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ABSTRACT

A qualitatively different mechanism of magnetic oscillations within non-square quantum
wells has been found compared to the conventional magnetic superlattices which are
formed of quantum wells with rectangular potential profiles. In our contribution we will
present theory of interlayer coupling in the case of parabolic quantum-well system.
Contrary to the conventional models based on perturbative or total energy approaches we
exploit the similarities of the quasi-2D electron gas oscillations within parabolic quantum
well to the de Haas-van Alphen effect. We derive formula for the interlayer coupling
parameters as the function of potential barrier heights and the nonmagnetic layer
thickness. Applications of the results obtained to the description of real systems will be
widely discussed.

INTRODUCTION

The semimagnetic semiconductors form a model magnetic system with metallic
electrical properties. In view of fundamental and technological aspects the
problem of nonuniform doping is becoming very important. Modern MBE
techniques allow fabrication of semiconductor structures with highly controlled
variable chemical composition and thickness of layers. Non-rectangular quantum
wells involving substantially nonhomogenous parts, rather than having the
conventional rectangular profiles, have been studied both experimentally and
theoretically in the past few years and found to exhibit attractive performances
(see [1,2], and references therein). The most promising appear the parabolic
quantum well (PQW) systems, which have the ability to absorb light only at the
bare harmonic-oscillator frequency irrespective of the electron-electron
interaction or the number of electrons in the well. From this reason the magnetic
PQW systems are interesting as a building blocks spintronic devices. Potentially
the most promising are the PQW magnetic superlattices, which consist of
alternating magnetic layers and PQW systems. The aim of the paper is to give
analytical description of magnetic properties of a PQW superlattice.

High concentration of the free charge carriers causes the indirect spin-spin
exchange interaction to be responsible for their magnetic properties [3].
Conventional calculation of the indirect exchange integrals assumes uniform
density of the free charge carriers, that mediate the RKKY interaction. However,
in the case of PQW structure the confinement of the mobile electrons within
resulting quantum well makes this assumption doesn't hold anymore. That's why
there is only limited progress in description of magnetic interactions in then on
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square-QW superlattices [4,56,7]. Generally, the magnetic properties of
metallic-like system are determined by the density of mobile charge carriers that
mediate this interaction and their spectra. This is why the magnetism of electron
system confined within non-square quantum-well must be considered
independently. In our contribution we will present theory of the oscillatory
interlayer coupling in the case of PQW system. Contrary to the conventional
models based on perturbative or total energy approaches we exploit the
similarities of the quasi-2DEG oscillations within PQW to the de Haas-van
Alphen effect [8,9]. We prove that the effective spin polarization of the
electrons/holes that are confined within PQW shows oscillatory behaviour as the
function of the PQW (spacer layer) layer thickness.

THE PARABOLIC QUANTUM WELL SYSTEM

Semimagnetic semiconductors are II-VI, IV-VI or IlI-VI compounds, in which a
fraction of nonmagnetic cations (up to the solubility limit) has been substituted by
TM andlor RE metal ions [10]. Due to the doping the semimagnetic
semiconductors form a model diluted magnetic system with metallic electrical
properties. Indirect magnetic interaction in these systems is not different in
principle from that in more familiar metallic ferromagnets, yet the size of the
effect differs by at least an order of magnitude. Nevertheless, provided that the

concentration of the free carriers p exceeds critical p > p, ~ 3-10% cm™ the

indirect interaction (RKKY) in a semimagnetic semiconductor system dominates
the other mechanisms of magnetic interionic coupling [11]. Usually, it is
assumed that magnetic dopants are distributed at random, however, the MBE
structures with non-random distribution can be easily obtained [12]. The special
case of non-random distribution are the semiconducting magnetic superlattices
[13,14]. In these systems the mobile charge carriers are confined within
quantum-wells, thus the potential barriers impose constraints onto their motion.
As a result of this the (uniform) free electron density and/or energy spectrum are
perturbed. Let us consider the energy spectrum in the PQW structure formed of
semimagnetic semiconductors. Assuming that the "z" denotes the direction of
the planar PQW, the Hamiltonian that describes the electronic structure within
the envelope function formalism and effective mass approximation, reads [1].

H,=-

a

2 K s
L2 “+E,. (1)
2m 2

a

Here, a represents the band index and denotes the electron or hole band, while
E_ and m, the band gap energy and the effective mass at the center of the
PQW, respectively. K, is the curvature of the parabolic potential profile, which

is assumed to be infinitely high. The electronic (hole) states within the PQW are
those of the standard harmonic oscillator. Let us focus our attention on the single
band model, then we can write the electron/hole spectrum as [1].



Magnetic interlayer coupling ... 163

n’k’ 1
& =-— +ho n+5 -4, 2

where u is the Fermi energy. Provided the external magnetic field is applied
then to eigenenspectrum (2) the term gou,; B should be added, where g is the
electron (hole) g-factor, u; is the Bohr magneton while the spin o we assume

to take values o =+1/2. As we can see from Eq. (2) the finite thickness and
broken translational symmetry of PQW structure leads to different quantization in
the growth direction of the allowed electronic states. Perturbational calculation to
the RKKY interactions involves summation (integration) over dynamical states of
the mobile charge carriers. Therefore the free electron density plays a key role in
determination of the spatial dependence of the RKKY exchange integrals.
Perturbative calculations of the interspin interactions lead to an expression for
the RKKY exchange integral in the PQW system (for details see [7,15])

2)~ f—;’rz[Jd,z,l O (0 +J 5 (DY, ()], 3

with ¥, (x) being the Neumann function [7] and d = 4 is the effective spectral
dimension of the PQW system. It is worthwhile to mention here that in general in
the case quasi-2D electron gas systems the effective spectral dimension can
take any value from the 1< d < 4 range [16]. Expression (3) is valid only when
the interacting spins are displaced in the lateral direction. However, from both
basic as well as applicational point of view the interaction across the PQW layer
is more interesting. To gain information about it we should apply other approach
[17,18].

OSCILLATIONS OF THERMODYNAMICAL POTENTIAL WITHIN PQW

From Eg. (2) we can see that mobile electrons/hole energy eigenstate can be
labeled by (k k a)D) where k € R? labels kinetic energy associated with the

Xy
motion in the lateral direction while @, labels energy states generated by the in-
layer confinement. Characteristic feature of all systems that exhibit this type of
spectrum are the electron density oscillations when an oscillator level crosses
the Fermi energy. In conventional dHvA effect the oscillator energy shift is
generated by the variable external magnetic field which determines the . In
our system this role is played by the PQW width D. Thus, before we will proceed
further we should relate the value of eigenfrequency @ to the material constants
of the heterocomponents A and B that form the PQW. The quantum wells with
parabolic potential profile are fabricated via continuous A4 B, , variation of

heterocomponents along the "z" direction. Suppose that the conduction band
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edges of the heterocomponents are given by 4 =V, and B — ¥, then the
height of the PQW potential barrier can be expressed as AV =V, —V. Having
that we can determine the constant K in Eq. (1) from the condition
KD:/S = AV, where D is the PQW thickness. Consequently we can calculate
the eigenfrequency @’ = SAV/(m'Dz)A In principle expression (2) resembles
the eigenspectrum of free electrons being subject to the external magnetic field

2 2 n W2 2 w2 )2 y ; :
B= (Zm’c“AV) /(e‘m D“) . The only difference that in the formulation of
the de Haas van Alfven effect the k£ € R', while in our case k = (k k )e R’

227
From the formal point of view one can expect this kind of spectrum when de
Haas van Alfven effect in the 4D electron system is considered. In description of
magnetic properties we will follow this way and will exploit the dHVA approach to
the 4D system. Assuming the canonical ensemble we can write the

thermodynamical potential £ as [8,9]:

Q= —kTI N(e) ln{l + exp[’u — gﬂdg 4)

kT
where [8]

N(e,D)=Y pwd(s-¢,) (5)

n=0

At T = 0 the potential €2 can be estimated with help of the Maclaurin-Euler
formula [19]. The contribution to the electrons that have momenta within the &

and k +dk (k = |k|) reads

& = kae P1C. {(X—n—ljn—(X—n—l]+l}. ®)
D? 2 2)76

m

where (n+1/2)SXS(n+3/2) and X:A/(Zmn)(m'/AV)‘/zD, if X is
outside this region then in formula (6) n should be changed by one ie.,
n—n+1 [19]. This means that the thermodynamical potential shows regular
oscillations as the function of PQW layer thickness D. These oscillations
resembles the well-known dHvA effect. Such behaviour can be easily

understood, the PQW thickness determines the @, . In different PQW systems
there are different positions of the highest @, level with respect to the Fermi

energy. When one of the oscillatory levels crosses the Fermi energy oscillations
of the electron density occur and thermodynamical potential & occur.
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In case of arbitrary temperature T the potential {2 (4) can be estimated with the
help of the Poisson formula and takes the form [8,9]

Q=Q,+Q, @

where the Q, is the classical part of the potential 2 which does not oscillate as

the function of D [8]. Contrary to Q2 the ﬁ term behaves as [8,9]

Q=0,(0)+23 3 47 coslif,D + ¢ ®

kor=l

The second term produces spatial oscillations of the free energy and is
responsible for the counterpart of the dHVA effect in our system. The free energy
of the system defined as

ﬁ:é_i[a_gj (9)
2p\ Ou

also shows periodical oscillation as an function of D. Consequently if we account
for the external magnetic field H the effective magnetization within the layer can

be estimated as M = —(aF/aH)T shows oscillatory behaviour as the function
of the PQW thickness. The density oscillations can be attributed to changes of
the electron density at the Fermi level when one of the hw(n+1/2) levels

crosses the Fermi energy. The oscillatory behaviour can be attributed to the
change of electron population at Fermi energy

SUMMARY

In summary, we have shown that the eigenfunctions and eigenspectra of the
electrons confined within the PQW and of free electrons under action of an
external magnetic field (the dHVA effect) are identical. Using the mathematical
apparatus elaborated for description of the dHVA effects we have found the
thermodynamical potential of the mobile charge carrier (electron or hole) of the
PQW system. Further, we have proved that the free energy of the system (and
as result of that other characteristics) show oscillatory behaviour as the PQW
thickness D is changed. Although the oscillation of the PQW in-layer spin
polarization resemble oscillatory behaviour of the conventional magnetic
superlattices formed of quantum wells that have rectangular profiles, its origin is
completely different. In rectangular superlattices the oscillations arise form
constructive interferences within the QW while in our system the oscillatory
behaviour is generated by variation of electron density at Fermi level.
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