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ON MONOTONICITY OF REAL FUNCTIONS

JACEK MAREK JĘDRZEJEWSKI

Abstract

Monotonicity of functions were of great interest of many mathematicians. Starting

from the well known theorem of monotonicity of a differentiable function one can get quite

sophisticated results. We give a survey of results when thesis of them is continuous and

monotone function. Someone can ask why it should be continuous. Even a differentiable

functions but not at the only point of its domain with positive derivative need not be

non-decreasing. That is why we want to look for theorems for continuous functions.

Well known theorems on monotonicity

Starting his mathematical way any student knows that:

Theorem 11. If f : (a, b) −→ R fulfils the following conditions:

• f ′ exists at every point of (a, b),
• f ′(x) ≥ 0 if x ∈ (a, b),

then f is non-decreasing (and continuous).

It is not difficult to find out that:
If a continuous function f : (a, b) −→ R is non-decreasing, then it is not

necessary for f to be differentiable everywhere.
We shall try to give some week conditions for a function to be continuous

and non-decreasing.
Let us remind that a monotone function (say non-decreasing) must have

a non-negative derivative in a big set of points.

Theorem 1. If f : (a, b) −→ R is non-decreasing function, then f ′ exists
almost everywhere in (a, b) and f ′(x) ≥ 0.
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It means that condition M is fulfilled almost everywhere in the set E
if the set of points at which this condition is not fulfilled has Lebesgue
measure 0.
The converse statement is not true! There are monotone functions which

are differentiable only in the set which complement has measure 0. For
example:

Example 1.

Let K be the classical Cantor ternary set. Denote by (an, bn) all compo-
nents of the complement of the set K and define the function f as follows:

f(x) =







0 if x ∈ {an : n ∈ N} ,
1 if x ∈ {bn : n ∈ N} ,
linear and continuous in each interval [an, bn].

Let us discuss some generalizations of those theorem. There are different
ways of generalizations:

(1) f ′(x) ≥ 0 not everywhere,
(2) instead of usual derivative one can consider generalized derivative,
(3) both of them.

1. Generalizations of the first kind

First series of theorems deals with ordinary derivatives. Their general-
izations concern to the smaller set of points where the derivative exists.

Theorem 2. (G. Goldowsky – [2], 1928, L. Tonelli – [12], 1930)
If a function f : (a, b) −→ R is continuous, f ′ exists nearly everywhere in
(a, b) and f ′(x) ≥ 0 almost everywhere in (a, b), then f is non-decreasing.

The term nearly everywhere means that such property holds for the set
which complement is at most countable.
Next theorem needs the idea of absolute continuity of a function. Let

us remind this notion. We say that a function f : (a, b) −→ R is absolutely
continuous if for each positive ε there is a positive δ such that

∞
∑

k=1

|f(bk)− f(ak)| < ε

for each sequence of intervals (ak, bk) for which
∞
∑

k=1

|bk − ak| < δ.
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Theorem 3. (S. Saks – [7], 1937)
If a function f : (a, b) −→ R is absolutely continuous and f ′(x) ≥ 0 almost
everywhere, then f is non-decreasing.

When looking at the previous theorems we can observe that continuity
of a function is contained in assumptions. Z. Zahorski proved interesting
theorem for functions which were from the I class of Baire with Darboux
property. But still the thesis says that such a function must be continuous.

Theorem 4. (Z. Zahorski – [13], 1950) If a function f : (a, b) −→ R belongs
to the I class of Baire, is a Darboux function, f ′ exists nearly everywhere
in (a, b) and f ′(x) ≥ 0 almost everywhere, then f is non-decreasing (and
continuous).

It is worth to add that none of the assumptions can be omitted. Here we
give some counterexamples for it.

Example 2. Darboux property.

The function f : [−1, 1] −→ R defined in a way

f(x) =

{

1 + x if x ∈ [−1, 0),
x if x ∈ [0, 1].

has all Zahorski’s assumptions but Darboux property.

Example 3. Existence of a derivative.

The function f : [0, 1] −→ R defined in a way

f(x) =















0 if x ∈ {an : n ∈ N} ,
1 if x ∈ {bn : n ∈ N} ,

1

bn−an
· x− an

bn−an
if x ∈ (an, bn),

0 if x ∈ K \ ({an : n ∈ N} ∪ {bn : n ∈ N}) ,

where (an, bn) are all complement of the Cantor set K, has Darboux prop-
erty, belongs to the first class of Baire and f ′(x) > 0 for each x from the set
⋃

∞

n=1
(an, bn). This function is differentiable at no point of the (uncount-

able) Cantor set.

2. Generalization of the second kind

2.1. Approximate derivative. First attemptions to generalize theorems
on monotonicity were given by Tolstoff in 1939. He applied approximate de-
rivative instead of usual derivative, but he assumed a bit more than Zahorski
did, it means that Tolstoff assumed that a function should be approximately
continuous.
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Theorem 5. (G. Tolstoff – [10], 1939) If a function f : (a, b) −→ R is ap-
proximately continuous, f ′ap exists nearly everywhere in (a, b) and f ′ap(x) ≥ 0
almost everywhere in (a, b), then f is non-decreasing (and continuous).

Z. Zahorski asked then: Is the next statement true?

Zahorski’s hypothesis
If a function f : (a, b) −→ R belongs to the I class of Baire, is a Darboux
function,f ′ap exists nearly everywhere in (a, b) and f ′ap(x) ≥ 0 almost every-
where in (a, b), then f is non-decreasing.

Positive answer has been given independently by A. M. Bruckner and
T. Świątkowski in 1966. Then the proper theorem should be named Bruckner-
Świątkowski Theorem.

Theorem 6. (T. Świątkowski – [8], 1966, A. M. Bruckner – [1], 1966)
If a function f : (a, b) −→ R

(1) belongs to the I class of Baire,
(2) fulfils Darboux condition,
(3) f ′ap exists nearly everywhere in (a, b),
(4) f ′ap(x) ≥ 0 almost everywhere,

then f is non-decreasing (and continuous).

The proof of this theorem given by Świątkowski is as simple as can be.
He used only fundamental properties of Darboux functions and approximate
derivative and used no special tools of real functions theory. In spite of this
proof, Bruckner involved several properties of real functions for example:
Banach condition, VB and VBG functions, but the statement is the same.
I am not able to say which of those proofs is better or more general. Both
of them are brilliant and both of them are pretty long and complicated.
Approximate continuity can be regarded as continuity with respect to

density topology. Thus approximate derivative is also the limit of appropri-
ate quotient with respect to topology stronger than the natural one.
Thus we can come to next series of theorems.

2.2. Qualitative derivative.

Definition 1. If f : (a, b) −→ R is any function and x0 ∈ (a, b), then g
is called the qualitative limit of f at the point x0 if there exists a residual
subset E of (a, b) such that

lim
x→x0

f↿E(x) = g.

If we apply limit of this kind to differential quotient of a function, we
get the idea of qualitative derivative of this function. Using this kind of
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generalization of the usual derivative one can get the next theorem in our
series.

Theorem 7. (J. L. Leonard – [4], 1972)
If a function f : (a, b) −→ R fulfils Darboux condition, belongs to the I class
of Baire, f ′q exists nearly everywhere in (a, b) and f ′q(x) ≥ 0 almost every-
where, then f is non-decreasing (and continuous).

One can observe that this kind of a limit can be obtained as limit with
respect to some topology. This topology is not a generalization of density
topology, but it also is stronger than the natural one. This topology can be
defined in the following way:

Definition 2. A subset U of R is called qualitatively open if it can be
represented in the form

U = G△E,

where G is open in natural topology and E is of the first category.

There are several different topologies defined in a similar way. For exam-
ple: let J be a σ-ideal of subsets of R. If a set U is regarded as open set
in the topology generated by J if it is a symmetrical difference of open set
in natural topology and a set from the ideal J , then we obtain a topology
in R.
Applying this topology to the idea of a limit of a function and to the

differential quotient one can get quite a big class of theorems like the last
one.
Generalizations of this idea will be find in further part of article.

3. Generalizations of the third kind

3.1. Preponderant derivative.

Definition 3. A number g is called a preponderant limit of a function
f : (a, b) −→ R at a point x0 if there exists a measurable set E such that

lim inf
h→0−

µ (E ∩ (x0 − h, x0))

h
>

1

2

lim inf
h→0+

µ (E ∩ (x0, x0 + h))

h
>

1

2
and

lim
x→x0

f↿E(x) = g.

Theorem 8. (J. Jędrzejewski – master’s thesis, 1969)
If a function f : (a, b) −→ R is from the I class of Baire, fulfils Darboux
condition, f ′pr exists nearly everywhere in (a, b) and f ′pr(x) ≥ 0 almost ev-
erywhere in (a, b), then f is non-decreasing (and continuous).
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Theorem 9. (J. L. Leonard – [4], 1972)
If a function f : (a, b) −→ R is preponderantly continuous, f ′pr exists nearly
everywhere in (a, b) and f ′pr(x) ≥ 0 almost everywhere in (a, b), then f is
non-decreasing (and continuous).

The sets applied for preponderant limit do not generate any topology,
then this kind of generalization is quite different from the previously con-
sidered manners.

3.2. Selective derivative.

Definition 4. (R. J. O’Malley – [5], 1977)
By a selection we mean a real function p of two variables which associates to
each pair of points x and y a point p(x, y) fulfilling the following conditions:

(1) p(x, y) = p(y, x) for each x and y from R,
(2) if x < y, then x < p(x, y) < y.

Definition 5. We say that a number g is a selective limit with respect to
the selection p of a function f at a point x0 if

g = lim
y→x0

p(x0, y).

Selective limit operation applied to differential quotient gives s-derivative.

Definition 6. A number f ′s(x0) is called selective derivative of a function
f at the point x0 if

f ′s(x0) = lim
x→x0

f(p(x, x0))− f(x0)

p(x, x0)− x0

for a given selection p.

Theorem 10. (R. J. O’Malley – [5], 1977)
If a function f : (a, b) −→ R belongs to the I class of Baire, fulfils Darboux
condition, f ′s exists nearly everywhere in (a, b) and f ′s(x) ≥ 0 almost every-
where in (a, b), then f is non-decreasing (and continuous).

3.3. Świątkowski’s τ-derivative.

Definition 7. (T. Świątkowski – [9], 1972)
For an x ∈ R let τx be a class of sets fulfilling the following conditions:

(1) if A ∈ τx and B ∈ τx then A ∩B ∈ τx,
(2) if δ is a positive number and E ∈ τx, then E ∩ (x− δ, x+ δ) ∈ τx,
(3)

⋂

τx = {x},
(4) if δ > 0 and E ∈ τx, then

(

E ∩ (x− δ, x+ δ)
)

\ {x} 6= ∅.
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Definition 8. We say that a class {τx : x ∈ R} of sets fulfilling the above
conditions fulfils Khintchine’s condition if x0 is τ -accumulation point of the
set

∞
⋃

n=1

(xn − δn, xn + δn)

for every sequences (xn)
∞

n=1
and (δn)

∞

n=1
such that

• lim
n→∞

xn = x0,

• lim
n→∞

δn = 0, and δn > 0, for each n ∈ N,

• lim
n→∞

δn
|xn − x0|

> 0

Any class τx of subsets of the set of real numbers has some properties
of a system of neighbourhoods of the point x. Applying the topological
terminology, we say that a point x is called to be a τ -accumulation point of
a set E if

E ∪ {x} ∈ τx.

Applying this τ -limit operation to the differential quotient of a function
we obtain τ -derivative.

Theorem 11. (T. Świątkowski – [9], 1972)
A class of sets {τx : x ∈ R} fulfils the Khintchine condition if and only if
for each monotone function f from the existence of the τ -derivative of f
implies the existence of f ′.

Before we come to theorem on monotonicity, w have to define also con-
dition (W ).

Definition 9. We say that a function f and a class τ = {τx : x ∈ (a, b)}
satisfy condition (W ) if

(1) f fulfils Darboux condition,
(2) f is nearly everywhere continuous in (a, b),
(3) τ fulfils Khintchine’s condition nearly everywhere in (a, b),
(4) f ′ exists nearly everywhere in (a, b).

Theorem 12. (M. Mastalerz-Wawrzyńczak – [6], 1977)
Let a class of sets τ = {τx : x ∈ R} fulfils conditions of Definition 7 and
the Khintchine condition. Assume moreover that a function f : (a, b) −→ R

fulfils condition (W ) with the class τ .
Under those assumptions, if f ′τ (x) ≥ 0 almost everywhere in (a, b), then

f is non-decreasing (and continuous).
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3.4. Local systems.

Definition 10. (B. S. Thomson – [11], 1985)
By a local system we mean a class S consisting of non-empty collections
S(x) for each real number x, fulfilling the following conditions:

(1) {x} /∈ S(x),
(2) E ∈ S(x)→ x ∈ E,
(3) E ∈ S(x) ∧ F ⊃ E → F ∈ S(x),
(4) E ∈ S(x) ∧ δ > 0 =⇒ E ∩ (x− δ, x+ δ) ∈ S(x).

A local system is called filtering at a point x if

E ∩ F ∈ S(x) wheneverE ∈ S(x) and F ∈ S(x).

A local system is called filtering if it is filtering at each x in R.
A local system is called bilateral if

E ∩ (x− δ, x) 6= ∅ and E ∩ (x, x+ δ) 6= ∅

for each x ∈ R, E ∈ S(x) and δ > 0.

Definition 11. (B. S. Thomson)
A number g is called S-limit of a function f at a point x if

f−1(g − ε, g + ε) ∪ {x} ∈ S(x)

for each positive ε. We shall write then

g = (S) lim
t→x

f(t).

If we apply the S-limit operation to the differential quotient of a function
f at a point x, then we get S-derivative of the function f at x.

One of monotonicity criterion (involving generalized derivatives) is given
by B. S. Thomson:

Theorem 13. (B. S. Thomson)
Let S be a bilateral and filtering system fulfilling

• intersection condition i.e. for each class of sets

{Ex ∈ S(x) : x ∈ R}

there is a positive function δ : R −→ R such that

Ex ∩ Ey ∩ [x, y] 6= ∅

whenever 0 < y − x < min{δ(x), δ(y)},
• variation condition i.e. ψ(I) ≤ VI(ψ,S) whenever ψ is a non-
negative, sub-additive interval function.
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Then if a function f : (a, b) −→ R belongs to the I class of Baire, fulfils
Darboux condition, f ′

S
exists nearly everywhere in (a, b) and f ′

S
(x) ≥ 0

almost everywhere, then f is non-decreasing (and continuous).

3.5. B-systems. Let us start from defining B classes.

Definition 12. For each x ∈ R let B+
x be a class of non-empty sets fulfilling

the following properties:

(1) B1 ∪B2 ∈ B
+
x ⇐⇒ (B1 ∈ B

+
x ∨B2 ∈ B

+
x ),

(2) B ∩ (x, x+ t) ∈ B
+
x for each B ∈ B

+
x and t > 0.

For each x ∈ R let B−
x be a class of non-empty sets fulfilling the following

properties:

(1) B1 ∪B2 ∈ B
−
x ⇐⇒ (B1 ∈ B

−
x ∨B2 ∈ B

−
x ),

(2) B ∩ (x, x+ t) ∈ B
−
x for each B ∈ B

−
x and t > 0.

Let Bx = B
−
x ∪B

+
x .

Definition 13. If f defined in some (a, b) is a real function, then a number
(or +∞ or −∞) is called B-limit number of f at x0 from (a, b) if

{

x ∈ (a, b) : f−1(Ug)
}

∈ Bx0

for any neighbourhood Ug of the point g.

Definition 14. If
{

x ∈ (a, b) : f−1(Ug) ∈ B
−
x0

}

for any neighbourhood Ug of the point g, then g is called the left B-limit
number of a function f at a point x0.

Similarly we define right B-limit numbers of a function f at a point x0.

• By L+

B
(f, x0) we denote the set of right B-limit numbers of f at x0.

• By L−
B
(f, x0) we denote the set of left B-limit numbers of f at x0.

• By LB(f, x0) we denote the set of all B-limit numbers of f at x0.

Then, as for usual limit numbers, one can state:

Theorem 14. For arbitrary real function f on the interval (a, b) and any
x0 from (a, b) the sets LB(f, x0), L

−

B
(f, x0) and L

+

B
(f, x0) are non-empty,

closed and
LB(f, x0) = L−

B
(f, x0) ∪ L

+

B
(f, x0).

Up to now we have defined B-limit numbers of a function, we shall apply
rather B-limits instead limit numbers. Let us define them.

Definition 15. A number g is called B-limit of a function at a point x0
from (a, b) if

{g} = LB(f, x0).
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There is another possibility to characterized B-limits of a function. But
before we do this we shall have to define the second class of sets denoted
by B

∗
x for all x ∈ R.

Definition 16. A subset E of R belongs to the class B∗
x if R \ E /∈ Bx.

Now we can give the following characterization of B-limit of a function.

Theorem 15. A number g is B-limit of a function at a point x0 ∈ (a, b) if
and only if

{

x ∈ (a, b) : f−1(Ug) ∈ B
∗
x0

}

for any neighbourhood Ug of the point g.

We know from previous theorems that any function has B-limit number
at any point of domain of f . This time we are not able to state that any
function has B-limit, as it is evident for usual limits, but if a B-limit of
a function exists it must be only one.
Let us remark yet that the class B∗ that is applied to our considerations

is very similar to the class τ considered by T. Świątkowski.
Next properties will be of some use in the further theory.

Definition 17. We say that the class B fulfils condition M if
∞
⋃

n=1

En ∈ Bx0

for any: x0 ∈ (a, b), sequence (xn)
∞

n=1
converging to x0 and every sequence

of sets (En)
∞

n=1
such that En ∈ Bxn

.

Definition 18. We say that the class B fulfils condition M ′ if
∞
⋃

n=1

En ∈ Bx0

for any: x0 ∈ (a, b), sequence (xn)
∞

n=1
converging to x0 and every sequence

of intervals (En)
∞

n=1
such that En ∈ Bxn

.

Now we want to compare B-derivatives with usual derivatives for mono-
tone and continuous functions. Of course, if a function is differentiable it
must be B-differentiable.
Assume now that a system B fulfils condition M ′ and an increasing and

continuous function f is B-differentiable and at some point x ∈ (a, b) is not
differentiable, for example it is not right differentiable. Then there are two
numbers α, β and sequences (un)

∞

n=1
, (wn)

∞

n=1
converging to x and such

that
x < un+1 < wn+1 < un < wn,
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f(un)− f(x)

un − x
< α < β <

f(wn)− f(x)

wn − x

for each positive integer n.
Then there are non-empty intervals (un, un+γn), (wn−δn, wn) such that

f(t)− f(x)

t− x
< α < β <

f(s)− f(x)

s− x

for all t ∈ (wn − δn, wn) and s ∈ (un, un + γn) and n ∈ N. In view of
condition M ′ of the system B the conditions

∞
⋃

n=1

(wn − δn, wn) ∈ Bx and
∞
⋃

n=1

(un, un − γn) ∈ Bx.

hold. Then there are B-limit numbers of the function
f(y)− f(x)

y − x
at x,

one of them less than α and the second greater than β, what means that
the function f is not B-differentiable at x.
In that way we have proved:

Theorem 16. If a system B fulfils condition M ′ then B-differentiability
of a monotone function is equivalent to differentiability of that function.

4. Topological approach

Let T0 be the natural topology in the set R. Assume that T is a topology
in R stronger than T0 and such that each x in R is a bilateral T -accumulation
point of R, then the class B = {Bx : x ∈ R} is a class fulfilling conditions
of J. Jędrzejewski, (see Definition 12). and conditions of T. Świątkowski
(Definition 7). Moreover it forms also local system of B. Thomson, not
every local system but only filtering one. Since those ideas are derived from
a topology, then it is logical to use topological terminology.
Let us observe that there are several topologies in R generating system B

which fulfils condition M ′ and consequently B-derivative of an increasing
function coincides with usual derivative.

Theorem 17. If T is a topology in R fulfilling the above conditions and
for any monotone function from the existence of T -derivative implies the
existence of the natural derivative, then each interval is a connected set (with
respect to the topology T ).

For the proof of this theorem see Theorem 16 or Theorem 12 in [6].

In the end, let us see that if a non-empty interval I or R is a discon-
nected set in topology T , then even continuity of a function does not force
a function f fulfilling conditions (2) – (4) from Theorem 6.
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Here a problem has arisen:

PROBLEM.
Suppose that T is a topology in R for which each interval is a connected set
(with respect to T ). Let f ′

T
denotes the derivative of f with respect to T .

Is it true that each function f defined in an interval (a, b) (or in R) fulfilling
the following conditions:

• f is Baire class 1,
• f fulfils Darboux condition,
• f ′

T
exists nearly everywhere,

• f ′
T
(x) ≥ 0 almost everywhere,

is monotone?
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