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SYSTEMS-SUPERFRACTALS
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ABSTRACT

The formalism introduced allows a new insight into the symmetry hidden in the
mathematical formulation of fractals. We prove that application of the logarithmic
scales uncovers hidden relation between fractals and crystals and prove that this
symmetry can be classified according to symmetry groups of conventional
crystallography. The latter result allows us to introduce the concept of
superfractals, which generalizes the idea of conventional fractals. We show that
idea of superfractals offers a new tool for characterization of surface precipitates.

INTRODUCTION

The concept of fractal has become a powerful tool in analysis of common
aspects of many complex processes observed in physics, biology, chemistry or
earth sciences. Brownian motion, turbulence, colloidal aggregation or biological
pattern formation can be fully understood only when the idea of self-similarity or
fractal structures is applied [1]. The hallmark of a fractality is a hierarchical
organization of its elements, described by discrete scaling laws which makes the
fractal, regardless on magnification or contraction scale, looks the same. This
property of fractals is called self-similarity, self-affinity or self-replicability.
Although there are fractal sets that show no self-similarity, for the reason that will
become evident later, we will focus our attention to the self-similar ones.

The aim of the paper is to show one to one correspondence between inherent
to fractals self-similar mappings and translational symmetry in R®. We will show
that for some fractals we can find isomorphism of injective mappings on a fractal
and a crystal lattice. As the natural consequence of this isomorphism there
arises the concept of a more general class of hierarchical systems-superfractals.
We will show that the superfractals can be assumed as some kind of modulated
fractals or equivalently the conventional fractals within the (n+k)-dimensional
space projected onto the nD space.

A self-similar symmetry of a fractal is a transformation that leaves the
system invariant, in the sense that, taken as a whole it looks the same after
transformation as it did before, although individual points of the pattern may be
moved by the transformation. We say that K c R" satisfies the scaling law S,
or is a self-similar fractal if S:K=K. Let us limit our considerations to fractals in
which the self-similarity is can be realized only via linear maps, ie.,
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transformations which point r=(xs, Xz, Xs) € K < R®transform into point r’=(x,’
X2, X3') according to the formula

Xi'=Si1 X4 + SpXa + SzXs (@]

The vector form of Eq. (1) can be written as r' =S : r, where S is the matrix
of linear transformation (1). If we orient coordinate axes along the eigenvectors
of matrix S ( i.e., X =(x4, X2, X3) — (&, n, p) then the mapping (1) reduces to
transformation S:(g, n, p) — (M€, AN, Asp). In the case of infinite-size fractals
also the inverse S™ mapping fulfills the self-similarity conditions S™:K = K and for
any xe K, we have

S":ix=8,"08," 0S5 ix=(A"e, &', AsTp) 2)

For n-tuple superpositions of S the above relations are valid provided that
substitution ()" — (N)" is performed. We can define a more general
transformation of the type S™™ = (S;)"0(S,)™o Ss), Where (S)" denotes n-tuple
superposition of transformation S;. By analogy to the linear algebra the set of all
allowed transformations S™"” of a given fractal G can be called the dual space
G’ Action of S™ transforms any point xe R®according to the formula

S x=(M"e, A0, Ad'p) 3)

where m, n, | are arbitrary (negative or positive) integers. In view of Eq. (3) we
have that S™™ :Gc G, i.e S™" are the injective scaling mappings. Evidently
the subset of self-smilar transformations Gs= {S™" "3} G". For any linear S,
by definition we have S;:F; =F; and for any x, € F; we have S;: X,= A Xo,
consequently (S1)™ X, = A™ X,. Using the logarithmic scale we have log(XmXo) =
m In A4. This is nothing but 1D crystal lattice with the lattice spacing given by a=
In A;.  Using the multi-logarithmic scale we obtain that the family of mappings
st g isomorphic with a 3D crystal lattice. This means that the isomorphism
S™) _(may, nay, las) holds. Thus, in view of the arguments given above the
symmetry of this crystal lattice can be classified according to conventional
symmetry elements like rotations, inversion or mirror planes (32 point groups)
and space groups.

REAL FRACTAL SYSTEMS

In real systems the position of species that form the fractal structure
often deviate from ideal mathematical fractal. In conventional physical systems,
in which the allowed positions of its elements are uniformly distributed within R>-
space the position fluctuations are usually follow the Gaussian (normal)
distribution. In the self-similar fractal its elements are nonuniformly distributed,
however in the logarithmic scale the uniform distribution of allowed positions are
restored. If all conditions necessary for the normal (Gaussian) probability
distribution P(x) (in the log scale) are fulfilled the position variation are described
by the well-known log-normal distribution
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Consequently, one would expect that probability distribution of many physical
quantities on self-similar fractals follows the log-normal distribution. In support of
this let us recall the real systems that exhibit fractal behaviour like isothermal
aggregation [2], or stock fluctuations [3] with the log-normal statistics.

In real fractal systems we have somewhat different situation when
compared to mathematical formulation. Contrary to mathematical fractals, for
any real object in nature, fractal properties are observed only over a limited size
range [4]. As pointed out by Mandelbrot, naturally fractal objects are self-similar
above some lower cutoff € up to some upper cutoff value w [5]. Therefore, such
fractals are referred to as truncated fractals. In the logarithmic scale this
situation resembles finite crystals when after finite number of translations the
crystal surface is reached. Evidently we can restore infinite translational
symmetry when postulating the Born-von Karman boundary conditions. The
same can be done for the fractals in the logarithmic scale. The periodic
superstructures composed of truncated fractals with the Born-von Karman
boundary conditions are sometimes called superfractals. Such superstructures
have been used to model some antenna devices in fractal electrodynamics [6],
[7]. Below we will use the term superfractal in somewhat different, more general
meaning, which exploits their analogy with the well-known supercrystals [8], [9].

SUPERFRACTALS

The one to one correspondence between self-affine mappings of fractals and
symmetries of ordinary crystals opens the way to define a more general class of
hierarchical systems, that are the fractal counterparts of the modulated crystals
(i.e. supercrystals) [8], [9]. Motivated by this idea let us to present the concept
of superfractals. We assume that the basic distinction between fractal G and a
superfractal SG relies on the symmetries of their self-dual spaces G* and SG*,
respectively. In the case of ordinary fractal G the G* is isomorphic with the
lattice of an ordinary crystal, while for the superfractal its self-dual space SG* is
isomorphic with a supercrystal. This means that in the latter case the members
X € SG doesn't occupy sites predicted for the ordinary fractal but oscillate in a
regular manner around sites of ideal structure. In other words the superfractal
can be assumed as the geometrical object in which positions of its elements
can be determined by superimposing modulation with the log periodicity b onto
positions  of conventional fractal with the log periodicity a. For better
understanding of the idea of superfractal, let us remind the basic properties of
modulated crystals (supercrystals). In the modulated crystals ions occupy
positions, which show modulatory displacements from the lattice sites predicted
by crystal structure according to the formula [10]

X, =X, +na+ysin[(2z /b)(x, + na)] (5)
where X4 is the zeroth-order position of the chain. The shift modulations arise
due to the presence of more than one ordering mechanism, each favouring
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different periodicity. It can be proved that modulation of the 1D crystal lattice
along the line L can be obtained as an intersection of the 2D periodic structure
(i.e. (1+1)D supercrystal) with the line L, provided that the line L is not parallel to
a unit cell edge of the (1+1)D superstructure. The additional dimension is called
the internal dimension of the modulated crystal. Thus, the modulated crystals
can be assumed as the projection of periodic structure in the (n+k)D superspace
(supercrystal) onto nD (n < 3) position space. By the analogy to the
supercrystal we define the superfractal as the projection of an ordinary linear
fractal within (n+k)D superspace, onto nD position space. We can easily find one
to one correspondence between supercrystals and self-affine mappings on
superfractals The only difference between superfractals and ordinary fractals
can be summarized as follows: in superfractals SG the action of scaling
mapping S™"¢: € SG* transforms any point x= (¢, n, p) € SG according to the
formula:

Smnb -y = (e* g, €% n,e” p) (6)
where Xn, Ym, 2 are given by expressions of the type (5). Contrary to Eq. (6) the
similarity transformation for ordinary fractal is given by Eq. (3). In Eq. (6) we
have assumed that the coordinate axes are oriented along eigenvectors of the
linear self-affine transformation. We should stress here that our results refer
fractals contained both in the real as well as dynamical (spectral spaces) [11]-
[13]. Moreover, it can be easily proved that both Hausdorff dimension and

lacunarity of the superfractal are exactly the same as they are in the basic fractal
structure.

APPLICATIONS

Invariance of the fractal structure under symmetry transformations r' — Rq: r
leads to the expectation that various physical properties share this symmetry.
As a matter of fact the rotational symmetry classifies different types of the
anisotropy observed in physical systems.
Let us consider action of a symmetry element O, being a member of
crystallographic group O, Which characterizes symmetry of the dual space G*.
By definition for any S™™ € G* we have 0,:8™" = §%¥ ¢ G* Thus, we have
0, :$™:G — Gand S™: G c G, which means that crystal symmetry
reflects the internal symmetry of the fractal G. We should stress here that we
are dealing with the geometrical fractals rather than with the dynamical spaces
[14]{15]. Contrary to our case, the latter, characterized by the spectral
dimension, often involve assumption of the connectivity condition [16]. Let us
now focus our attention on the applications of the superfractals structures which
in the log scale show sinusoidal oscillations superimposed onto log-periodicity.
The log-periodic oscillations in the DLA structures, rupture, earthquake,
and financial crushes with amplitude of the order of 10% have been reported
[17], At present the most evident example of application of the superfractals
comes from the studies of statistical properties of DNA sequences in the
bacterial chromosomes [18]. Numerical studies of correlations between the DNA
coding regions of bacterial chromosome of the Borrelia burgdorferi, shows long-
range correlations and log-periodic modulations of the type (6) along the whole



Classification of overlayer precipitates by ... 29

chromosome. This result can be extended onto other bacterial chromosomes.
The fact that in log scale the sinusoidal modulation is superimposed onto
conventional log-periodicity indicates the geometrical structure of bacterial
chromosomes should be modeled
by the type-| superfractals rather then by simple fractals.

A fractal system with log-periodicity were used to describe the stock [19],
[20] or crude oil [21] market microstructure. The appearance of sinusoidal
modulation superimposed onto log-periodicity were found in the economic data
and interpreted as the precursor effect of financial crisis or speculation bubble.
In our nomenclature we can ascribe such behaviour as the the superfractality.
There is other indirect proof that the superfractals can be useful in quantification
of DLA surface dendritic aggregates The analytical study of the instability of the
planar cracks which bear strong resemblance to the equivalent result in the
dendritic DLA [22]. Analytical study of the planar cracks contains solutions of
the stress concentration around wedge tip, which show oscillatory corrections to
the conventional power law result. Consequently, there arises oscillatory
modulation of the major sidebranch lengths. By the analogy one would expect an
oscillatory contribution the correlation functions in the planar DLA systems.
Since the superfractals are nothing but idealization of a physical system that has
an oscillatory component of some correlation functions one can expect that the
DLA precipitates can be adequately modeled by the superfractals.

DISCUSSION AND SUMMARY

The analysis outlined above places the symmetry of linear deterministic fractals
within common framework of the solid state symmetry. This agrees with our
intuition, as a direct consequence of the ubiquitous self-similarity, fractals can be
created by simple transformations. Generally, any affine transformations are
combinations of just shifts, rotations, scalings and shears. In our considerations
we have reduced to the scaling transformations only. The identified symmetry
offers a different perspective on the variety of fractals patterns. The remarkable
point is that although we have continuum of the self-similarity scales, the
symmetry of the fractals can be classified according to the finite number of
symmetry groups elaborated by crystallographers. This offers not only better
understanding of hierarchical systems but indicates general way how to detect
and classify the patterns of complex systems. From practical point of view
symmetry results in the reduction of complexity and may even allow to discover
novel structural properties of hierarchical systems. Along with the fractals for
which symmetry of their self-affine transformations is isomorphic with the
symmetry of conventional crystals there arises concept of superfractals.

These hierarchical systems show position modulations of their components
with respect to that expected for conventional fractals. The symmetry of self-
affine transformations of the superfractals can be directly related to the
symmetry of supercrystals. We expect that the idea of superfractals can
stimulate methods of characterization of fractal structures. In numerical
calculations of fractal characteristics most of the numerical procedures become
ineffective when applied to the structures that exhibit modulations of the
structure [23]{26]. Such situation arises always when intimate relation between
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self-similarity and fractality is broken. This is just the effect we expect in the case
of incommensurately modulated fractals (superfractals). We should mention that
the term superfractal was previously used in description of systems that are
periodic structure of fractal units [6] that model some antenna devices in
electrodynamics [6], [7]. The difference between these two superstructures
relies on the fact that the superfractal by Jaggards [6] show real space
periodicity while our definition assumes the log periodicity. Although meaning of
the term superfractal is somewhat different, but we believe it wouldn't lead to
misinterpretations. As we have mentioned above the probability distribution of
some quantities on simple self-similar fractals is often described by the log-
normal distribution (4). In the superfractals one would expect oscillatory
deviations from the log-normal function but in average the log-normal distribution
should be preserved. The set of eigenvalues and eigenvectors of the self-similar
mapping (1) of the fractal G determines the symmetry group of the self-dual
space Gs*. With infinitesimal change of the scaling parameters there can arise
abrupt change of the crystallographic group that describes the symmetry of a
fractal. Conventional measure of the complexity of fractional statistical systems
is the Shanon or excess entropy [27]. As we know [28] any symmetry of the
system results in the reduction of the excess entropy. Thus, proper identification
of the symmetry gives us a new tool which allows us to predict abrupt changes in
entropy when infinitesimal change of the scaling factors changes the symmetry
of the system. This agrees with the Landau theory, which relates the symmetry
changes with the phase transitions. In view of this we can predict when minimal
variation of the fractal parameters can generate significant changes of its
statistical or thermodynamical parameters. We believe that the possible area of
applications of the result obtained covers also the statistical mechanical
systems, computation-theoretic problems or hierarchical networks [29].

In summary, we have proved that the set of injective scaling transformations of
a 3D fractal is isomorphic with a conventional crystal lattice. Basing on the
proved isomorphism we have introduced a new family of hierarchical systems -
superfractals, which are isomorphic with the
modulated crystals (supercrystals). Finally we have given extensive study of the
results obtained pointing some real physical systems that exactly exhibit the
superfractal behaviour.
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