CHEMISTRY, ENVIRONMENT, BIOTECHNOLOGY 2010, X IV, 35-40

Roman Matvijishyn¹, Volodymyr Pavlyuk², Zenovia Shpyrka¹, Roman Serkiz³

¹ Department of Inorganic Chemistry, Ivan Franko National University of Lviv,

Kyryla i Mefodiya str. 6, 79005 Lviv, Ukraine,

² Institute of Chemistry, Environmental Protection and Biotechnology,

Jan Długosz University of Częstochowa, 42-200 Częstochowa, Armii Krajowej 13/15

³Scientific Technical and Educational Center of Low Temperature Studies, Ivan Franko National University of Lviv, Dragomanov str. 50, 79005, Lviv, UKRAINE

Crystal structures of ErGe₂ and TmGe₂ compounds

Abstract

Crystal structures of $ErGe_2$ and $TmGe_2$ compounds were determined by X-ray single crystal diffraction. Both $TmGe_2$ and $ErGe_2$ crystallized with the $ZrSi_2$ structure type (space group *Cmcm*).

Keywords: Rare earths phases, Crystal structure, X-Ray diffraction

Introduction

This paper is a part of systematic study of interaction of erbium and thulium with germanium. Previously, such compounds containing rare earth metals ~33.3 at.% have been investigated: YGe₂ (space group $I4_1/amd$, structure type ThSi₂)¹ LaGe₂ (space group $I4_1/amd$, structure type ThSi₂)², CeGe₂ (space group $I4_1/amd$, structure type ThSi₂)³, PrGe₂ (space group $I4_1/amd$, structure type ThSi₂)⁴, NdGe₂ (space group $I4_1/amd$, structure type ThSi₂)⁵, SmGe₂ (space group $I4_1/amd$, structure type ThSi₂)⁶, EuGe₂ (space group P-3m1, structure type EuGe₂)⁷, TbGe₂(space group Cmmm)⁸, TmGe_{1.891}, ErGe_{1.891} (space group Pmma)⁹. In this paper, we report our results on synthesis and crystal structure refinement of the ErGe₂ and TmGe₂ binary compounds by X-ray single crystal diffraction.

Experimental details and results

The samples were melted from weighted pieces of initial components of high purity (Er - 99.86%, Tm - 99.89%, Ge - 99.999%) under an argon Tigettered atmosphere in an arc furnace with a water-cooled copper hearth and then annealed in an evacuated silica tubes at 873 K for one month.

The samples microstructures were studied using a metallographic microscope (magnification $\times 200 \div 300$). The elemental compositions of some samples were confirmed using the registering scanning electron microscope REM-MA-102-02 type with 1µm² locality of analysis (Fig.1 and Fig.2).

Fig. 1. SEM image for the $Er_{34}Ge_{66}$ (composition of main phase Er(32.998), Ge(67.002))

Fig. 2. SEM image for the $Tm_{34}Ge_{66}$ (composition of main phase Tm(35,359), Ge(64,641))

X-ray patterns of all alloys were taken at room temperature using X-ray powder diffractometer DRON-2.0M with Fe K_{α} radiation ($\theta/2\theta$ scanning, $30^{\circ} \le 2\theta \le 150^{\circ}$) and the pure silicon as an internal standard.

The single crystals suitable for X-ray analysis were first checked using Laue and Weissenberg methods (RKV-86 and RGNS-2 chambers, $MoK\alpha$ -

radiation), and afterwards they were studied using automatic single-crystal diffractometer Bruker APEX II (MoK α -radiation, graphite monochromator, ω scans).

Results and discussion

The single crystals of $ErGe_2$ and $TmGe_2$ having prismatic forms were extracted from the samples with the compositions $Er_{34}Ge_{66}$ and $Tm_{34}Ge_{66}$, respectively. Processing of collection and reduction data were performed using SAINT (Bruker, 2004) programs¹⁰. The solution and refinement of crystal structure were performed using SHELXL-97 programme package¹¹. Standardization procedure was performed using program Structure Tidy¹².

These single crystals were stable in air over the long period of time and had metallic luster. The details of data collection and structure refinement, atomic coordinates and anisotropic thermal displacement parameters for $ErGe_2$ are given in Table 1. The same data for $TmGe_2$ are listed in Table 2.

Tabl	e 1	. Ext	perimental	details	and	crv	stall	ogra	phic	data	for	ErG	e2
												-	- 24

Compound			ErGe ₂				
Structure type			ZrSi ₂				
Space group			Cmcm				
Pearson symbo	1		oC12				
Lattice parame	ters, Å		a = 4.0190(1), b = 15.8381(7), c = 3.8799(1)				
Absorption coe	fficient, mm ⁻¹		57.436				
Theta range for	data collection		2.4 to 28.0°				
Limiting indice	s		-5 =< h =< 4, -19 =< k =< 19, -4 =< 1 =< 3				
Reflections col	lected / unique		168/152				
Refinement me	thod		Full-matrix least-squares on F ²				
Data / restraint	s / parameters		152/0/14				
Goodness-of-fi	t on F^2		1.102				
Final R indices	[I>2sigma(I)]		R1 = 0.0321, wR2 = 0.0956				
R indices (all d	ata)		R1 = 0.0389, $wR2 = 0.1004$				
Extinction coef	ficient		0.0008(7)				
Largest diff. pe	ak and hole		1.270 and -1.124 e [.] Å ⁻³				
Atomic coordin	nates and displacem	ents: x y	$z, U_{11}, U_{22}, U_{33} U_{23} U_{13} U_{12}(\text{\AA}^2)$				
Er1 (4c)	0.00000 0.39620	1/4	0.01301 0.01192 0.00943 0.00000				
			0.00000 0.00000				
Ge1 (4c)	-0.50000 0.44545	-1/4	0.01304 0.02073 0.00911 0.00000				
			0.00000 0.00000				
Ge2 (4c)	0.00000 0.24760	-1/4	0.01616 0.01259 0.01322 0.00000				
			0.00000 0.00000				

37

Table 2. Experimental details and crystallographic data for TmGe₂

Compound			TmGe ₂				
Structure type			ZrSi ₂				
Space group			Cmcm				
Pearson symbol			oC12				
Lattice parameters	s, Å		a = 4.020(1), b = 15.768(4), c = 3.8761(5)				
Absorption coeffic	cient, mm ⁻¹		59.704				
Theta range for da	ata collection		5.10 to 27.00°				
Limiting indices			-3 =< h =< 5, -15 =< k =< 19, -4 =< 1 =< 4				
Reflections collec	ted / unique		162/1468				
Refinement metho	od		Full-matrix least-squares on F ²				
Data / restraints /	parameters		162/0/15				
Goodness-of-fit of	$n F^2$		1.112				
Final R indices [I:	>2sigma(I)]		R1 = 0.0307, wR2 = 0.0877				
R indices (all data	l)		R1 = 0.0354 wR2 = 0.0913				
Largest diff. peak	and hole		1.043 and -1.222 e ⁻ Å ⁻³				
Atomic coordinate	es and displacements	: x y	v_{2} , U_{11} , U_{22} , U_{33} U_{23} U_{13} $U_{12}(\text{\AA}^2)$				
Tm1 (4c)	0.00000 0.39650	1/4	0.01339 0.01752 0.01210 0.00000				
			0.00000 0.00000				
Ge1 (4c)	-0.50000 0.55284	-1/4	0.01257 0.02851 0.01015 0.00000				
			0.00000 0.00000				
Ge2 (4c)	-0.50000 0.25249	-1/4	0.01729 0.01832 0.01409 0.00000				
			0.00000 0.00000				

The ErGe_2 and TmGe_2 compounds crystallize in the ZrSi_2 structure type (space group *Cmcm*, Pearson code *oP*12). Both structures were also confirmed by powder diffraction methods. The unit cell projection and packing of trigonal prism in the TmGe₂ structure are shown Fig. 3.

Fig. 3. The unit cell projection and packing of trigonal prism in the TmGe₂ structure

A paper concerning the Tm-Ge binary phases has recently been published⁹ and reported on powder X-ray investigation of binary thulium germanides. Three new compounds have been characterized, TmGe_{1.83} with the ErGe_{1.83}-type structure (Cmcm; a=4.050(1) Å, b=29.460(8) Å and c=3.887(1) Å), Tm₂Ge₅ with the Er₂Ge₅-type structure (Pmmn: a=4.000(1) Å; b=3.875(1) Å; c=18.103(7) Å) and TmGe_{1.9} with a new structural type (Pmma; a=3.879(1) Å, b=4.034(1) Å and c=22.544(7) Å). The structure of TmGe_{1.9} has been solved by powder X-ray diffraction. This new type may be considered as an intergrowth of ZrSi₂ and ErGe_{1.83} blocks. This intergrowth structure at the TmGe₂ composition has not been observed.

Conclusions

- 1. The crystal structures of the ErGe₂ and TmGe₂ compounds were determined by X-ray single crystal diffraction.
- 2. Both compounds crystallized in the ZrSi₂ structure type (space group *Cmcm*, Pearson code *oP*12).
- 3. The intergrowth of $ZrSi_2$ and $ErGe_{1.83}$ blocks in the $TmGe_2$ crystal were not observed.

References

- Schob O., Parthe E, Digermanide des Scandiums und Yttriums, *Monatshefte fuer* Chemie (1964), 95, 1467-1472
- 2. Gladyshevskii E.I. (Hladyshevskii, E.I.), Crystal structure of the digermanides of rare earth elements, *Zhurnal Neorganicheskoi Khimii* (1964), 5, 568-575
- 3. Gladyshevskii E.I.(Hladyshevskii, E.I.), The crystal structure of BaSi₂ and CeGe₂, *Dopovidi Akademii Nauk Ukrains'koi* RSR (1959), 1959, 294-297
- 4. Iandelli A, Sulla struttura cristallina del composto PrGe₂, Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti, Serie 8 (1, 1946-)
- 5. Gladyshevskii E.I. (Hladyshevskii, E.I.), Crystal structures of some intermetallic comppounds, *Kristallografiya* (1961), 6, 207-209
- 6. Iandelli A., Intermetallic compounds of the rare earth metals, *Physical Chemistry of Metallic Solutions and Intermetallic Compounds*, Symposium (1959), 9(9), 3F-14F
- 7. Gladyshevskii E.I.(Hladyshevskii, E.I.), Crystal structure of the compound EuGe₂, *Dopovidi Akademii Nauk Ukrains'koi RSR* (1964), 2, 209-212
- Schobinger-Papamantellos P., de Mooij D.B., Buschow K.H.J, Crystallographic and magnetic structure of TbGe₂, *Journal of the Less-Common Metals* (1988), 144, 265-274
- 9. Venturini G, Orthorhombic TmGe_{1.9}, with a (ZrSi₂)-(ErGe_{1.83}) intergrowth structure, *J. Alloys Compd.* (2000), 308, 200-204

- 10. SAINT (Bruker, 2004)
- 11. Sheldrick G.M., SHELXS97 and SHELXL97 WinGX Version. Release 97-2 (1997), University of Göttingen, Germany.
- 12. Gelato L.M., Parthé E. STRUCTURE TIDY a computer program to standardize crystal structure data, *J. Appl. Cryst.* 1987. Vol. 20. P. 139-143.