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INTRODUCTION

Physical parameters of trap states are investigated by a variety of
methods. Many of them are based on the observation of thermally
stimulated relaxation spectra. Among them, thermoluminescence (TL)
and Thermally Stimulated Conductivity (TSC) phenomena are some of
the basic tools. During these experiments a sample is excited at an
appropriately ,low” temperature T, and then it is heated usually with a
constant rate g. While heating, a fraction of charge carriers thermally
released from traps recombines with the opposite carriers trapped at
~recombination centres” (RC). The probability of thermal excitation of a
carrier is assumed to be given by a Boltzmann factor. A series of peaks
appearing on TL or TSC spectrum may be attributed to trap levels having
different activation energies E. Theoretical description of these non-
equilibrium phenomena usually assumes uniform distribution of traps and
recombination centres [1,2].

Another extreme case was the model of localised transitions by Halperin
and Braner [3] regarding hole-electron pairs trapped close to each other.
Only for the two cases it was possible to formulate differential equations
describing charge carriers' kinetics. Using recently developed Monte
Carlo technique, the kinetics of trapping and recombination may be
studied in systems with different kind of spatial correlation between traps
and recombination centres [4]. This allows to study a variety of cases

much closer to the reality. In some situations, the spatial correlation
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comes as a consequence of the structure of a sold — e.g. in
polycrystalline samples. However, one can expect similar distribution in
every case, where a sample (semiconductor or insulator) is-exposed to a
high-energy radiation, which produces large defects - traps and
recombination centres, most probably assembled into groups [5]. The
latter case is especially important due to dosimetric applications of TL [6].
In this paper we present a review of classical models for TL. The
applicability of these models is discussed with respect to the recent
results obtained by exact numerical calculations. Unquestionably, the
basic analytical models for the non-equilibrium trapping and
recombination kinetics, though mathematically quite complex, do not
cover the variety of all physically admissible cases. For some typical trap
parameters, in the presence of spatial correlation, TL and TSC curves
reveal unusual properties that cannot be described in terms of standard

models.
BASIC THEORETICAL MODELS
The Simple Model
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commonly used for the explanation of  distribution of traps and

thermally stimulated relaxation  recombination centres used in the
phenomena. Allowed transitions are  simple model. ® - filled traps,
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(Bg) and detrapping (D). O - recombination centres.



36 Vth ISPCS '99

The model most frequently used for the theoretical description of TL and
phosphorescence decay assumes the energy diagram [1,2] schematically
presented in Figs. 1,2. The model consists of a set of discrete 'active' trap

levels characterised by activation energies E; and frequency factors v;.

For the sake of simplicity, it is assumed that only one type of charge
carriers, i.e. electrons, may be released from traps. Analysing kinetics of
charge carriers' trapping and recombination one can write the following
set of differential equations [1]:

-, =ny, exp(;,(—zf') -n.A, (N, -n,), i=1..p, (1a)
—m, =B mn,, s=1..k, (1b)
k r

me =En,+nc+M, (1c)
s=1

=1
where N, n;, and ms denote the concentrations of trap states, electrons
trapped in 'active' traps and holes trapped in RC. M stands for the number
of electrons in the thermally disconnected traps (deep traps), i.e. traps
that are not emptied during the experiment. A; and B, stand for the
trapping and recombination probabilities, respectively. Luminescence

intensity is proportional to (-). To deal with this type of kinetics one has

to assume uniform distribution of trapping states and trapped carriers
within the bulk of solids. This situation is illustrated in Fig. 2.
Unfortunately, the set of equations (1) is strongly non-linear and it has no

analytical solutions. Hence, only numerical solutions are possible.
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Localised Transitions
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Figure 3. The model of localised Figure 4. Spatial distribution of
transitions of Halperin and Braner. trapped electrons and trapped holes
in the model of localised transitions.

Another extreme situation was considered by Halperin and Braner [3] and
later modified by Land [7] and Chen [8]. They assumed that traps and
recombination centres are closely correlated in space, forming pairs that
can be considered as independent units — i.e. all charge transfer takes
place within groups of one kind, each having one trapping state, one
excited state and one recombination centre (Figs. 3,4). Following Land [7]
we can write the kinetic equations:

— k. N )

n nvexp( kT) An,, (2a)
_i=Bn, (2b)
m=n+n,, (2¢)

where n, denotes concentration of electrons in the excited state. As the
displacement of charge carriers does not take place through conduction
band, the TL peak should not be accompanied by thermally stimulated

conductivity. 4 and B have similar meaning as A; and B; in eq. (1).
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General order kinetics

Since the basic model (1) describing trapping and recombination kinetics
is non-linear, there were many attempts to find simple analytical
approximations of the model. Fundamental results of Randall and Wilkins
[9], and Garlick and Gibson [10], derived for weak and strong retrapping,
respectively, were later generalised by May and Partridge [11] in the form
of so-called 'general order kinetics' model. In this model, developed
further by Chen [12], it is assumed that intensity J of the process is
described by the following relation:

-E
J = — y ] 1 b ( ) 3
n=v'n"exp T (3)

where E' is the activation energy, V' is the pre-exponential factor and b is
the kinetic order. In the case of b=1 this equation is consistent with the
solution of Randall and Wilkins [9] (first-order' or 'monomolecular'
kinetics) and in the case of b=2 one comes to the equation derived by
Garlick and Gibson [10] (‘'second-order' or 'bimolecular' kinetics). Solving

this equation for b=1 one gets:

-bh

= (b=Tyv'nl'" E' (b-1)
J=v'(n,)" e ( )1 ( )dT’ , (4)
v'(n,)" exp T [ 5 fl exp T

and for b=1:

J=v'n exp(_E')
J=v'n, ——lexXp
kT

- V/:“Jj‘ exp( kf )dT’] (5)

Considering solutions for b<1 it should be noted that the equation (4) is
valid within the range <7,,,Tend> where Tenq is defined by the following

integral equation:

Ten

nd . E/ (1-h)
) exp( )dT’ P (6)
) kT’ (1-bw"
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For an arbitrary b<1 this equation has finite solution for T.ny. For kinetic
orders' b=1 the formulae (4,5) are valid within the range <Tn.oo>. Using

the 'general order kinetics' model, it is possible to estimate three unknown
parameters: E', v' and b. The most important is E'. Usually it is believed
that E' differs from the 'true’ activation energy not more than a few per

cent.

Analysis of TL data

As the analysis of experimental TL data on the basis of egs. (1-2)
is very difficult, usually the GOK model is applied for these purposes.
According to suggestions of Chen [2] and Chen and Kirsh [2], this
approximation is very accurate and suitable for both the simple model and

the localised transitions (Fig. 5).

THEORY DATA ANALYSIS
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Figure 5. lllustration of standard theoretical description and analysis of TL

data.
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Numerical verification of GOK

Although the general order kinetics model is very popular in practical
applications, it should be emphasised that it has been also criticised by
many authors. For example, Moharil [13] and Opanowicz [14,15] found
that the kinetic order is usually non constant during a thermally stimulated
process and should not be used for characterisation of TL. Lewandowski
and McKeever [16] and Lewandowski et al. [17] suggest to use a kinetic
order function instead of the kinetic order constant.

Table 1. Results of fitting thermoluminescence data calculated from eq.
(1) to GOK model for various retrapping coefficients r, relative
concentration of deep traps w and relative initial filling ratio n,. Other

parameters used for the calculations: E=0.9 eV, v=10"" s, N=10"® cm?®
and B=10"" cm®%s. Fitted parameters are: the kinetic order b and the
relative deviation of Eg from E.

Input parameters Fitted parameters

r [0) Ul b € [%]

0 0 1.0 1.000 0.0

0 0 0.1 1.000 0.0

0 0 102 1.005 +0.3

0 0 10* 1.345 +7.7

0 1.0 1.0 1.000 0.0

0 1.0 10* 1.000 0.0

1 0 1.0 2.000 0.0

1 0 10* 2.035 +0.4

1 1.0 1.0 1.161 9.1
1.0 10" 1.000 0.0

10* 0 1.0 1.423 -115.3

10* 0 0.1 2.028 -1.4

10* 1.0 1.0 0.858 -128.8

10* 1.0 0.1 1.034 -3.8
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To check numerically the validity of GOK model, we constructed four
parameter curve-fitting algorithm (the program GENOR) based on the
Powell method. The program was applied to the analysis of TL data
generated numerically by solving the basic set of differential equations
(1). Some typical results are shown in Table 1. The data were calculated
for a variety of trap parameters including retrapping coefficients r=A/B,
relative concentration of deep traps w=M/N and the relative initial filling

ratio n,. Fitted parameters reported in the table are: the kinetic order b

and the relative deviation of the fitted activation energy defined as follows:
¢=(Ew-E)/Es. Looking at the results one can see that the dependence of ¢
on trap parameters is rather complex. For most typical parameters the
GOK model yields correct values of the activation energy. However, for
some of them, it is not applicable. This is true especially in the region of
high retrapping coefficients and full initial filling of traps. In this region the
error of calculating E could be higher than 100%. Decreasing the initial
population of traps one gets TL curves that are reasonably described by
GOK. Quite different situation occurs for the case of low retrapping
coefficients r<<1 and low concentration of deep traps w<<1. In such a
case, correct values of E are obtained for rather high initial population of
traps. For very low populations mny<<1 the GOK model becomes
inaccurate. It should be noted that the highest discrepancies are achieved
usually for kinetic orders that are not equal to 1 or 2 (these are classical
monomolecular and bimolecular kinetics). In these cases also the sum of
squares of deviations was very high. It means that for kinetic orders other
than 1 or 2 the GOK model does not describe properly the shape of TL
curves. Therefore for such types of TL spectra another theoretical models
should be used.
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QUASI-EQUILIBRIUM APPROXIMATION
It was found [18] that an approximation of the simple model (1) may be
written in the form:

—E 1 1
kT(1) L @]+ '"{M+uw “U(n [U,, BTN Ll]}+]n(Lz)- ()

where L(t) and U(t) are proportional to the measured TL intensity and the

area under TL curve, respectively. The definitions are:

L (#) = —m(2), t5)
Ut EJ;L(t')dt’ = my - m(t), ©)
U, is proportional to the total area under TL curve. L; and L, are
constants:
B-A
Bl rr—— (10)

AN + BM

AN + BM
Ly o e (11)

vB

It was found that this approximation is very accurate with an error less
then 0.1% for the whole visible TL peak and for majority of trap
parameters. Equation (7), in the special case M=0, is consistent with the
solution obtained by Maxia et al. [19] and Aramu and Maxia [20]. The
application of this equation to the analysis of a single glow peak requires
numerical calculation of constants M and L, in the sense that the plot of
the right-hand side of eq. (7) would give a straight line. In the case when
the parameter M is known from other measurement (e.g. from
simultaneous TL/TSC measurements [21] using eq. (5)) the fit is simple.

In some cases the generalised initial rise equation can be simplified. The

first case is M>>U,=n,. It can be proved that in this case

lL,| < [U . —U (t)]—I also holds. This way eq. (7) simplifies to:
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1 - v ~(1-a)
@(t)z(. a)r, O (18v,e) . (12)
(04
where
AN + BM
e (13)

vBM
The Tesult means that the plot ln{L (t)/[U .U (t)]} vs. (1/T) should give

a straight line with the slope of (-E/k). The second case is M«n, and A=B.
Eg. (7)-now reduces to

-E
5 In[L(1)]-210[U, -U ()] + In(L,). (14)

In this case, linearizing a TL spectrum requires plotting the dependence

ln{L o/[u. —U(t)]z} vs. 1/T.

KINETICS OF TL IN SPATIALLY CORRELATED SYSTEMS

Unquestionably, the basic models for the non-equilibrium luminescence
kinetics — i.e. the simple model and the model of localised transitions —
though mathematically quite complex, do not cover the variety of all
physically admissible cases. Looking at Figs. 2 and 4 one can see that
spatial distribution of traps is considered only in two limiting cases. To
study the influence of spatial correlation on trapping and recombination
kinetics one could not formulate the problem in terms of differential
equations. It can be solved by application of Monte Carlo simulation.
Details of the algorithm were presented in some previous papers [4,5,22].
Below, we present only the most important points. Energy band diagram
used in the simulation is presented in Fig. 1. The model consists of a set
of discrete 'active’ trap levels characterised by activation energies E; and
frequency factors v;. For the sake of simplicity it is assumed that only one

type of charge carriers — j.e. electrons may be released from traps.
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Furthermore, we assume that traps and recombination centres are
correlated in space — i.e. they are assembled into groups. The energy
diagram (Fig. 1) relates to each group of traps and RC separately. The
probabilities of each allowed transition, i.e. detrapping of a carrier to the
conduction band D;, trapping T; from the conduction band to a given trap,
and recombination Rs of a carrier from the conduction band directly to

recombination centre are given by the following equations:

D =v (” E) (15)
.=V, ex

! 1 p kT

Ti =A1(N/_”i)’ (16)
R, = Bm,. (17)

Moreover, the charge conservation law (1c) holds. In each step of Monte
Carlo calculations the times of all allowed transitions t; were calculated.
Each time only one transition was executed, characterised by the lowest
value of t. To decrease statistical fluctuations, the calculations were
repeated many times with the same initial conditions. To calculate TL
spectra with trap levels that are initially not fulfilled with carriers, first one
has to calculate distribution of charge carriers in the system. The process
of filling the traps can be easily simulated using Monte Carlo technique.
The results of the preliminary Monte Carlo simulations are the input data
for the main simulation program. In the all presented cases TSC was
calculated assuming that the probability of transition of a carrier between
groups is considerably smaller than recombination and trapping
probabilities. Typical results of calculation are presented in Fig. 6. Curves
a and f correspond to classical cases: localised transitions and the simple
model, respectively. Several curves (b, ¢, d, e) have unusual shape that

cannot be described in terms of standard models.
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Figure 6. The dependence of the shape of TL spectra on the number of
carriers in a single cluster of traps. The curves were calculated for r=100,
=0 and different population of traps in a single separate group: a) ne=1,
b) ne=2, ¢) =3, d) ny=5, €) ne=10, f) Ne=100.

To describe the discrepancy of TL quantitatively, we calculated the
deviation of TL kinetics from standard theoretical models. The deviation is
defined as follows:
-1

g = ﬁj,(r) - J(T)|dT (18)

}’J(T)dT

where J(T) is the TL intensity as predicted by a standard model and
J(T7) is the TL intensity calculated for a given spatial configuration of traps.
In Fig. 7 the effective deviation ¢ is plotted in the form of a contour map.
These figures show the dependence of ¢ on the recombination coefficient
r and the initial number of ‘active’ charge carriers in a single separate

group of traps. The effective deviation is defined as e=min(eq, £2), where
1,62 denote relative deviations, defined by eq. (18) for the localised

transitions model and the simple model respectively. Two first diagrams

were plotted for w=0 and w=1 respectively. It is shown that the regions of
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huge divergence (>20%) are greater for low w. The areas start from r=0.2
and r=8 for v=0 and w=1 respectively. The regions with ¢<1% are well
described by standard kinetic models. In regions where 1%<&<5% the
models are acceptable. In regions of ¢>20% one can observe some

peculiarities of TL and TSC curves.

2 2 i
117 7 7 bl e !
55 & x & &2 Y
\ s, ﬁ*"’/{ b=
1%
RN Y ) J e 2 £ 2
o 0% F 3 g8 & = o 0 "’ o
: X | =
2 1 N S Y =0 2 - w=1
=3 AP Ny=1 e =1
g 2 e}\/ ) g -2
—A S
the localized the simple model the lacalized the simple model
4 transitions model 4 {ransitions model
0 1 2 3 4 5 € 0 1 2 3 4 5
group population log,,n, group population log,,n,

Figure 7. The dependence of the deviation of TL kinetics from standard
theoretical models on the number of carriers ng in a single separate

group of traps and the retrapping coefficient r. The deviation was
calculated as e=min(eq,e0), where eq,e0 denote relative deviations,

defined by eq. (18), from the localized transitions model and the simple
model respectively. The calculations were performed for w=0, mg=1

(diagram 1); w=1, np=1 (diagram 2).

It appears that the curves, calculated for monoenergetic trap level, have a
complex structure. Moreover, applying typical curve fitting techniques,
one can easily deconvolute the whole curve for individual first order peaks
(5). The number of peaks equals to the number of carriers in a single
separate group of traps. Typical examples for ng=3 are shown in Fig. 8.
Further calculations show that for low initial filling doses the discrepancy
between the two standard kinetic models increases. Nevertheless, it is

interesting to note that many of these peaks are of first order. Applying
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eq. (5) for determination of the activation energy we get reasonable

values for TSC in the range Osn()s102. This range is lower for TL (see
Table 2).
Table 2. Results of peak fitting analysis applied to TL and TSC curves.

The true value of activation energy used for the simulation is E=0.9 eV.
Other parameters: r=1, ®=0 and ng=0.01.

ng = 1 10 100 1000

E (eV)-TL 0.903 0.879 0.721 0.587

E (eV) - TSC 0.903 0.897 0.843 0.616
14— 14
12 12
510 210

5 s,

z e £
% 6 é ¥
2 2
0

400 440 480 520 560 600 640

400 440 480 520 560 600 640
: Temperature T[K]
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Figure 8. Results of glow curve deconvolution performed for a single
'spatially correlated' TL and TSC peak calculated for E=0.9 eV, ©=0, ny=3
and r=1000. The spectrum can be perfectly deconvoluted for three first-
order peaks with fitted activation energies E;=0.89 eV, E,=0.91 eV and
E3=0.93 eV in the TL case and E;=0.90 eV, E,=0.92 eV and E3=0.90 eV
for TSC.



48 Vth ISPCS '99

THE SIMPLE
TRAP MODEL
first/second

order kinetics

SPATIALLY

quasi-equilibrium
approximation

SYSTEM S

§ LOCALISED
(M TRANSITIONS [}

Figure 9. lllustration of improved theoretical description and analysis of TL
data.

CONCLUSIONS

Unusual shape of TL and TSC for small trap clusters and high
recombination rate could not be described in terms of standard kinetic
models. Calculations presented here clearly show the importance of the
spatial correlation effects in the analysis of charge carriers' relaxation
kinetics. The regions of high deviation from standard models are
characterised especially by high values of the retrapping coefficient r and
low concentrations of deep traps w. As the spatially correlated kinetics
model includes also localised transitions and the simple model as its
special cases, it should be considered as the basic model for theoretical
description of TL and TSC phenomena. Unfortunately, until now there is
no analytical theory describing this type of kinetics. In some special cases
when the kinetics may be described by one of the standard models, it
should not be analysed in the framework of GOK. Instead of GOK we
may use the first or second order kinetics (if applicable) or the more

general QE approximation. This is schematically presented in Fig. 9.
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