Some classes of linear quasigroups

Petr Němec

Several important classes of quasigroups can be characterized by means of certain linear constructions (see e.g. [3], [4], [7], [8]). The first to investigate such linear quasigroups seems to be Toyoda [8] as early as in 1941, who showed that a quasigroup Q is medial iff there is an Abelian group Q(+), two automorphisms f, g of Q and an element $a \in Q$ such that fg = gf and xy = f(x) + g(y) + a for all $x, y \in Q$. Further, Belousov [1] (and independently Soublin [7] showed that a quasigroup Q is distributive iff there is a commutative Moufang loop Q(+) and an automorphism f of Q(+) such that 1 - f is an automorphism, $f(x) + x \in C(Q(+))$ and xy = f(x) + (1 - f)(y) for all $x, y \in Q$. As a further generalization in this direction, Kepka [3] proved that a quasigroup is trimedial (i.e., each subquasigroup generated by at most three elements is medial) iff there is a commutative Moufang loop Q(+), two automorphisms f, g of Q(+) and an element $a \in C(Q(+))$ such that fg = gf and xy = f(x) + g(y) + a for all $x, y \in Q$.

These results naturally suggest an idea of defining an arithmetical form of a quasigroup Q as a quadruple (Q(+), f, g, a) such that Q(+) is a commutative Moufang loop, f, g are automorphisms of Q(+), $a \in Q$ and xy = (f(x) + g(y)) + a for all $x, y \in Q$. We shall say that Q is a linear quasigroup if it has at least one arithmetical form. All possible arithmetical forms of a linear quasigroup were characterized in [5] and the structure of commutative Moufang loops occurring in different arithmetical forms of a linear quasigroup was investigated in [6]. This contribution is devoted to the description of some particular classes of linear quasigroups.

1 Preliminaries

Let Q be a groupoid. For each $a \in Q$ define transformations L_a and R_a of the set Q by $L_a(x) = ax$, $R_a(x) = xa$ for all $x \in Q$. These mappings are called *left translation* (by a) and right translation (by a), respectively. We shall say that Q is

- cancellable if all left and right translations are injective,
- divisible if all left and right translations are projective,
- a quasigroup if all left and right translations are bijective (i.e., permutations of the set Q),
- a loop if Q is a quasigroup with neutral element (denoted by 1),
- idempotent if it satisfies the identity $\mathbf{x}\mathbf{x} = \mathbf{x}$,
- left distributive if it satisfies the identity $\mathbf{x} \cdot \mathbf{y} = \mathbf{x} \mathbf{y} \cdot \mathbf{x} \mathbf{z}$,
- right distributive if it satisfies the identity $yz \cdot x = yx \cdot zx$,
- distributive if it is both left and right distributive,
- left semimedial if it satisfies the identity $\mathbf{x}\mathbf{x} \cdot \mathbf{y}\mathbf{z} = \mathbf{x}\mathbf{y} \cdot \mathbf{x}\mathbf{z}$,
- right semimedial if it satisfies the identity $yz \cdot xx = yx \cdot zx$,
- semimedial if it is both left and right semimedial,
 - medial if it satisfies the identity $\mathbf{x}\mathbf{y} \cdot \mathbf{u}\mathbf{v} = \mathbf{x}\mathbf{u} \cdot \mathbf{y}\mathbf{v}$,
 - trimedial if every subgroupoid of Q generated by at most 3 elements is medial.

Every left semimedial loop is commutative (the identity implies $xy \cdot x = xx \cdot y = x \cdot xy$ for all $x, y \in Q$ and the commutativity follows) and is called a commutative Moufang loop. The operation in a commutative Moufang loop Q will usually be denoted additively and in this case 0 will denote the neutral element of the loop Q(+) and the element b such that a + b = 0 will be denoted by -a.

From now on, let Q(+) be an additively written commutative Moufang loop. For all $a, b, c \in Q$, we define an element

$$[a,b,c] = ((a+b)+c) - (a+(b+c)),$$

so called associator of the elements a, b, c. Further, we define

$$C(Q(+)) = \{ a \in Q \mid [a, x, y] = 0 \text{ for all } x, y \in Q \}.$$

The set C(Q(+)) is called *center* of the loop Q(+). It is well known (see e.g. [1] or [2]) that the subloop generated by any two elements of Q is a group, C(Q(+)) is a normal subloop of Q(+) invariant under every automorphism of Q(+), every congruence of Q(+) is normal and $3x \in C(Q(+))$ for every

 $x \in Q$. If $a, b, c \in Q$ then [a, b, c] = -[b, a, c] = [b, c, a] = -[c, b, a] = [c, a, b] = -[a, c, b] = [a, a + b, c] and if [a, b, c] = 0 then the subloop of Q(+) generated by the set $\{a, b, c\}$ is a group.

1.1 LEMMA. Let Q(+) be a commutative Moufang loop and $a, b, c, d \in Q$. The following conditions are equivalent:

(i)
$$(a+b) + (c+d) = (a+c) + (b+d)$$
.

(ii)
$$[a-b,c-b,d-b] = 0$$
 . Some applicable and the entrained of the content of t

(iii)
$$[a-c,b-c,d-c]=0$$
 . Thus his out consider is a considerable following $[a-c,b-c,d-c]=0$

(iv)
$$[a-d,b-d,c-d]=0$$
 . The standard $[a-d,b-d,c-d]=0$

(v)
$$[b-a, c-a, d-a] = 0$$
.

PROOF. If (i) holds then, adding -2b to both sides, we get a+((c+d)-b)=((a+c)-b)+d and, adding -2b once more, we have (a-b)+(((c+d)-b)-b)=(((a+c)-b)-b)+(d-b). Since ((c+d)-b)-b=(c+d)-2b=(c-b)+(d-b) and ((a+c)-b)-b=(a-b)+(c-b), this implies (a-b)+((c-b)+(d-b))=((a-b)+(c-b)+(d-b) and hence (ii) holds. The converse implication can be proved by adding 2b twice and the rest is similar. \Box

- **1.2 COROLLARY.** Let Q(+) be a commutative Moufang loop and $a,b,c,d \in Q$ be such that (a+b)+(c+d)=(a+c)+(b+d). Then (x+y)+(u+v)=(x+u)+(y+v) for all $x,y,u,v \in \{a,b,c,d\}$. \square
- **1.3 COROLLARY..** Let Q(+) be a commutative Moufang loop and $a, b \in Q$. The following conditions are equivalent:

(i)
$$(a+b) + (x+y) = (a+x) + (b+y)$$
 for all $x, y \in Q$.

(ii)
$$(a+x)+(b+y)=(a+y)+(b+x)$$
 for all $x,y \in Q$.

(iii)
$$a-b \in C(Q(+))$$
. \square

Let $m \in \mathbf{Z}$. A mapping $f: Q \longrightarrow Q$ is said to be m-central if $f(x) + mx \in C(Q(+))$ for every $x \in Q$. Further, we shall say that a transformation f of the set Q is central if it is k-central for some $k \in \mathbf{Z}$.

1.4 LEMMA. Let Q(+) be a commutative Moufang loop and $n \in \mathbb{Z}$, n = 3k + m, $m \in \{0, 1, 2\}$ and f be a transformation of the set Q. Then:

(i) If f is n-central then f is m-central.

- (ii) The mapping $x \to nx$ is a (-m)-central endomorphism of Q(+).
- (iii) If f is central and Q is not associative then there is exactly one $r \in \{0, 1, 2\}$ such that f is r-central.

PROOF. The assertion (i) follows from the fact that $3x \in C(Q(+))$ for every $x \in Q$ and (ii), (iii) are clear. \square

- **1.5 LEMMA.** Let Q(+) be a commutative Moufang loop, $m, n \in \mathbb{Z}$ and f, g be endomorphisms of the loop Q(+) such that f is m-central and g is n-central. Then:
- (i) The endomorphism fg is (-mn)-central.
- (ii) The mapping f+g, defined by (f+g)(x) = f(x)+g(x) for every $x \in Q$, is an (m+n)-central endomorphism.
- (iii) If f is an automorphism then f^{-1} is an m-central automorphism.

PROOF. Let $x, y \in Q$ be arbitrary elements.

- (i) As $fg(x) + mg(x) \in C(Q(+))$ and $-g(mx) nmx \in C(Q(+))$, we immediately get $fg(x) nm(x) \in C(Q(+))$.
- (ii) Put a = -f(x) mx, b = -g(x) nx, c = -f(y) my, d = -g(y) ny. Then $a, b, c, d \in C(Q(+))$ and ((f(x)+g(x))+(f(y)+(g(y)))+(a+b+c+d) = -mx-nx-my-ny = ((f(x)+f(y))+(g(x)+g(y)))+(a+b+c+d), so that (f+g)(x)+(f+g)(y)=(f+g)(x+y). Further, ((f(x)+g(x))+(m+n)x)+(a+b)=0, however $a+b \in C(Q(+))$ and so $(f+g)(x)+(m+n)x \in C(Q(+))$. (iii) With respect to 1.4(i), we can assume that $m \in \{0,1,2\}$. If m=0 then Q(+) is associative and there is nothing to prove. For m=1 we have $f^{-1}(x)+x=f(f^{-1}(x))+f^{-1}(x) \in C(Q(+))$, and if m=2 then $x+2f^{-1}(x) \in C(Q(+))$, hence $-x+f^{-1}(x) \in C(Q(+))$ and so $f^{-1}+2x \in C(Q(+))$. \square

2 Basic properties of linear quasigroups

An arithmetical form of a groupoid Q is a quadruple (Q(+), f, g, a), where Q(+) is a commutative Moufang loop (with the same underlying set as the groupoid Q), f, g are automorphisms of the loop Q(+), $a \in Q$ and

$$xy = (f(x) + g(y)) + a$$

for all $x, y \in Q$. Obviously, a groupoid having at least one arithmetical form is a quasigroup and it is called *linear quasigroup*.

2.1 LEMMA. Let (Q(+), f, g, a) be an arithmetical form of a linear quasigroup Q. Then:

(i) $a = 0 \cdot 0$, $f = R_{q^{-1}(a)}$, $g = L_{f^{-1}(a)}$.

(ii) $(x+y) + a = R_{g^{-1}(a)}^{-1}(x) \cdot L_{f^{-1}(a)}^{-1}(y)$ for all $x, y \in Q$.

(iii)
$$xy = (f(x) + 2a) + (g(y) - a) = (f(x) - a) + (g(y) + 2a)$$
 for all $x, y \in Q$.

PROOF. Since $3a \in C(Q(+))$, for all $x, y \in Q$ we have xy + 3a = (f(x) + g(y)) + 4a = (f(x) + 2a) + (g(y) + 2a) and hence xy = (xy + 3a) - 3a = (f(x) - a) + (g(x) + 2a) = (f(x) + 2a) + (g(x) - a). The rest is clear. \Box

Clearly, 2.1(ii) implies that the loop Q(+) is an isotope of the quasigroup Q. Consequently, every loop isotopic to a linear quasigroup is a Moufang loop.

2.2 PROPOSITION. Let (Q(+), f, g, a) be an arithmetical form of a linear quasigroup Q and ϱ be a relation on the set Q. Then ϱ is a normal congruence of Q iff ϱ is a congruence of Q(+) which is invariant with respect to f, g, f^{-1}, g^{-1} .

PROOF. First, let ϱ be a normal congruence of Q. If $(x,y) \in \varrho$ then $(f(x),f(y)) \in \varrho$ and $(f^{-1}(x),f^{-1}(y)) \in \varrho$ and similarly for g. Further, using 2.1(ii), we have $(a+(x+z),a+(y+z)) \in \varrho$ for every $z \in Q$ and (taking z=-2a) also $(x-a,y-a) \in \varrho$. Since x+z=(a+(x+z))-a and y+z=(a+(y+z))-a, we obtain $(x+z,y+z) \in \varrho$ for every $z \in Q$, i.e., ϱ is a congruence of Q(+). The converse is straightforward. \square

2.3 PROPOSITION. The class \mathcal{L} of all linear quasigroups is closed under cartesian products and (quasigroup) homomorphic images.

PROOF. The fact that \mathcal{L} is closed under homomorphic images follows from 2.2 and the rest is clear. \square

2.4 PROPOSITION. Let (Q(+), f, g, a) be an arithmetical form of a linear quasigroup Q. Then Q is commutative iff f = g.

PROOF. If Q is commutative then $f(x) + a = x \cdot 0 = 0 \cdot x = g(x) + a$ for every $x \in Q$ and hence f = g. The converse is clear. \square

2.5 PROPOSITION. Let (Q(+), f, g, a) be an arithmetical form of a linear quasigroup Q. Then Q is idempotent iff a = 0 and f(x) + g(x) = x for every $x \in Q$.

PROOF. If Q is idempotent then $a = 0 \cdot 0 = 0$ and hence f(x) + g(x) = xx = x for every $x \in Q$. The converse is obvious. \square

2.6 PROPOSITION. Let (Q(+), f, g, a) be an arithmetical form of a linear quasigroup Q. Then Q is a loop iff $f = g = \mathrm{id}_Q$. In this case, Q is a commutative Moufang loop.

PROOF. If Q is a loop with neutral element e then $g(e) + a = 0 \cdot e = 0 = e \cdot 0 = f(e) + a$ and so g(e) = f(e) = -a. Consequently, for every $x \in Q$ we have f(x) = f(x) + (-a + a) = (f(x) - a) + a = (f(x) + g(e)) + a = xe = x = ex = (f(e) + g(x)) + a = (g(x) - a) + a = g(x). Conversely, if $f = g = \mathrm{id}_Q$ then, for all $x, y \in Q$, we have xy = (x + z) + a and hence $x \cdot (-a) = x = (-a) \cdot x$. Thus Q is a loop with neutral element -a and, for all $x, y, z \in Q$, $xx \cdot yz = (((x + x) + a) + ((y + z) + a)) + a = (((x + x) + (y + z)) + 2a) + a = (((x + y) + (x + z)) + 2a) + a = (((x + y) + a) + ((x + z) + a)) + a = xy \cdot xz$.

3 Semimedial linear quasigroups

3.1 PROPOSITION. Let (Q(+), f, g, a) be an arithmetical form of a linear quasigroup Q. The following conditions are equivalent:

- (i) Q is left semimedial.
- (ii) Q is right semimedial.
- (iii) Q is semimedial.
- (iv) fg = gf and fg^{-1} is a 2-central automorphism of the loop Q(+).

PROOF. For all $u, v, w \in Q$ we have

$$uu \cdot vw = (((f^{2}(u) + fg(U)) + f(a)) + ((gf(v) + g^{2}(w)) + g(a))) + a, (1)$$

$$uv \cdot uw = (((f^{2}(u) + fg(v)) + f(a)) + ((gf(u) + g^{2}(w)) + g(a))) + a . (2)$$

If (i) holds then, taking $u=0, w=-g^{-1}(a)$, we get f(a)+gf(v)=fg(v)+f(a) and hence fg=gf. For arbitrary $x,y,z\in Q$ put $u=f^{-1}g^{-1}(x), v=f^{-1}g^{-1}(y), w=g^{-2}(z)$. Then

$$((fg^{-1}(x) + x) + f(a)) + ((y+z) + g(a)) =$$

$$= ((fg^{-1}(x) + y) + f(a)) + ((x+z) + g(a)).$$
(3)

Hence (taking x = 0) f(a) + ((y + z) + g(a)) = (y + f(a)) + (z + g(a)) for all $y, z \in Q$. Since Q(+) is commutative, for all $u, v \in Q$ we have (f(a) + u) + (g(a) + v) = (f(a) + v) + (g(a) + u) and consequently, using 1.2,

$$(f(a) + g(a)) + (u + v) = (f(a) + u) + (g(a) + v)$$
 (4)

Hence the left-hand side of 3 is equal to $(f(a) + g(a)) + ((fg^{-1}(x) + x) + (y+z))$ and the right-hand side to $(f(a)+g(a)) + ((fg^{-1}(x)+y)+(x+z))$. Now, for all $x, y, z \in Q$,

$$(fg^{-1}(x) + x) + (y + z) = (fg^{-1}(x) + y) + (x + z).$$
 (5)

By 1.2, $fg^{-1}(x) - x \in C(Q(+))$, hence $fg^{-1}(x) + 2x \in C(Q(+))$ and fg^{-1} is 2-central.

If (iv) holds then $f(x) - x \in C(Q(+))$ for every $x \in Q$ and, with respect to 1.2, 5 holds for all $x, y, z \in Q$. Since $fg^{-1} = g^{-1}f$, we have $g^{-1}f(a) - a \in C(Q(+))$, hence $f(a) - g(a) \in C(Q(+))$ and so, using 1.2 again, 4 holds for all $u, v \in Q$. Adding f(a) + g(a) to both sides of 5 and using 4, we conclude that 3 holds for all $x, y, z \in Q$. If $u, v, w \in Q$ are arbitrary and $x = fg(u), y = fg(v), z = g^2(w)$ then 3 implies 1 and 2) $uu \cdot vw = uv \cdot uw$, i.e., Q is left semimedial.

The equivalence of (ii) and (iv) is an immediate consequence of the fact that Q is right semimedial iff Q(*) is left semimedial, where x*y=yx=(g(x)+f(y))+a for all $x,y\in Q$ (by 1.5(iii), the mapping $gf^{-1}=(fg^{-1})^{-1}$ is 2-central iff fg^{-1} is 2-central). \square

- **3.2 PROPOSITION.** Let (Q(+), f, g, a) be an arithmetical form of a linear quasigroup Q. The following conditions are equivalent:
- (i) Q is left distributive.
 - (ii) Q is right distributive.
- (iii) Q is distributive.
- (iv) a = 0, f(x) + g(x) = x for every $x \in Q$ and fg^{-1} is 2-central.
- (v) a = 0, f(x) + g(x) = x for every $x \in Q$ and f is 1-central.

PROOF. The equivalence of (i) – (iv) is an immediate consequence of 2.5 and 3.1, since Q is (left, right) distributive iff it is idempotent and (left, right) semimedial. If (iv) holds then fg = gf, $f^{-1}g = (g^{-1}f)^{-1}$ is 2-central and $f^{-1}g(x) + 2x \in C(Q(+))$ for every $x \in Q$, hence $g(x) + 2f(x) = x + f(x) \in C(Q(+))$ and f is 1-central. Conversely, if (v) holds then $2x + 2f(x) \in C(Q(+))$ for every $x \in Q$, hence $2x - f(x) = x + (x - f(x)) = x + g(x) \in C(Q(+))$ and g is 1-central. By 1.5(i), fg^{-1} is 2-central. \square

- **3.3 PROPOSITION.** Let (Q(+), f, g, a) be an arithmetical form of a linear quasigroup Q. The following conditions are equivalent:
- $(i) \ Q \ is \ medial. (a) y = (a + (b) + (b)$

(ii) fg = gf and Q(+) is an Abelian group.

PROOF. For all $u, v, w, t \in Q$,

$$uv \cdot wt = (((f^2(u) + fg(v)) + f(a)) + ((gf(w) + g^2(t)) + g(a))) + a,$$

$$uw \cdot vt = (((f^2(u) + fg(w)) + f(a)) + ((gf(v) + g^2(t)) + g(a))) + a,$$

and hence Q is medial iff

$$((f^{2}(u) + fg(v)) + f(a)) + ((gf(w) + g^{2}(t)) + g(a)) =$$

$$= ((f^{2}(u) + fg(w)) + f(a)) + ((gf(v) + g^{2}(t)) + g(a))$$
(6)

for all $u, v, w, t \in Q$.

Suppose that (i) holds and $x,y,z\in Q$ are arbitrary. By 3.1, fg=gf and $f(a)-g(a)\in C(Q(+))$. Taking $u=f^{-2}(x),\ v=0,\ w=g^{-1}f^{-1}(y),$ $t=g^{-2}(z)$, 6 yields

$$(x+f(a)) + ((y+z)+g(a)) = ((x+y)+f(a)) + (z+g(a)).$$
 (7)

However $f(a) - g(a) \in C(Q(+))$, and so (with respect to 1.3) (x + f(a)) + ((y+z)+g(a)) = (x+(y+z))+(f(a)+g(a)), ((x+y)+f(a))+(z+g(a)) = ((x+y)+z)+(f(a)+g(a)). Now 7 implies x+(y+z)=(x+y)+z and the converse implication is obvious. \Box

4 Linear F-quasigroups

Let Q be a quasigroup. For every $x \in Q$, there are uniquely determined elements (called *local units*) e_x , f_x such that $xe_x = f_x x = x$. The quasigroup Q is called

- an LF-quasigroup if $x \cdot yz = xy \cdot e_xz$ for all $x, y, z \in Q$,
 - an RF-quasigroup if $yz \cdot x = yf_x \cdot zx$ for all $x, y, z \in Q$,
 - \vdash an LE-quasigroup if $x \cdot yz = f_xy \cdot xz$ for all $x, y, z \in Q$,
 - an RE-quasigroup if $yz \cdot x = yx \cdot ze_x$ for all $x, y, z \in Q$.
- **4.1 PROPOSITION.** Let (Q(+), f, g, a) be an arithmetical form of a linear quasigroup Q. The following conditions are equivalent:
- (i) Q is an LF-quasigroup.

(ii) fg = gf, $a \in C(Q(+))$ and f is 1-central.

PROOF. For every $x \in Q$ we have $x = xe_x = (f(x) + g(e_x)) + a$ and hence $e_x = g^{-1}((x - a) - f(x)) = (g^{-1}(x) - g^{-1}(a)) - g^{-1}f(x)$. In particular, $e_0 = -g^{-1}(a)$. For all $u, v, w \in Q$ we have

$$u \cdot vw = (f(u) + ((gf(v) + g^2(w)) + g(a))) + a \tag{8}$$

$$uv \cdot e_u w = ((f^2(u) + fg(v)) + f(a)) + ((gf(e_u) + g^2(w)) + g(a))) + a \quad (9)$$

If (i) holds then (taking u = 0, $w = -g^{-1}(a)$) we have

$$gf(v) = (fg(v) + f(a)) - gfg^{-1}(a).$$
 (10)

Hence (for v=0) $f(a)=gfg^{-1}(a)$ and 10 yields fg=gf. For arbitrary $x,y,z\in Q$ put $u=f^{-1}(x),\,v=f^{-1}g^{-1}(y),\,w=g^{-2}(z)$. Then

$$x + ((y+z) + g(a)) = ((f(x) + y) + f(a)) + ((gf(e_{f^{-1}(x)}) + z) + g(a)).$$
(11)

Since $gf(e_{f^{-1}(x)}) = (x - f(a)) - f(x)$, we can rewrite 11 as

$$x + ((y+z) + g(a)) = ((f(x) + y) + f(a)) + ((((x-f(a)) - f(x)) + z + g(a)).$$
(12)

Taking x = 0, v = z - f(a), we conclude that, for all $u, v \in Q$,

$$g(a) + (y + (f(a) + v)) = (f(a) + y) + (v + g(a)).$$
(13)

In particular, for v = -f(a) we have g(a) + u = (f(a) + u) + (g(a) - f(a)) and hence 13 yields g(a) + (y + (f(a) + v)) = (f(a) + y((f(a) + v) + (g(a) - f(a)))). Writing again z = v + f(a), we get (f(a) + (g(a) - f(a)) + (y + z)) = (f(a) + y) + (z + (g(a) - f(a))) for all $y, z \in Q$. By 1.3, $f(a) - (g(a) - f(a)) = 2f(a) - g(a) \in C(Q(+))$, hence $-f(a) - g(a) \in C(Q(+))$ and, adding this element to both sides of 12, we get x + ((y + z) - f(a)) = (f(a) + (f(x) + y)) + ((((x - f(a)) - f(x)) + z) - f(a)). Adding 3f(a) and writing u = z + f(a), for all $x, y, u \in Q$ we have

$$x + (u + (y + f(a))) = (f(a) + (f(x) + y)) + (((x - f(a)) - f(x)) + f(a)) + u).$$
(14)

From this (taking y = 0 and u = -f(a)) x = (f(a)+f(x))+((x-f(a))-f(x)), hence x+(-f(a)-f(x)) = (x-f(a))-f(x) and [x,-f(a),-f(x)] = 0. Thus the subloop of Q(+) generated by the set $\{x,f(a),f(x)\}$ is associative and [x,f(x)+f(a),f(a)] = 0. Hence ((x-f(a))-f(x))+f(a) = (x+(-f(x)-f(a)))+f(a) = x-f(x) and we can rewrite 12 in the form

$$x + (u + (y + f(a))) = (f(a) + (f(x) + y) + ((x - f(x)) + u).$$
 (15)

Taking y = -f(a), we have x + u = f(x) + ((x - f(x)) + u), hence (x + u) - f(x) = (x - f(x)) + u and [u, x, -f(x)] = 0. Thus [x, f(x0, u] = 0 for all $x, u \in Q$. Further, taking u = 0 in 15, we get x + (y + f(a)) = (f(a) + (f(x) + y)) + (x - f(x)) and hence f(a) + (f(x) + y) = (x + (y + f(a)) + (f(x) - x)). Writing v = y + f(a), 15 implies that x + (u + v) = ((x + v) + (f(x) - x)) + ((x - f(x)) + u). However [x, f(x), x + v] = 0, hence (x + v) + (f(x) - x) = v + f(x) and x + (u + v) = (v + f(x)) + ((x - f(x)) + u). Since u + v = v + u, we get (f(x) + v) + ((x - f(x)) + u) = (f(x) + u) + ((x - f(x)) + v). With respect to 1.3, $x - 2f(x) \in C(Q(+))$, hence $x + f(x) \in C(Q(+))$ and f(x) = 0 is 1-central. Adding central elements -x - f(x) and x + f(x) to both sides of 15, we get x + (u + (y + f(a))) = (f(a) + (y - x)) + (2x + u) and so (adding -3x) (u - x) + ((y + f(a)) - x) = (f(a) + (y - x)) + (u - x). Thus (f(a) + y) - x = f(a) + (y - x) for all $x, y \in Q$, hence $f(a) \in C(Q(+))$ and so $a \in C(Q(+))$, since C(Q(+)) is invariant with respect to every automorphism of Q(+).

Conversely, if (ii) holds then $(x-f(x))-f(x)\in C(Q(+))$ and (with respect to 1.3) x+(y+z)=(f(x)+(x-f(x)))+(y+z)=(f(x)+y)+((x-f(x))+z). Since $f(a),g(a)\in C(Q(+))$, 12 and consequently 11 hold for all $x,y,z\in Q$. If $u,v,w\in Q$ are arbitrary and $x=f(u),\ y=fg(v),\ z=g^2(w)$ then 11 implies (see 9 and 8) $u\cdot vw=uv\cdot e_uw$. \square

- **4.2 PROPOSITION.** Let (Q(+), f, g, a) be an arithmetical form of a linear quasigroup Q. The following conditions are equivalent:
 - (i) Q is an RF-quasigroup.
 - (ii) fg = gf, $a \in C(Q(+))$ and g is 1-central.

PROOF. It suffices to use 4.1 for Q(*), where x*y=yx for all $x,y\in Q$.

- **4.3 PROPOSITION.** Let (Q(+), f, g, a) be an arithmetical form of a linear quasigroup Q. The following conditions are equivalent:
 - (i) Q is an LE-quasigroup.
 - (ii) Q is an RF-quasigroup.
- (iii) fg = gf, $a \in C(Q(+))$ and g is 1-central.

PROOF. For every $x \in Q$, $x = f_x x = (f(f_x) + g(x)) + a$ and so $f_x = (f^{-1}(x) - f^{-1}(a)) - f^{-1}g(x)$. In particular, $f_0 = -f^{-1}(a)$. If $u, v, w \in Q$ are arbitrary then

$$u \cdot vw = (f(u) + ((gf(v) + g^{2}(w)) + g(a))) + a,$$

$$f_u v \cdot u w = (((f^2(f_u) + fg(v)) + f(a)) + ((gf(u) + g^2(w)) + g(a))) + a.$$

If (i) holds then, taking $u=0, w=-g^{-1}(a)$, we immediately get fg=gf. For arbitrary $x,y,z\in Q$, put $u=f^{-1}(x), v=f^{-1}g^{-1}(y), w=g^{-2}(z)$. Then

$$x + ((y+z) + g(a)) = ((f^{2}(f_{f^{-1}(x)} + y) + f(a)) + ((g(x) + z) + g(a)).$$
 (16)

Since $f^2(f_{f^{-1}(x)}) = (x - f(a)) - g(x)$, we can rewrite 15 in the form

$$x + ((y+z) + g(a)) = ((((x-f(a)) - g(x)) + y) + f(a)) + ((g(x) + z) + g(a)).$$
(17)

Taking x = 0, we get (y + z) + g(a) = y + (z + g(a)) for all $y, z \in Q$, hence $g(a) \in C(Q(+))$ and $a \in C(Q(+))$. Now 16 yields

$$x + (y+z) = ((x-g(x))+g(x)) + (y+z) = ((x-g(x))+y) + (g(x)+z).$$
(18)

By 1.3, $(x - g(x)) - g(x) = x - 2g(x) \in C(Q(+))$, hence $x + g(x) \in C(Q(+))$ for every $x \in Q$ and g is 1-central.

Conversely, if (iii) holds then $x-2g(x) \in C(Q(+))$ and 1.3 implies that 18 holds for all $x, y, z \in Q$. As $f(a), g(a) \in C(Q(+))$, 17 and consequently 16 hold for all $x, y, z \in Q$. If $u, v, w \in Q$ are arbitrary and x = f(u), y = fg(v), $z = g^2(w)$ then 16 implies $u \cdot vw = f_uv \cdot uw$ and hence Q is an LE-quasigroup.

The equivalence of (ii) and (iii) is an immediate consequence of 4.2. \Box

4.4 PROPOSITION. Let (Q(+), f, g, a) be an arithmetical form of a linear quasigroup Q. The following conditions are equivalent:

- (i) Q is an RE-quasigroup.
- (ii) Q is an LF-quasigroup.
- (iii) gf = gf, $a \in C(Q(+))$ and f is 1-central.

PROOF. It suffices to use 4.3 on Q(*), where x*y=yx for all $x,y\in Q$.

References

- [1] V.D.Belousov, Osnovy teorii kvazigrup i lup, Nauka, Moskva, 1967.
- [2] R.H.Bruck, A Survey of Binary Systems, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1958.

- [3] T.Kepka, Structure of triabelian quasigroups, Comment. Math. Univ. Carolinae 17 (1976), 229–240.
- [4] T.Kepka, Hamiltonian quasimodules and trimedial quasigroups, Acta Univ. Carolinae Math. Phys. 26,1 (1985), 11–20.
- [5] P.Němec, Arithmetical forms of quasigroups, Comment. Math. Univ. Carolinae 29 (1988), 295–302.
- [6] P.Němec, Commutative Moufang loops corresponding to linear quasi-groups, Comment. Math. Univ. Carolinae 29 (1988), 303-308.
- [7] J.-P.Soublin, Etude algébrique de la notion de moyenne, J. Math. Pures Appl. 50 (1971), 53-264.
- [8] K.Toyoda, On axioms of linear functions, Proc. Imp. Acad. Tokyo 17 (1941), 221–227.