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SOME PROPERTIES OF OPENLY p-CONTINUOUS
FUNCTIONS

KATARZYNA NOWAKOWSKA

ABSTRACT

In the paper we present definition and some properties of openly g-upper continuous
functions. Connections with g-upper continuous and porouscontinuous functions are
studied.

1. PRELIMINARIES

In the paper we apply standard symbols and notations. By R we denote
the set of all real numbers, by N we denote the set of all positive integers.
The symbol A(-) stands for the Lebesgue measure on R. By int A we denote
the interior of a set A. In the whole paper I = (a,b) is an open interval
(not necessarily bounded) and f is a real-valued function defined on I. By
f|A we denote the restriction of f to a set A C I. Symbol |J| stands for
length of a interval J.

Let E be a measurable subset of R and let x € R. According to [4], the
numbers

d"(E,z) = liminf MEN [z, z+4)
t—0+ t

and
8+(E,x) = lim sup AEN [z, +1])
t—0t t
are called the right lower density of F at x and right upper density of E at
x, respectively. The left lower and left upper densities of £ at = are defined
analogously. If

dH(B,z)=d (E,z) (d‘(E, 2)=d (E, x))

then we call these numbers the right density (left density) of E at x and
denote it by d*(F,z) (d~(E,z)). The numbers

d(E,z) = max{d (E,z),d (E,z)}
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and
d(E,z) = min{d"(E,z),d” (E,z)}
are called the upper and lower density of F at x, respectively.

If d(E,r) = d(E,r) then we call this number the density of E at x and
denote it by d(E,x). If d(E,x) = 1 then we say that x is a point of density
of F.

First, we recall the notion of p-upper continuity.

Definition 1.1. [6] Let E be a measurable subset of R, x € Rand 0 < o < 1.
We say that x is a point of o-type upper density of E if either d(E,z) > o
ifo<lord(E,z)=1if p=1.

Definition 1.2. [6] The function f: I — R is called p-upper continuous
at x € I provided that there is a measurable set E C [ such that x is a
point of g-type upper density of E, z € F and f|F is continuous at x. If
f is p-upper continuous at each point of I then we say that f is g-upper
continuous.

By UC, we denote the class of all p-upper continuous functions defined
on I, whereas the symbol UC,(f) denotes the set of all points at which the
function f is p-upper continuous.

In an obvious way we define one-sided p-upper continuity. Obviously f
is p-upper continuous at x if and only if it is g-upper continuous at x on
the right or on the left.

Definition 1.3. [7] Let E be a measurable subset of R. Let z € R and
0 < 0 <1. We say that x is a point of weakly p-type upper density of E if
d(E,x) > o.

Definition 1.4. [7] The function f: I — R is called weakly g-upper con-
tinuous at x € I provided that there is a measurable set E C I such that x
is a point of weakly p-type upper density of E, x € E and f|g is continuous
at x. If f is weakly g-upper continuous at each point of I then we say that
f is weakly p-upper continuous.

By wdC, we denote the class of all weakly p-upper continuous functions
defined on I, whereas the symbol wldC,(f) denotes the set of all points at
which the function f is weakly o-upper continuous.

In an obvious way we define one-sided weakly o-upper continuity. Observe
that f is weakly o-upper continuous at x if and only if it is weakly g-upper
continuous at x on the right or on the left.

We recall the definition of approximate continuity.

Definition 1.5. [4] The function f: I — R is called approximately contin-
uous at x € I provided that there is a measurable set £ C I such that x is
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a point of density of E, x € E and f|g is continuous at x. If f is approx-
imately continuous at each point of I then we say that f is approximately
continuous.

By A we denote the class of all approximately continuous functions.

In [1] J. Borsik and J. Holos introduced path continuity connected with
the notion of porosity. For a set A C R and an open interval I C R let
A(A, I) denote the length of the largest subinterval of I having an empty
intersection with A. Let € R. Then, according to [1], [5], the numbers

P (4, 2) = limsup S BT )
t—0+t t

and
AA, (z—t
p (A, x) = limsup A4 (z=tz)
t—0+ t
are called the right-porosity of the set A at x and the left-porosity of the
set A at x, respectively. The porosity of the set A at x is defined as

p(A,r) = max{p~ (A, z),p" (A, x)}.

The set A is called right-porous at a point z if p™ (A, x) > 0, left-porous at
a point z if p~ (A, z) > 0 and porous at a point z if p(A,x) > 0. The set
A is called porous if A is porous at each point x € A. The set A is called
strongly porous at a point z if pT(A,z) =1 or p~(4,2) = 1.

Definition 1.6. [1] Let r € [0,1), A C R, € A. The point = will be called
a point of m.-density of the set A if p(R\ A,z) > r.

Let r € (0,1], A C R, z € A. The point € A will be called a point of
wr-density of the set A if p(R\ A, z) > r.

Definition 1.7. [1] Let » € [0,1), 2 € R. The function f: R — R will be
called

1. P,-continuous at x if there exists a set A C R such that z € A, z is a
point of m,-density of A and f|A is continuous at x,

2. S,-continuous at x if for each € > 0 there exists a set A C R such that
x € A, z is a point of m,-density of A and f(A) C (f(z) —¢, f(x) +¢).

Let r € (0,1], x € R. The function f: R — R will be called

3. M,-continuous at a point x if there exists a set A C R such that x € A,
x is a point of u,-density of A and f|A is continuous at x,

4. N,-continuous at x if for each € > 0 there exists a set A C R such that
x € A, x is a point of u,-density of A and f(A) C (f(z) — e, f(x) + &).

All these functions will be called porously continuous. Symbols P.(f),

S:(f), My (f), No(f) will denote the sets of all points at which the function
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f is ‘P,-continuous, S,-continuous, M .-continuous,
N,-continuous.

2. OPEN p-UPPER CONTINUOUS FUNCTIONS

We define new classes of functions lying between the class of g-upper
continuous and the class of porously continuous functions.

Definition 2.1. Let p € [0,1), = € I. The function f: I — R is called

1. P,-continuous at z if there exists an open set U C R such that d(U, z) >
o and f|U U{x} is continuous at x.

2. Sp-continuous at z if for each € > 0 there exists an open set U C I such
that d(U,x) > o and f(U) C (f(z) — €, f(z) +€).

Let o € (0,1], z € I. The function f: I — R is called

1. . -continuous at x if there exists an open set U C I such that d(U,z) >
o and f|U U {zx} is continuous at .

2. A,-continuous at x if for each € > 0 there exists an open set U C R such
that d(U,z) > o and f(U) C (f(z) — &, f(z) +€).

We denote the «class of all &2,-continuous, .7,-continuous,
M ,-continuous, AH,-continuous by L, Sy, M,, N,, respectively. Symbols
Po(f), Lo(f), Mo(f), N(f) denotes the sets of all points at which the
function f is &,-continuous, .#,-continuous, .#,-continuous, .#,-continuous,
respectively.

Remark 2.1. In [3] similar functions are considered. But in the definitions
A (f) and By(f) in |2] symmetric density is used. And there is connections
between A,(f), Br(f), o-upper continuity and porouscontinuity.

Some obvious relations between sets of open g-continuity of f will be
described in the following propositions.

Proposition 2.1. Let f: I — R. Then

‘@QQ(f)CgZ.Ql(f) andym(f)cym(f) Jor 0 < o1 <2 <1,
Moy (f) C Mo, (f) and Ao, (f) C N (f) for 0 < o1 <2 <1,
Po(f) C AMo(f) and Fo(f) C Ap(f) for 0 <o <1,

Moy ([) C Po (f) and Ny (f) C Fp,(f) for 0 < 01 <02 <1,
Po(f) C Fp(f) for0<p <1,

My(f) T AN(f) for 0 < o< 1.

Proposition 2.2. Let f: I = R, p€[0,1). Then P,(f) CUC,(f).
Proposition 2.3. Let f: I = R, p € (0,1]. Then #y(f) C wldCy(f).

S G Lo o~

The following two propositions follow directly from the definitions.
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Proposition 2.4. Let o € [0,1), x € I. If f: I — R is continuous at x
from the left or from the right then x € Z,(f) N P (f).

Proposition 2.5. Let o € (0,1], x € I. If f: I — R is continuous at x
from the left or from the right then x € N,(f) N A,(f).

We will show that approximate continuity does not imply any open p-
upper continuity. To this end we need well known theorem of Zahorski.

Theorem 2.1. [4] Let E be a set of F, type such that d(E,xz) =1 for all
x € E. There exists an approzimately continuous function f: E — R such
that 0 < f(x) <1 for all x € E and f(x) = 0 for all x ¢ E. Then the

function f is also upper semi-continuous.

Example 2.1. We will give an example of approximately continuous func-
tion which does not belong to ..

Let F C R be nowhere dense closed set with positive Lebesgue measure.
Let L(FE) be a set of density points of E. Then A L(E)) = A E), by
Lebesgue Density Theorem [4]. Let F' C L(E) be a set of Fy, type such
that A(F)) = AM(L(E)). Then F C L(F). By Theorem 2.1, there exists an
approximately continuous function f: R — R such that f(x) € (0, 1] for all
x € Fand f(xr) =0forall z € R\ F. Let zy € F, so f(xzp) > 0. For all
0 <e < f(xp) we have

{z:|f(z) — f(xo)| < e} C F.

The set F' is nowhere dense, so int{z: |[f(z) — f(x0)| < e} = 0. Hence f is
not .#p-continuous at .

The class of all weakly o-upper continuous functions consists the class of
all Lebesgue measurable functions [7], so all considered classes of functions
Py S o, My, N, consist the class of all Lebesgue measurable functions.

Lemma 2.1. Let U C R be open set, zg € R. Then

d(U,z0) > p(R\ U, zo).

Proof. Let p(R\ U,x9) = ¢. Then p™(R\ U,z9) = c or p~(R\ U, z0) = c.
Without loss of generality we may assume that p* (R \ U,z9) = c¢. There-
fore there is decreasing sequence {hy}n>1 of positive numbers such that
lim h, =0 and
n—oo
AR\ U, (zg,z0 + hy))

I, '

Therefore there is a sequence of open intervals {I,,},,>1 such that I, N (R \
U) =0 and |I,| = AR\ U, (zo,20 + hy)). Then I,, C U for each n > 1

pt(R\U,a0) = lim
n—o0
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and

E(U7 xU) Z a+(U> .CC'()) 2 a U Ika Zo Z

kE>1

A (Uk>1 Iy, 0 [0, w0 + hn])
> lim sup — =

n—oo hn
= lim sup 7< = ) > lim sup LIn) =

n—oo hn n—oo n

—timsup LEAND @020 hn)) gy 17 ) = p(R U, ).

n—oo hn

O

The next theorem follows immediately from Lemma 2.1

Theorem 2.2. Let f: I — R. Then

1. Po(f) C Py(f) for 0 € 10,1),
2. So(f) C Fp(f) for 0 €10,1),
3. My(f) C Ay(f) for o € (0,1],
4- No(f) C A(f) for 0 € (0,1].

We will show, in the next example, that all inclusions in Theorem 2.2 are
proper.

Example 2.2. We will construct f € .#; such that 0 € So(f), e.g. A1(f)\
So(f) # 0.

Let {xp}n>1 be a decreasing sequence of positive numbers such that
Tn—Tn4+1 __
Tptl 0 (

lim z, =0, xp — Tpt1 > Tnt1 — Tnto and lim for example,
n—oo

n—oo
T, = %) Let yn, zn € (Tp+1,2n) be such that z, — z, = n%%(xn — Tpt1),
Yn — Tnil = n%%(xn — Zpy1). Thus z,11 < yn < 2, <z, for each n > 1.
Notice that 2z, — y, = Z—ig(xn — Zpy1) for each n > 1.. Let f: R — R be
defined by

0 ifz € Uzozl[yna zn] U {0},
flx) = 1 if 2 e (0,00) \UnZy[yn: 2nl;
f(—z) ifx € (00,0).

Obviously, at each x # 0 the function f is continuous from the right or from
the left, and therefore R\ {0} C 4 (f). Let U = Uy~ (Yn, zn). Then for
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each n > 1 we have

0 00
Myg, k45 (0
AUND.z]) = M) e (@ = o)
n Tn Un
oo
Tk — X
>ni+f’>kz::n(lC k+1)_n+5xl_n+5
oo Yn Cn4Tx, n+T
Therefore
dU.0) = d*(U,0) > limint A0 g ATO02])
n—o00 Un, n—o00 Yn
zliminfn+5 =1

n—oo N +7

Hence d(U,0) = 1 and f is approximately continuous at 0. Moreover, U is

open, so 0 € 41 (f). N
For each ¢ € (0,1), R\ {z: [f(z) — f(0)] < e} € R\ L:Jl{xn} Let

A(®\ U (en)0m)

h € [zp41,2,). Since " < InTndl gapd lim EnIndl — ),

- Tn+1 n—o00 Tn+1

we deduce

=0.

A (R\ U fea}. (o,h>)
PR\ {a: | f(x) — F(0)] < £},0) = lim =

h—0%+ h
Thus 0 & So(f)-

Lemma 2.2. Let o € [0,1] and x € R. Let {E,: n € N} be a descending
o0 _
family of open sets such that x € () Ey, d(Ey,x) > o forn > 1. Then

n=1
there exists an open set E such that d(E,z) > o and for every positive
integer n there exists 6, > 0 such that EN (x — 0p, 2z + 0p,) C E,.

Proof. By assumptions, d(E,,z) > o for n > 1. Therefore EJF(En, x) > por

d (E,, ) > pfor each n. Hence there exists an infinite family {E,, : k € N}
such that E+(Enk,x) >oforallk >1ord (E,,z) > o foral k> 1.
Without loss of generality we may assume that the first possibility occurs.
Then d' (E,,z) > o for all n > 1, because {E,: n € N} is a descending
family.
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We shall construct inductively a decreasing sequence {zy, },>1 converging
to x such that

(1) )‘(En N [xn+la CCTL]) >

Ty — X

1
g(l——n> for n > 1.

Let x1 > x be any point for which w >o(1—3)and 21 — 2 <
1. Next, we can find x9 € (z,x1) such that W > Q(l —%),
)\(EQﬁ[x,IQ}

) > Q(l—%) and 20 — = < % There exists x < x3 < x9 for

To—x
. A(BoN[a: N E3N[z,z:
which % >Q(1—i), w > Q(l—%) and 3 —x < %
Assume that points x1,xs,...,z, with properties =z < x, < ... < 1,
)\(Ei_ ﬁ[:ri,cni_ D )\(E ﬁ[;r x; ) 1
W>Q(1—211)f0r26{2 Tl} W>Q(1—§)
and z;—x < % fori € {1,2,...,n} are chosen. Then there exists < xp11 <
2y such that MECLtll o g (1 — ) APefleel > (1 - )
and Tp+1 —x < n+1

Thus we have constructed inductively the sequence {z, },>1 satisfying con-
dition (1).

Let E= (En N (l'n+]_,fﬂn)). Obviously, E is open. Since

n=1

lim sup M > lim sup M En N [Tn11,70])

n—00 Tp — & n—00 Tp — &

>

1
> lim 9(1— ) =0,
n— oo on
we obtain d(FE,z) > o.
By the definition of the set F, for each n there exists d,, = z,, —z > 0 such
that EN (z — 6y, 2+ 6,) = ENx,z,) C E,. The proof is completed. [

Theorem 2.3. Let f: I — R and o € (0,1]. Then A#y(f) = No(f).

Proof. From Proposition 2.1 it is clear that it is sufficient to show 4,(f) C
My(f). Let g € A,(f). Then for each positive integer n there is an open
set E, such that d(E,,z0) > 0 and f(E,) C (f(zo) — %, f(zo) + L). By
Lemma 2.2 for sets E,,, we can construct an open set E such that d(E, xo) >
o and for each n there exists d,, > 0 for which E'N (z¢ — 0y, z0 + ) C E

The last condition implies that f|E U {zo} is continuous at zg. Thus zg €

AMo(f)- U

Theorem 2.4. Let p € [0,1), f: I = R, zg € I. Then zg € Py(f) if and
only if
lim d (int{x: |f(x) — f(z0)| < e}, z0) > 0.

e—0t
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Proof. Assume that f is &2,-continuous at zg. Let U C I be an open
set such that d(U,z¢) > o and f|U U {xo} is continuous at xo. Let ¢ >
0. Since f|UU{zp} is continuous at xg, we can find 6 > 0 such that
(xo — b, x0+6)NU C{z: |f(xo) — f(x)] < e}. Hence

d({z € I:|f(z0) — f(x)] < e}, z0) >
> d(int{z € U: |f(z0) — f(z)| < e}, z0) = d(U, z0)

for each € > 0. Therefore

lim d(int{z € I: |f(z0) — f(z)] < e}, z0) = d(U,z0) > o.

e—0t

Finally, assume that
o1 = lim d(int{z € I: |f(z0) — f(z)| < e}, 20) > 0.
e—0t

Using Lemma 2.2 for sets E, = {z € I: |f(zo) — f(z)] < 1} we can
construct an open set U such that d(U,x¢) > o1 > o and for each n there
exists 0, > 0 for which U N (29 — dn, 20 + 6,) C E,. The last condition
implies that f|i(z,) is continuous at zq. It follows that f is &,-continuous
at xp, what was to be shown. O

Theorem 2.5. Let 0 < 01 < 02 <1 and f: I — R. Then

MN(f) = M(f) C P, (f) T Fpu(f) C My, (f) =
= Ny (f) T Py (f) T Po(f) C A(f).

Proof. The proof follows immediately from Proposition 2.1 and Theorem 2.3.
O

Theorem 2.6. Let 0 < o1 < g2 < 1. Then
M= M C Py C Sy C Moy, =Ny C Py CPyC S
and all incusions are proper.

Proof. All inclusions follow from the previous theorem. We will only show
(in Examples 2.3-2.5) that they are proper. O

Example 2.3. Let 0 < 91 < g9 < 1. We will construct f: R — R such
that f € P, \ A,,.

We can find a sequence {[ay, by]}n>1 of pairwise disjoint closed intervals
such that 0 < by11 < a, < by, for each n and at (UnZylan, b,),0) = %.
Denote I, = [an, by] for every n > 1. Define a function f: R — R letting
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0 ifze{0tu U I,
n=1

f(z) = o0
1 ifze(—o00,0)U !1(b"+1’a") U (b1, 00).

The function f is continuous from the left or from the right at every point

[ee]
except 0. Hence R\ {0} € &, (f). If E = U (an,byn) then E is open

n=1
and the function f restricted to E U {0} is constant, so in particular, it is
continuous at zero. Moreover,

d(E,O):d+<G(an,bn,> (U%o) 91;92 > o1.

n=1

Hence 0 € Z,,(f) and f € Z,,.
But

d"(z: fx) < 1},0)=d" <U1n,o> 91+92 < 0o.

Moreover d ({z: f(x) < 1},0) = 0. Hence d ({z: f(z) < 1},0) < g2 and f
is not .#,,-continuous at 0. Therefore 0 & #,,(f) and f & #,,.

Example 2.4. Let o0 € (0,1). We will construct f: R — R such that
[ ey\ Sy
We can find a sequence {[ay,, by]}n>1 of pairwise disjoint closed intervals

such that 0 < b,41 < a, < by, for each n and d (U lan, b,),0) = o.
Define a function f: R — R letting

0 ifze {O} @] U [anabn]v
n=1

fz) =

1 ifx e (—00,0)U U (bpt1,an) U b, 00).
n=1

Observe that the function f is continuous from the left or from the right
oo

at every point except 0. Hence R\ {0} C .#,(f).Denote E = |J (an,byn)-
n=1

Then the function f|E U {0} is constant, so in particular, it is continuous
at zero. Moreover,

d(B,0)>d (B,0)=d" (D [an, b, o) = .
n=1

Hence 0 € #,(f) and f € #,.



SOME PROPERTIES OF OPENLY o-CONTINUOUS FUNCTIONS 83

Let € € (0,1). Since

d({x: | f(@) - F(O0)] < e},0) =" (U[an,bn],o> — o

we conclude that 0 € .7,(f) and f & .7,.

Example 2.5. Let o € [0,1). We will construct f: R — R such that
fes\ P,

We can find a sequence {[an, by }n>1 of pairwise disjoint closed intervals
such that 0 < b,41 < a, < by, for each n and dr (U2 [an, by),0) = o.
Define a function f: R — R by

0 if z € {0} U (by,00) U fj [an, bn),

B - n=1
f(x) = 1 if 2 € (—o0,0)U U {bn},
n=2
st it @ € (bng1,an),m > 1.

The function f is continuous from the right at every point except 0. Hence
R\ {0} € Z(f). Let Us = {x: |f(z) — f(0)| < e} \ {0} for each ¢ > 0.
Then U, = ;2 (ay, — €(an — bpy1), by). Hence Ue is open. Moreover,

o
d(U.,0)=d" <U (an — €(an — bns1), by), 0) =
n=1
— limsup D i (b — ar + e(ar — bet1))
n—oo b?’L
~ limsup >k (L= )(br — ax) +e(br — bry)) _
n—oo bn
oo
— lim sup <(1 _ @M n gbﬂ> _
n—so0 by, by

=(l—-¢)o+e>op.

Therefore 0 € 7,(f) and f € 7.
On the other hand,

lim @ (int{es [£(2) — FO)] > £},0) =

e—0t e—0t

= lim d" <U (an — e(a, — an),bn),O) = lim ((1-¢)o+¢) =0
n=1

Hence 0 ¢ Z,(f) and f ¢ &,, by Theorem 2.4.
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