Category approach to $\mathcal{R} \mathcal{L}_4$ – sets

Teresa Biegańska

In this paper I'm going to investigate the subcategory of the category of sets valued by some Heyting algebra.

The notion of a Heyting algebra valued set was introduced by Scott [1] in 1972 in his work an the intuitionistic set theory. The categories of Heyting algebra valued sets were investigated and described by D. Higgs in [3] and [4].

We recall that the notion of a *Heyting algebra* is equivalent to the notion of a pseudo - Boolean algebra and the notion of complete lattice in which the following equality holds:

$$a \wedge \bigvee_{t \in T} a_t = \bigvee_{t \in T} (a \wedge a_t)$$

(the condition is refferred to as infinite distributivity).

Let $A = (A, \leq)$ be a complete Heyting algebra.

By the set valued by the algebra \mathcal{A} , shortly: an \mathcal{A} – set, we will mean any pair (U, δ) such that U is a set and $\delta : U \times U \to A$ is a mapping satisfying the following conditions:

$$(a_1) \ \forall x, y \in U \quad \delta(x, y) = \delta(y, x),$$

$$(a_2) \ \forall x, y, z \in U \quad \delta(x, y) \land \delta(y, z) \leq \delta(x, z).$$

The intuitive sense of the definition of the A- set is this: for any two given elements x, y of the set U, the element $\delta(x, y)$ of the Heyting algebra A defines the extent with respect to which the element x is equal to y.

Let $P(U, \delta)$ denotes, for an arbitrary A – set $U = (U, \delta)$, the set of all mappings $\alpha : U \to A$ satisfying the following conditions:

$$(b_1) \ \forall x \in U \quad \alpha(x) \leq \delta(x,x),$$

$$(b_2) \ \forall x, y \in U \quad \alpha(x) \land \delta(x, y) \leq \alpha(y).$$

We define the subset $S(U, \delta)$ of $P(U, \delta)$ in the following way:

(1)
$$S(U, \delta) = \{ \alpha \in P(U, \delta) : \forall x, y \in U \mid \alpha(x) \land \alpha(y) \le \delta(x, y) \}.$$

The elements of the set $S(U, \delta)$ are called *singletons*. For each A – set $U = (U, \delta)$, we define the mapping $\Gamma_{\delta} : S(U, \delta) \times S(U, \delta) \to A$ as follows:

(2)
$$\Gamma_{\delta}(\alpha, \beta) = \bigvee \{\alpha(x) \land \beta(x) : x \in U\}.$$

Then the pair $(S(U, \delta), \Gamma_{\delta})$ is also an A – set.

Let us denote by \mathcal{L}_4 the chain with the underlying set $L_4 = \{0, 1, 2, 3\}$. $A \mathcal{R} \mathcal{L}_4 - set^1$ is any \mathcal{L}_4 – set $\mathcal{U} = (U, \delta)$ which satisfies the following conditions:

$$(r_1) \ \forall x \in U \quad 1 \le \delta(x, x),$$

$$(r_2) \ \forall x, y \in U \quad [2 \le \delta(x, y) \Rightarrow x = y],$$

$$(r_3) \ \forall x, y \in U \quad [\delta(x, y) = 1 \Rightarrow \delta(x, x) = \delta(y, y)],$$

$$(r_4) \ orall x \in U \quad [\delta(x,x)=2 \Rightarrow \exists y \in U \quad \delta(x,y)=1].$$

To each complete Heyting algebra \mathcal{A} the category of all \mathcal{A} – sets is assigned. \mathcal{A} – **Set** denotes the category which objects are all \mathcal{A} – sets and let the morphisms from one object $\mathcal{U} = (U, \delta)$ to another $\mathcal{W} = (W, \sigma)$ be all the triples $(\mathcal{U}, f, \mathcal{W})$, where f is \mathcal{A} – function, i. e. f is a function from $U \times W$ to A satisfying the following conditions:

$$(m_1) \ \forall x, x' \in U \quad \forall y \in W \quad f(x, y) \land \delta(x, x') \leq f(x', y),$$

$$(m_2) \ \forall x \in U \quad \forall y, y' \in W \quad f(x, y) \land \sigma(y, y') \le f(x, y'),$$

$$(m_3) \ \forall x \in U \quad \forall y, y' \in W \quad f(x, y) \land f(x, y') \le \sigma(y, y'),$$

$$(m_4) \ \forall x \in U \quad \bigvee \{f(x,y) : y \in W\} = \delta(x,x).$$

If $(\mathcal{U}, f, \mathcal{W})$ and $(\mathcal{W}, f', \mathcal{V})$ are morphisms from $\mathcal{U} = (U, \delta)$ to $\mathcal{W} = (W, \delta)$ and from \mathcal{W} to $\mathcal{V} = (V, \gamma)$, respectively, then the triple $(\mathcal{U}, f' \circ f, \mathcal{V})$ is the composition of these morphisms, where

$$(f'\circ f)(x,z)=\bigvee\{f(x,y)\wedge f'(y,z):y\in W\},$$

for all $(x, z) \in U \times V$.

By the identity morphism we shall mean any triple of the form $(\mathcal{U}, f, \mathcal{U})$, where $\mathcal{U} = (\mathcal{U}, \delta)$ is any \mathcal{A} -set.

Each \mathcal{A} -function $f:U\times W\to A$ can be treated as a ,,characteristic function" of a ,,subset" of the set $U\times W$. For each pair (x,y) belonging to $U\times W$, f(x,y) is interpreted as the element of the algebra A which defines the degree of relatedeness of the element y to x through f.

The following theorems are true for the category A – **Set**:

¹In [5] A. Obtułowicz gives the representation of Pawlak's rough sets by means of \mathcal{RL}_4 -sets.

T.1. A morphism $(\mathcal{U}, f, \mathcal{W})$ from an object $\mathcal{U} = (U, \delta)$ to an object $\mathcal{W} = (W, \sigma)$ is a monomorphism iff

$$f(x,y) \wedge f(x',y) \le \delta(x,x'),$$

for all $x, x' \in U$ and $y \in W$.

T.2. A morphism $(\mathcal{U}, f, \mathcal{W})$ is an epimorphism iff

$$\bigvee \{f(x,y) : x \in U\} = \sigma(y,y),$$

for every $y \in W$.

T.3. If $(\mathcal{U}, f, \mathcal{W})$ is both monomorphism and an epimorphism, then it is an isomorphism.

The proofs of these results can be found in Higgs [4]. The following corollary readily follows from theorems **T.1.** - **T.3.**:

Corollary.

For every A – set $U = (U, \delta)$, the triple (U, f, S), where $S = (S(U, \delta), \Gamma_{\delta})$ and $f : U \times S(U, \delta) \to A$ is defined as:

(3)
$$f(x,\beta) = \delta(x,x) \wedge \Gamma_{\delta}(\alpha_x,\beta),$$

for all $x \in U$, $\beta \in S(U, \delta)$ and where $\alpha_x(y) = \delta(x, y)$ for all $y \in U$, is an isomorphism in the category A- **Set**.

Let \mathcal{RL}_4 – **Set** denote the category which objects are all \mathcal{RL}_4 – sets and let the morphisms from an object \mathcal{U} to an object \mathcal{W} be all triples of the form $(\mathcal{U}, f, \mathcal{W})$, where f is an \mathcal{L}_4 – function.

The composition of morphisms is defined accordingly to the equality (3). The identity morphism in the category \mathcal{RL}_4 – **Set** is any triple of the form $(\mathcal{U}, \delta, \mathcal{U})$, where $\mathcal{U} = (\mathcal{U}, \delta)$ is any \mathcal{RL}_4 – set.

The category \mathcal{RL}_4 – **Set** is the full subcategory of the category \mathcal{L}_4 – **Set**. Moreover, this category has products and a terminal object. The product $\mathcal{U} \times \mathcal{W}$ of two object $\mathcal{U} = (U, \delta)$, $\mathcal{W} = (W, \sigma)$ is defined as $\mathcal{U} \times \mathcal{W} = (U \times W, \xi)$, where

$$\xi((x,y),(x',y')) = \delta(x,x') \wedge \sigma(y,y'),$$

for all $x, x' \in U$ and all $y, y' \in W$.

A terminal object in the category \mathcal{RL}_4 – **Set** is any pair (U, τ) such that U is a one - element set, i.e. $U = \{x\}$ and $\tau(x, x) = 3$.

The singletons defined by (1) are useful in proving certain facts connected to the notion of isomorphic closedness of the subcategory relative to its supercategory (cf. [2]).

It applies to the subcategory \mathcal{RL}_4 – **Set** of the category \mathcal{L}_4 – **Set**. We shall recall the definition of isomorphic closedness of a subcategory. The

subcategory \mathcal{B} of a category \mathcal{C} is isomorphically closed if any \mathcal{C} – object (i.e. an object of the category \mathcal{C}) which is isomorphic with a \mathcal{B} – object is a \mathcal{B} – object, too.

Theorem.

The \mathcal{RL}_4 – **Set** category is not an isomorphically closed subcategory of the \mathcal{L}_4 – **Set** category.

Proof. Let $\mathcal{U} = (U, \delta)$ be an \mathcal{RL}_4 – set such that $\delta(x_o, x_o) = 3$ for some $x_o \in U$. Let $S_o(U, \delta)$ be the set of all singletons for \mathcal{U} . We define the functions $\alpha_{x_o} : U \to L_4$, $\beta_{x_o} : U \to L_4$ in the following way

$$lpha_{x_o}(x)=\delta(x_o,x), \ eta_{x_o}(x)=\left\{egin{array}{ll} 2 & ext{if} \ x=x_o, \ \delta(x_o,x) & ext{otherwise.} \end{array}
ight.$$

Clearly both α_{x_o} and β_{x_o} belong to the set $S_o(U, \delta)$. By Corollary, the \mathcal{RL}_4 – set \mathcal{U} , which is clearly an \mathcal{L}_4 – set, too, is isomorphic (in the \mathcal{L}_4 – Set category) to the \mathcal{L}_4 – set $\mathcal{Z}_{\delta} = (S_o(U, \delta), \Gamma_{\delta})$, where Γ_{δ} is given by the formula (2). However, $\Gamma_{\delta}(\alpha_{x_o}, \beta_{x_o}) = 2$ and $\alpha_{x_o} \neq \beta_{x_o}$, so the function Γ_{δ} does not satisfy the condition (r_2) of definition of \mathcal{RL}_4 – sets. This means that \mathcal{Z}_{δ} is not an \mathcal{RL}_4 – set.

The proof is complete.

REPERENCES

- M.P. Fourman, D.S. Scott, Sheaves and logic, in: ,,Applications of Sheaves", Proceedings, Durham 1977, ed. M.P. Fourman et al., Lecture Notes in Mathematics Vol., 753, Berlin 1979, 302 401.
- [2] H. Herrlich and G.E.Strecker, Category Theory, Boston 1973, Printed in the United States of America.
- [3] D. Higgs, A category approach to Boolean valued set theory [preprint, University of Waterloo 1973].
- [4] D. Higgs, Injectivity in the topos of complete Heyting algebra valued sets, Canad. J. Math. 36 (1984), 550 568.
- [5] A. Obtułowicz, Rough sets and Heyting algebra valued sets, Bull. Pol. Ac.: Math., 35 (9 - 10), 1987, 667 - 673.

th apolies to the subcategory R.L.