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ABSTRACT

We discuss the influence of spatial inhomogeneities of the free electron
density on the magnetic interaction between magnetic layers of the
superlattice, mediated across nonmagnetic, metallic spacer. Using the
modified total energy approach, we prove that for TM or RE superlattices
the additional scattering of free electrons on magnetic ion multipole
moment increases the ferroquadrupolar biquadratic coupling between
magnetic layers. We show that this novel mechanism, should manifest
itself in the anisotropy of the magnetoresistivity.

INTRODUCTION

The indirect magnetic coupling between ferromagnetic (FM) layers across
a nonmagnetic (NM) metal spacer has been extensively studied both
experimentally and theoretically. An oscillatory dependence of the
magnetic coupling strength on the thickness of the spacer layer has been
observed in a large number of systems (metallic magnetic superlattices)
[1,2,3,4]. According to the theory of RKKY-like coupling [5], the problem
of magnetic interlayer exchange coupling includes two aspects: firstly, the
interaction between ferromagnetic layer and conduction electrons of
nonmagnetic metal layers; secondly, the way of the spin polarization
propagating through the nonmagnetic metal spacer.

Fabrication of strained layers offers a high potential for the design of new
multiple quantum wells. Apart from the critical thickness, the stress is
relaxed by e.g. misfit dislocations. This in turn generates lateral strain
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modulation and interface undulations observed in many heterostructures
(see [6,7] and references therein). In this paper we will focus our
consideration on the case of magnetic, metallic superlattices (MSL) and
we will study the effect of lateral inhomogeneities on the magnetic
coupling between magnetic layers across metallic, nonmagnetic spacer.
In metallic systems, magnetic interactions are propagated by itinerant
electrons and thus can be transmitted over relatively long distances. As a
result of this, magnetic layers become coupled through nonmagnetic
metallic layers. Most theoretical studies of the interlayer coupling in the
MSL system limits to the exchange interaction being bilinear in spin or in-
layer magnetization. However, in some MSL system biquadratic [8,9] or
generally quadrupolar interactions [10] need to be considered. Almost all
theoretical studies of the problem are based on restrictive assumption on
the system: the layers are supposed to be coherent, i.e. it is assumed that
the in-plane translational symmetry is not broken. This is true for those
heteroepitaxial MSL for which the elemental consituents exhibit negligible
ionic radii mismatch. When the ionic radii differ by a few percent, in the
interface region arises additional tensile or compressive strains relaxed
through misfit dislocations. The indirect magnetic coupling between
neighbouring magnetic layer across the nonmagnetic spacer layer
depends on the density of itinerant electrons which in the case of
interface undulations (generated due to nonuniform lateral strains) also
becomes non-uniform [11]. The aim of the paper is to study the effect of
lateral strain undulations on the biquadratic interlayer exchange that
arises from direct ionic-quadrupole and free electron spin scattering [10].
The effect of nonuniform interface undulation on the free electron
density, in the case of sinusoidal modulation of the misfit stress has been
calculated in [11]. The in-plane variation of lattice distortion arising
because of this stress is the source of additional (compared to state of

nondistorted lattice) potential experienced by the free electrons. The
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resulting density of free electron states within the spacer layer is given by
the equation [11,12]:

. &
p(r) = py-[1- p-cos(Q-r)] (1)
where p, — uniform free electron density,

p — amplitude of modulation,

Q — wave-vector of the planar superstructure.

This lateral density modulation, superposed with the charge
density variation associated with the layered structure, results in multi-Q

modulation of the free electron density of the form:

p=py[1+ Y n, €] @)

q0

In the theoretical description of the interlayer coupling, two
alternative approaches can be applied. We can use either the modified
RKKY approach [5] or the total energy calculation method [14,15]. The
latter, based on the picture of free electrons confined within quantum well
is the most general and transparent. However, till now all the calculations
of intelayer coupling assumed the uniform free electron density. In the
following, within total energy approach, we will derive the formula for
strength of interlayer coupling with non-uniform free electron density
taken in to account. We will assume that misfit strain is the main source of
inhomogeneity and we will focus our considerations on the biquadratic
interaction. Usually in the description of magnetic superlattices it is
assumed that:

i) the in-layer translational symmetry is not broken,

ii) the electronic configurations of the magnetic ions are stable.

Experimental data show that in many superlattices either one or
both assumptions are not fulfilled.

Since the free electron density within the spacer layer is given by
the charge-density wave solution, it is evident that itinerant electron wave-
function are no longer given by the free-electron planewaves but by the
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CDW eigenfunctions [12]. In the simplest case of single-Q modulated
conduction electron density, the pure single-Q CDW state is given by the
following equation [12,13]:

I'y

@k(Qr,;)ze' "

where « is the amplitude of oscillation.

(P Ivr (I Ivr
+ a+el.(k+Q)r + a_et(k Q)r (3)

Determination of the eigenfunctions of mobile electrons (2) (within
the spacer layer) let us calculate the modification of the interlayer
coupling generated due to the interface undulations. We will apply the
modified quantum well electron confinement approach of Bruno [14].
Application of this method to the conventional RKKY problem of magnetic
impurities in a host metal, when the coupling of the ionic spin §, with the

itinerant electron spin o is usually taken as the contact interaction
H, =-2JS,-06(r) (@)

leads to bilinear in layer magnetizations, RKKY-reminiscent interlayer
coupling. There are minor modifications of the coupling constants, arising
from the asphericity of the Fermi surface. However, if we consider the
case of quadrupolar coupling generated by the contact electron spin-ionic
quadrupole scattering [10,18,19]
v, =k%k‘k2*”_ {(5E & )(§ * -)- %S(s + 1" k- ¢t c...
the effect of interface strain becomes more important. In equation (5) k*,
o', k7, o~ denote the spin and wave-vector of the impact and the
scattered electron, respectively. D is a constant that determines the
strength of the scattering potential.

Using the scattering potential (5), within perturbative approach, we
have shown, that the interaction between quadrupole moments of

magnetic ions (Q, and Q,) is given by the following equation [10,20]:
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H(Rij).:_fo'Q:'A)fﬁqRi_Rj|), (6)

afyd

where the Qf denotes the respective components of ionic quadrupole

moment:
1
QL =Sy -7 - 355+ 15, (7)

Similarly to the case of bilinear spin-spin exchange, the interaction (5)
favours the ferromagnetic (ferroquadrupolar) coupling [10]. However, the
perturbative method suffers many shortcomings [20], first of all it gives
interaction between individual ionic moments, while in the MSL we are
interested in the entire coupling of adjacent magnetic layers. The latter
coupling, however, can be determined within the quantum well
confinement method [15].

The model system consists of a metallic spacer layer
(paramagnetic), sandwiched between two potential perturbations of
height V* and V*, generated by magnetic layers adjacent to the spacer.
The effective coupling between magnetic sheets across the spacer is
associated with the multiple internal reflections of free electrons at the
interfaces. The resulting “quantum interference” produces interlayer
coupling that oscillates with a period directly related to the geometry of
the system. As it was shown by Bruno [15], the energy change due to the
quantum interferences within spacer is given by the following equation:

Z
AE = —fln|1—rArB gt
T

1 P ,.
de ~Ffd2k|:£rArB -e?™l . de ()

where r, and r, are the reflection amplitudes at both interfaces, L is the
spacer thickness L = (N +1)d, with d being the thickness of one atomic

plane in the spacer, while k, denotes the perpendicular to interface

component of the impact electron wave-vector. We must note, however,
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that contrary to the approach presented in [15,20] to the problem under
consideration, the scattered electrons are described by the wavefunctions
(8). This means that the impact and scattered electrons states are

described by the wave-vectors k" =x* and k" =x"+Q or k™ =

and k~ =x~ +Q respectively, where K denotes the electron quasi-
momentum, while Q is the superstructure modulation wave-vector.

Let us assume that the magnetizations of the ferromagnetic layers
are at angle 0 with respect to each other and determine the coupling
energy AE (8) as the function of the 6 angle. In the zeroth
approximation, the reflection amplitude at the interface F, is given by the
following equation[14]:
ra = Al KD (ko) = Ak o) (ko 4 v,k

where

7} = Ak (ke

> =rl+r’ (9

€)= Ade) (e

k) (10)

defines the contribution from isotropic potential as well as from exchange

contact interaction given by (4). ri is the reflection amplitude due to the

electron-quadrupole scattering (5). Let us focus our attention on this term.

In the equation (10) we should consider that wave-vectors of the incident
i+ and reflected k- electron fulfill the relation k ;= —12;. To take into

account the effect of magnetization canting one must note that the
scattering due to the quadrupolar potential (5) does not depend on the
spin of impact electron. This means that the electron reflection amplitudes

are equal, i.e. »*' == Thus we must modify the approach of Bruno [15],

Al
who exploits the spin dependence of the reflection amplitudes. To simplify

our further considerations, we will replace the spin operators §, in the Eq.

(5) by their average, i.e. the layer magnetization M. Provided that the
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parallel to interface component of the impact electron wave-vector forms
angle ¢ with the in-plane magnetization of the F 4 -th layer, in view of

Eq. (5), we can write the reflection amplitudes as:

r,§’c(db)m<li'Vq’:12*>=C3[C1 cosz¢+C2A] (11)

Similarly, considering the fact that magnetization of the second
layer is parallel to the layer and forms angle 6 with magnetization of the

F -th layer, we can write

i (0=0)~ (k"2 k) = CC cos’ (9 0) + C2(O)] 12
where
C, = M*k}(1+2a?), (13)

C} =2a’Q%cos® 5 - %S(S + 1)[(1+ 207k} - k) + 2a2Q2:, (14a)

C! = 2020 cos* (6 +6) —%S(S & 1)[(1+ 2a? ki -k*)+2a°Q*|, (14b)

3 h4

-1
2l 1 2
T\ e -20e) -2t k) oo

Integration over kl in Eq. (5) performed in polar coordinates (k“,gb) gives

us

}'dd) (D) (¢,6) ~ ?c;[c1 cos” ¢+ C [C,cos’(p+0)+ 7] (16)

Having the result (15), we can find that the energy change
AE given by formula (8) depends on the 6 as in the following equation:
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AE(8) = AE(cos’ 0) =~ AE® + J 2 cos® 6 + J P cos@sinf+... , (17)

where

J£ = [dk [deC] E Ct +(C, + ¢} pa*Q*(2c0s* 5 - 1)] (18)

JM = n?.nfdk"fdt:Cf(C] +CJ )20(2Q2 cosd sind (19)

The coefficient J2, is the isotropic, biquadratic exchange integral,
while second coefficient J)” is the quartic Dzialoshynski-Moriya

interaction [21,22,26]. The ratio JZ2/J?™ ~a® this means that the

isotropic term dominates the DM interaction. Existence of such
interactions was suggested by Rihriga et al. [23]. In the paper by Xia et
al. [24] it was shown that bilinear Dzialoshynski-Moriya interaction can
arise even in the absence of superlattice strains.

In view of the result (17), we can claim that we have proved within
the total energy calculation method that the scattering potential (5) is the
source of biquadratic exchange between magnetic layers. The interface
undulations are a source of additional contribution to the biquadratic

exchange integral J, .

In summary, we have considered modifications if the interlayer
coupling in the MSL systems arising from the lateral strains generated at
the interfaces. Contrary to the other works considering the biquadratic
coupling [25] we start from direct contact potential (5) and then apply the
modified quantum confinement approach [20] to the multiple quantum
well system [14]. The approach presented above gives a precise,
quantitative relationship between the strength of the quadrupolar

scattering potential and the biquadratic exchange integral J, . In view of

the general properties of the quantum interferences due to the electron
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confinement within spacer, the effective biquadratic exchange integral
oscillates with the spacer thickness [15]. In the above considerations, we
have assumed that the interface lattice undulations are described by the
wave-vector Q, which is parallel to the layers. However, in some MSL
spacer undulations in the MSL, growth directions are observed [7]. Within
the approach presented above this would mean that there should appear
a second period of the magnetic oscillations being commensurate with
the lattice undulation period.

Appendix

Electron spectrum within nonmagnetic interlayer in the case of
lateral undulation can be determined as follows. The Hamiltonian of
mobile electrons within the space can be written as [17,11]:

n _, I r
H(r)=—2—V +V, +Gcos(Q-r) (20)
m

provided that the wave-function of the mobile electrons within the
interlayer is given by the Eq. (17) we can easily determine the spectrum
of electrons as

£ (Q) = <q)CDW (é’;)IH(")kD cOw (é”l:)> =
- ;_m"<q)cnw (Qrs ’r)’VZ |q)cuw (Qr, Il:)> +
+<®C“W (Qr’ ’I:)|V0|(DCDW (é, ’I:)> & (21)

{8 & s o 85

= %(;2 +2(1f2 +Qr2)|a|2)+VO(1+2|a}2)+Ga

2 2 12 .
where kK~ = kﬂ +k, ,anditisassumethat o, =a_=a .
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