type the numerical solutions
were obtained by using the Gear method [10]. Typical examples for TSC
are presented in Figs 1-4. A comparison of the three methods in Fig. 1
shows that the method (iii) is the most accurate . Relative numerical

errors were defined as (J,.. = juc)/ Jmae» Where jaee denotes the intensity

calculated by solving egs. (1), jcac denotes the intensity calculated by one
of the methods (i) - (iii) and jmax denotes the peak maximum.
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Figure 1. Comparison of various
methods (i)-(iii) for one iteration. Curves
ey, €, €3 represent relative errors of

each of these methods. Trap
parameters:  E=0.9eV, v=10""s",
B=1K/s, =0, mo=1, wo=1, x=1.
Computation step At=1.0s.
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Figure 3. lllustration of the influence of the
number of iterations on the accuracy of
the method (iii). Other parameters are the

same as for Fig. 1.
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Figure 2. Comparison of various
methods (i)-(iii) with three subsequent
iterations using egs. (12) and (16).
Other parameters are the same as for
Fig. 1.

method (iii)
1 iteration

n [a.u)]

0.8

0.4

0.0
0.20

0.10
0.00
-0.10
-0.20
-0.30
-0.40

Error [%]

Ill]lllllll'IH lllllllljl 111 I JLLllllll] ll 111

Illflllrvllllllll|l

300 350 400 450 500

Temperature [K]

Figure 4. lllustration of the influence
of the step of computation At on the
accuracy of the method (iii). Other
parameters are the same as for
Fig. 1.
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Figure 5. Application of GOK model Figure 6. Application of GOK model
and QE approximation (eq. 14) for and QE approximation (eq. 14) for
fitting to numerically generated TL fitting to numerically generated TL
curve (O). Input parameters: E=0.9 eV, curve (O). Input parameters: E=0.9 eV,
v=10"" s, r=10%, N=10"® cm™®, B=10"" v=10"" s, r=10%, N=10"® cm®, B=10""

cm®/s, wo=11 and 1=0.9. cm®/s, wo=10% and no=1.0.
Fitted parameters: Egok=0.52 eV, Fitted parameters: Egok=0.44 eV,
Eqe=0.87 eV. Eqe=0.90 eV.

To increase accuracy of the methods (i)-(jii), the calculations of egs. (21)
and (25) can be repeated many times. To illustrate the influence of the
number of iterations on the correctness of each method, the same
calculations were performed also with 3 subsequent iterations (Fig. 2).
Iterations can improve accuracy especially in such cases, when the
introductory prediction for gy is poor. It concerns chiefly the less accurate
method (i). The best method (iii) is almost insensitive to the number of
iterations as seen in Fig. 3. To increase preciseness of calculation one
has to decrease the step of computation At. As it is shown in Fig. 4, even
calculating TSC with rather high step At=2s, the relative error we obtain is
less than 4-10°. Decreasing the step down to 0.1s results in excellent

accuracy of 10°..10° that is comparable to the accuracy of the quasi-
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equilibrium approximation itself. Almost the same results were obtained
for TL. The method (iv) appeared to be as high accurate as the method
(ii). These superior properties allow to apply the quasi-equilibrium
equation for determination of trap parameters from TSR curves by using
non-linear fitting techniques. Preliminary results show that the activation
energy can be determined this way with a very low error. A comparison of
GOK and QE fitting results is presented in Figs. 5,6. In most applications
the theoretical curve can be determined with the computation step At=2s

or higher. Therefore the curve fitting algorithm is very fast.

CONCLUSIONS

Theoretical analysis of TSR data is difficult due to complexity of the basic
set of kinetic equations (1). Many approximations developed for this
purpose — based on the assumption of first- or second-order kinetics
[11,12] — are oversimplified, some other — e.g. based on the assumption
of general order kinetics [4,5] — contain some non-physical parameters. In
this paper a new numerical method for the calculation of TL and TSC
curves with the quasi-equilibrium approximation was proposed. Very good
properties of this approximation were proved in some earlier papers [6,7].
The advantages of using the quasi-equ*'ibrium model are indisputable.
First of all one uses a physical model having all its parameters clearly
defined. Furthermore, its accuracy is excellent and justified numerically.
Numerical methods proposed here allow calculation of TL or TSC with a
high computation step At and a very high accuracy. When applied to a
fitting program, it allows to use high steps at the begining of the
calculations and then, when a first approximation is achieved At may be
decreased to get the best accuracy. Such an algorithm allows to analyse

a single peak, as well as to deconvolute complex curves.
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