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ABSTRACT

The formulae determining space-charge-perturbed currents (SCPCs) and
transient space-charge-limited currents (TSCLCs) in disordered solids
have been rederived. The calculations are based on the simplified
multiple-trapping (MT) model, under the assumption of strongly non-
equilibrium trapped carrier distribution. The obtained formulae concern
mainly the initial current decay and the effective transit time of the
carriers. The analytical results given here, as well as those obtained
previously, are compared with the results of Monte Carlo simulation of
SCPCs and TSCLCs for the exponential trap distribution.

INTRODUCTION

The dispersive character of excess carrier transport (see, e.g. [1]) is a
specific feature of many disordered solids. According to the multiple-
trapping (MT) model, this phenomenon is due to equilibration of charge
carriers over energetically distributed trapping states. The dispersive
transport is most commonly studied using the time-of-flight method. The
sample is sandwiched between two electrodes with a constant voltage
applied, and the carriers are generated by a light pulse. The carrier
motion in the sample induces a current transient in the measuring circuit.
The majority of experiments concerns the case of negligible field

distortion in the sample (so called small signal regime). Otherwise, two
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limiting cases can be distinguished. The carriers are either a) generated
in the sample by a short light pulse or b) continuously generated or
injected into the sample, which results in the vanishing electrical field at
the nearer electrode. The corresponding current transients are
respectively called: a) space-charge-perturbed currents (SCPCs) and b)
transient space-charge-limited currents (TSCLCs) [2].

Up to now, only some approximate analytical [3-5] and numerical [6]
solutions of MT transport equations, including space-charge effects, were
obtained. In [3-4] and [5] the expressions for dispersive SCPCs and
TSCLCs were derived under the assumption of strongly non-equilibrium
and quasi-equilibrium trapped carrier distribution, respectively. The
validity of some results seems, however, to be questionable, since they
are based on the concept of effective time-dependent carrier mobility, and
thus ignore the carrier packet dispersion. In this communication, the
formulae for dispersive SCPCs and TSCLCs are rederived in a somewhat
different way, wusing strongly non-equilibrium approach. The
corresponding formulae obtained in the framework of the quasi-
equilibrium approach are considered briefly in the Appendix. The results
given here, and those obtained in [3-5], are compared with the results of
Monte Carlo simulation of SCPCs and TSCLCs for the exponential trap
distribution.

THEORY

Transport equations

The MT carrier transport in the presence of space-charge effects is
described by the continuity equation:

dE(x,t)
a

JOE euon(x,t)E(x,t)+ KK, (1)

the Poisson’s equation:
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aEf?i,t) 2y r:co [n(x,t) + ”I(x’t)]’ i

and an equation governing the trapping/detrapping processes. The
meaning of the notations being used is: x and t. the space and time
variables; n(x,t) and n,(x,f): the free and trapped carrier densities; E(xf):
the electric field strength; j(t): the total current density; e: the elementary
charge; uo: the free carrier mobility; x: the dielectric constant; xo: the :
permittivity of free space. In the following calculations, we shall assume
that n(x,t) << ny(x,1).

The simplified MT equation in the strongly non-equilibrium approximation
reads [7,8]:

i{n’q()z(;;)] = n(x,t), (3)

ot

where the function ®(t) is defined as:
1) =~CJ " N(e)de. (4)

Here, ¢ is the energy variable, Ny(¢) is the trap density per energy unit, C,
is the carrier capture coefficient, and &(f) = kTIn(1.8wi) is the
demarcation level (with k the Boltzmann constant, T — the sample
temperature, and v, — the frequency factor). The energy &(f) is the
minimum trap depth for which the carrier release is negligible up to the
time t. One can show that Eq. (3) describes two processes: carrier
capture in the energy region ¢ > g(t) and carrier release from the traps of
depth (f). The considered approximation is adequate, if the trap density
decreases with energy sufficiently slowly.

As a model! trap distribution, leading to the dispersive carrier transport, we

chose the exponential distribution

¥

. N K:
N,(e) = k}{i’ exp[\_ /("7; ) (5)
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where Ny is the total trap density and the characteristic temperature T,
determines the decay rate of the trap density.

Current transients in initial time region

Let us consider at first the SCPC and TSCLC transients in the initial time
region, for times shorter than the effective carrier transit time ..
Integrating Eq. (1) over the sample thickness L and using Eq. (3) we get:

(1) =<5 &{ <I(>(t))]E( 1)dx. )

For the initial stage of the carrier transport Eqg. (6) can by approximated
by:

5 el df 1 },"

t)= t)E\x,t)dx. 7
10) = ol s W ml)Ex) G
This follows from the fact, that omitted term is proportional to the integral:

L O, (x,t)
J; TE(x,t)dx,
which vanishes for t << 7, in the small signal case, and is generally
expected to be negligible. Making use of Eq. (2), Eq. (7) can be rewritten

as:

. koo df 1 T, 2
VO by J[E (L,2)- E*(0,1)]. (8)
On the other hand, for t << 7, from Eq. (1) we also get:
dE\L,t
J(t) = KKO~(~dt—~—). 9)

In the case of SCPC, the relationship E(L,) - E(0,t) = ou/xK, holds for t <<
7. (0p — the surface density of injected charge), whereas in the case of
TSCLC the boundary condition has the form of E(0,f) = 0. Comparing
Egs. (8) and (9) we obtain the differential equations for E(L,t), which are
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easy to solve. Then, the current transients may be calculated from (8) or

(9).
The resulting formulae for dispersive SCPC and TSCLC are:

J(t) = joro(l- %)%{exp{ro;t)”, (10)

Cdf 1 |
= JoTo :ﬂmj (11)

respectively, where the current density j, = xxV?/L®, 1 = L%/uoV is the free

()

carrier time-of-flight, and n = oyl/kK,V is the relative efficiency of carrier

generation (0 < n=<1).

Current transients in final time region

The formula determining SCPC transient for t >> 7, was derived in [4,5].
In the final time region the carrier retrapping is negligible. Therefore, the
measured current is proportional to the emission current from traps of

depth &(f). The corresponding formula reads:

j(t) = j"%{—g‘gt—)}. (12)

The formula for final TSCLC decay in the strongly non-equilibrium case
was obtained in [3]. The total charge in the sample is then constant and
the decrease in free carrier density is due to progressive carrier
thermalization. The result is of the form:
oy Y df 1]

t)=—""—|—==|
=75 ot

In fact, the values of numerical coefficients in the above equations

(13)

depend on the spatial distribution of trapped carriers for t >> 7,. The
coefficients 1/2 and 9/8 in Egs. (12) and (13) were obtained under the

assumptions ny(x,t) ~ const, and n(x,t) « x'2, respectively.
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Effective carrier transit times

In the case of dispersive transport there is no sharp transition between
the initial and final courses of current transients (cf. next Section). For this
reason, the effective transit time 1, of the carriers cannot be defined
uniquely. In [4-5] the transit time 7, was calculated in similar manner as
for non-dispersive transport [2], using the concept of effective, time-
dependent carrier mobility. It was concluded that for SCPC the time
becomes somewhat shorter with increasing injected charge.

We think that a more proper way is to calculate 7, from the intersection
points of the extrapolated curves, representing the current transients for t
<< 1, and t >> 1, . In the case of SCPCs, comparing Egs. (10) and (12),
one gets the transcendental equation:

(1-n /Z)CXP[W /TO‘I>(T¢)]=rO2<I>2(re)/2, (14)

the solution of which is:

7,®{z,) = c(n). (15)

The function ¢(n) depends very weakly on the injection efficiency n:
c(0) = 2" ~ 1.414, ¢(0.545) ~ 1.455 (the maximum value) and c(1) ~
1.422. Therefore, the time 7, is almost independent of the injected charge.

In the case of TSCLCs, using Egs. (11) and (13), one obtains a similar
formula:

r,dl7,) =15, (16)
Since the function ®(t) monotonically decreases with time, the transit time
is slightly shorter than for SCPCs.

Exponential trap distribution
For the exponential distribution of traps (5) the formula (4) yields:

o¢) 1 (18v,e), 17)

2 22
T,
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where 7 = 1/C; N « is the mean carrier trapping time, and « = T/T, is the
dispersion parameter. Then, according to the previous formulae, the
current transients behave as follows:

() <t exp(nde®), t<<z,, (18)
J@) ot s (SCPC) (19)
and:

J) ot (1= Be*)? ) <<, (20)
J) et fssg (TSCLC) 1)

Here, A = %(1.8w) /1, and B = A/2. It is seen that the initial decay rate of
SCPC diminishes with increasing injection efficiency », whereas the final
decay rate remains unchanged. Also, the TSCLC decays in the initial time
region somewhat slower than the function t"'"?. The effective carrier

transit time fulfils the relationship:
t, < (12 /V)", (22)
both in the case of SCPC and TSCLC. The analogous formulae, with

slightly different numerical coefficients, can also be obtained in the quasi-
equilibrium approximation (see Appendix).

NUMERICAL RESULTS

In order to verify the accuracy of given formulae, we carried out numerical
calculations of SCPCs and TSCLCs for the exponential trap distribution.
The method of Monte Carlo simulation of the MT carrier transport in the
presence of space-charge effects has been described in [9]. The
calculations were performed for several values of dispersion parameter «
and, in the case of SCPCs, for two values of injection level, n = 0.1, 1.0.
The value n = 0.1 corresponds roughly to the small-signal mode whereas
n = 1.0 is the highest possible injection level. The carrier number in the
simulations ranged from 500 to 50000. In the figures, the analytical and
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numerical results are showed by solid lines and points, respectively, and
the carrier transit times are marked by the arrows. The current transients
are presented in terms of the relative current intensity /(t)//q; I(t) = j(f)S, Io
= joS, where S is the sample cross-section area.

Figure 1 shows the current transients calculated for of a« = 0.3. The
analytical results are obtained using the non-equilibrium formulae given in
previous Section. In the case of SCPCs, the influence of space charge on
the form of current transient is very unsignificant, due to large dispersion
of the carrier packet. This can be seen in Figure 2, which presents the
time evolution of the trapped carrier density, as well as of the
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Figure 1. SCPC and TSCLC transients calculated for exponential trap

distribution with a = 0.3. /1 = 5:10%, vo1p = 1.0.
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Figure 2. Time evolution of the trapped carrier density and the electric
field in the case of SCPC. n = 1.0, other parameters are the same as in
Flg 1.ng= O'o/el., Eo=VIL.

resulting field in the sample. Figure 3 presents the time dependence of
the total charge Q(f) in the sample. The formulae for Q(f) may be easily
derived from the equations given in Section 2. It should be noted that the
normalized plots of Q(t) vs t for SCPCs, corresponding to n = 0.1 and n =
1.0, almost superimpose. This proves that the transit time 7, is
independent of the carrier injection level. Figure 4 shows the SCPCs and
TSCLCs obtained for higher value of dispersion parameter, a = 0.7. The
analytical results correspond to quasi-equilibrium approximation (see
Appendix). Here, the influence of injected charge on the form of SCPC
curves is more distinct than for a = 0.3 (Fig. 1). Finally, Figure 5 shows

the current transients for intermediate value of ¢,
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Figure 3. Time dependence of the total charge Q(f) in the sample; Q, =
Q(0). The calculation parameters are the same as in Fig. 1.
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Figure 4. SCPC and TSCLC transients obtained for exponential trap
distribution with a = 0.7. w/w = 2:10°, w1 = 1.0. a = 0.5. In this case, the
analytical curves computed from the both non-equilibrium and quasi-

equilibrium formulae coincide.
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Basing on the results given in Figures 1, 4 and 5, one can conclude that
the non-equilibrium approximation vyields good results for a < 0.3,
whereas the quasi-equilibrium one — for a = 0.7. For the intermediate

values of a none of these approaches is satisfactory enough.
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Figure 5. SCPC and TSCLC transients calculated for exponential trap
distribution with a = 0.5. 5/ = 3-10™, v1 = 1.0.

CONCLUSIONS

In this paper we have given several new formulae, concerning dispersive
SCPCs and TSCLCs. We have also compared the analytical results with
the numerical ones for the exponential trap distribution. In general, a
satisfactory agreement is obtained, except for the intermediate case,
when the dispersion parameter o = 0.5.

The main aim of the experimental studies on dispersive carrier transport
is to determine the energy distribution of trapping states in disordered
materials. The formulae given here seem to be suitable for this purpose.
In particular, the final decay of SCPC is described, according to Egs. (12)
and (4) by the simple formula j(f) o« N[ (t)}/t, indpendently of the amount
of injected charge.
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APPENDIX

The quasi-equilibrium approach is based on the assumption that the
majority of captured carriers occupies relatively shallow traps of depth ¢ <
&(t), being in thermal equilibrium with free carriers. The approximation is
justified, if the trap density falls-off sufficiently quickly with increasing
energy ¢. The corresponding kinetic equation is [10]:

n,(x,t)sn(x,t)/@(t), (A1)
where:
0" ()= L N (e)r, (e)de. (A2)

Considering the initial time region, t << 7, and performing similar

calculations as in Section 2, one gets the formula:

, KK, 1,0(1)
T T

which is analogous to Eq. (8). Therefore, the expressions determining

[E2(L,t)- E*(0,1)], (A3)

quasi-equlibrium current transients for t << 7, may be obtained from those
given in Section 2 by the substitutions:

%{ﬁ} —ol), o= [ele)r

One can prove that above rule holds also in the case of Eqgs. (13) and
(16), which describe the ultimate current decay and the effective transit
time for TSCLCs. The resulting formulae are essentially identical with
those derived in [5], except for the formula defining ©(f).

As the SCPCs are concerned, the final current decay is always given by
Eq. (12), since the carrier retrapping is then negligible. The calculation of
the effective transit time encounters some difficulties. We claim that the
transit time should not depend on the amount of injected charge. Then
the formula obtained for the small signal mode [10] should be valid:

jo' ‘Ot)dt = 27", (A4)
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For the exponential trap distribution (5) the function:

)—(I—a)

18v,t

@(,);m( 25)
(04

The resulting expressions for the current transients and the effective
carrier transit times have form analogous to Egs. (18) and (20-22), except

for the values of some numerical coefficients.
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