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Some classes of linear quasigroups

Petr Némec

Several important classes of quasigroups can be characterized by me-
ans of certain linear constructions (see e.g. (3], (4], [7], [8]). The first to
investigate such linear quasigroups seems to be Toyoda [8] as early as in
‘1941, who showed that a quasigroup @ is medial iff there is an Abelian
group Q(+), two automorphisms f, g of Q and an element a € Q such that
fg=gf and zy = f(z) + g(y) + a for all z,y € Q. Further, Belousov [1]
(and independently Soublin [7] showed that a quasigroup Q is distributive
iff there is a commutative Moufang loop Q(+) and an automorphism f
of Q(+) such that 1 — f is an automorphism, f(z) + z € C(Q(+)) and
zy = flz) + (1 — f)(y) for all z,y € Q. As a further generalization in
this direction, Kepka [3] proved that a quasigroup is trimedial (i.e., each
subquasigroup generated by at most three elements is medial) iff there is
a commutative Moufang loop Q(+), two automorphisms f, g of @Q(+) and
an element a € C(Q(+)) such that fg = gf and zy = f(z) + g(y) + a for
all z,y € Q.

These results naturally suggest an idea of defining an arithmetical
Jorm of a quasigroup Q as a quadruple (Q(+), f,g,a) such that Q(+) is a
commutative Moufang loop, f,g are automorphisms of Q(+), a €  and
zy = (f(z) + g(y)) + a for all z,y € Q. We shall say that Q is a linear
quasigroup if it has at least one arithmetical form. All possible arithmetical
forms of a linear quasigroup were characterized in [5] and the structure of
commutative Moufang loops occurring in different arithmetical forms of a
linear quasigroup was investigated in [6]. This contribution is devoted to
the description of some particular classes of linear quasigroups.

1 Preliminaries

Let Q be a groupoid. For each a € @ define transformations L, and R, of
the set Q by L,.(z) = az, Ry(z) = za for all z € Q. These mappings are
called left translation (by a) and right translation (by a), respectively. We
shall say that @ is
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— cancellable if all left and right translations are injective,
— divisible if all left and right translations are projective,

— a quasigroup if all left and right translations are bijective (i.e., per-
mutations of the set Q),

— a loop if @) is a quasigroup with neutral element (denoted by 1),
— tdempotent if it satisfies the identity xx = x,

— left distributive if it satisfies the identity x -y = xy - xz,

— right distributive if it satisfies the identity yz - x = yx - zx,

— distributive if it is both left and right distributive,

— left semimedial if it satisfies the identity xx - yz = xy - xz,

— right semimedial if it satisfies the identity yz - xx = yx - zx,

— semimedial if it is both left and right semimedial,

— medial if it satisfies the identity xy - uv = xu - yv,

— trimedial if every subgroupoid of () generated by at most 3 elements
is medial.

Every left semimedial loop is commutative (the identity implies zy-z =
zz -y = x-zy for all z,y € Q and the commutativity follows) and is called
a commutative Moufang loop. The operation in a commutative Moufang
loop @ will usually be denoted additively and in this case 0 will denote the
neutral element of the loop Q(+) and the element b such that a + b = 0
will be denoted by —a.

From now on, let Q(+) be an additively written commutative Moufang
loop. For all a,b,c € Q, we define an element

la,b,c] = ((a+b)+¢c)—(a+ (b+¢)),
so called associator of the elements a, b, c. Further, we define

CQR(+) ={aeQ|fa,z,y]=0forallz,ycQ}.

The set C(Q(+)) is called center of the loop Q(+). It is well known (see e.g.
[1] or [2]) that the subloop generated by any two elements of @ is a group,
C(Q(+)) is a normal subloop of Q(+) invariant under every automorphism
of Q(+), every congruence of Q(+) is normal and 3z € C(Q(+)) for every
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z € Q. If a,b,c € Q then [a,b,c] = —[b,a,c] = [b,c,a] = —[¢,b,a] =
[¢,a,b] = —[a,c,b] = [a,a+b,c] and if [a, b, c] = 0 then the subloop of Q(+)
generated by the set {a,b,c} is a group.

1.1 LEMMA. Let Q(+) be a commutative Moufang loop and a,b,c,d € Q.
The following conditions are equivalent:

(i) (@+bd)+(c+d)=(a+c)+(b+d).

(ii) [a —b,c—b,d—b] =0.

(iii) [@ —¢,b—c,d—c] =0.

(iv) [a—d,b—d,c—d] =0.

(v) b—a,c—a,d—a)]=0.
PRroOF. If (i) holds then, adding —2b to both sides, we get a+ ((c+d)—b) =
((a + ¢) — b) + d and, adding —2b once more, we have (a — b) + (((c + d) —
b) —b)) = (((a+c¢c)—b) —b) +(d—b). Since ((c+d)—b)—b= (c+d)—2b=
(c—b)+(d—1>) and ((a +¢) —b) —b = (a —b) + (c — b), this implies
(@a—b)+((c—b)+(d—b)) = ((a—b)+ (c—b) + (d —b) and hence (ii) holds.

The converse implication can be proved by adding 2b twice and the rest is
similar. O

1.2 COROLLARY. Let Q(+) be a commutative Moufang loop and
a,b,c,d € Q be such that (a+b) + (c+d) =(a+c)+ (b+d). Then
(z+y)+ (u+v) = (z+u)+ (y+v) for all z,y,u,v € {a,b,c,d}. O

1.3 COROLLARY.. Let Q(+) be a commutative Moufang loop and
a,b € Q. The following conditions are equivalent:

i) (@a+b)+(z+y)=(a+2z)+(b+y) forallz,y € Q.
(ii) (a+z)+(b+y)=(a+y)+(b+2z) forallz,y € Q.
(iii) e — b€ C(Q(+)). O
Let m € Z. A mapping f : Q — Q is said to be m-central if f(z) +

mz € C(Q(+)) for every z € Q. Further, we shall say that a transformation
f of the set @ is central if it is k-central for some k € Z.

1.4 LEMMA. Let Q(+) be a commutative Moufang loop and n € Z,
n =3k +m, m € {0,1,2} and f be a transformation of the set ). Then:

(i) If f is n-central then f is m-central.
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(it) The mapping ¢ — nz is a (—m)-central endomorphism of Q(+).

(iii) If f is central and @ is not associative then there is exactly one
r € {0,1,2} such that f is r-central.

PROOF. The assertion (i) follows from the fact that 3z € C(Q(+)) for
every z € @ and (ii), (iii) are clear. O

1.5 LEMMA. Let Q(+) be a commutative Moufang loop, m,n € Z and
[, 9 be endomorphisms of the loop Q(+) such that f is m-central and g is
n-central. Then:

(i) The endomorphism fg is (—mn)-ceniral.

(ii) The mapping f +g, defined by (f +g)(z) = f(z)+g(z) for every z € Q,
is an (m + n)-central endomorphism.

(iii) If f is an automorphism then f~' is an m-central automorphism.

PROOF. Let z,y € Q be arbitrary elements.

(i) As fg(z) + mg(z) € C(Q(+)) and —g(mz) — nmz € C(Q(+)), we
immediately get fg(z) — nm(z) € C(Q(+)).

(ii) Put a = — f(z) —mz, b = —g(z) —nz, c = —f(y) —my, d = —g(y) -
Then a,b,c,d € C(Q(+)) and ((f(z)+g(2))+(f (y)+(9()))+(a+b+c+d) =
—mz—nz—my—ny = ((f(z)+f(y))+(9(z)+9(y)))+(a+b+c+d), so that
(f+9)(z)+(f+9)(y) = (f+9)(z+y). Further, ((f(z)+g(z))+(m+n)z)+
(a-+b) = 0, however a-+b € C(Q(+)) and so (f-+9) (z)+(m-+n)z € C(Q(+)).
(iii) With respect to 1.4(i), we can assume that m € {0,1,2}. If m =0
then Q(+) is associative and there is nothing to prove. For m = 1 we
have f~Yz) + = = f(f (=) + f~(z) € C(Q(+)), and if m = 2 then
z+2f71(z) € C(Q(+)), hence —z + f~1(z) € C(Q(+)) and so f~1 +2z €

C(Q(+)). O

2 Basic properties of linear quasigroups

An arithmetical form of a groupoid @ is a quadruple (Q(+), f,g,a), where
Q(+) is a commutative Moufang loop (with the same underlying set as the
groupoid Q), f, g are automorphisms of the loop Q(+), a € Q and

zy = (f(z) +9(y)) +a
for all z,y € Q. Obviously, a groupoid having at least one arithmetical

form is a quasigroup and it is called linear gquasigroup.

2.1 LEMMA. Let (Q(+), f,9,a) be an arithmetical form of a linear qua-
sigroup (). Then:
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(1) a=0; 0, f = Rg—l(a), g = Lf"l(a) .

(i) (z +y) +a= R;_l, (@) L;_ll(a) (y) forallz,y € Q.

(iii) zy = (f(z) +2a) + (9(y) —a) = (f(z) —a) +(9(y) +2a) for all z,y € Q.

PROOF. Since 3a € C(Q(+)), for all z,y € Q we have zy + 3a = (f(z) +

9(y)) +4a = (f(z) + 2a) + (g(y) + 2a) and hence zy = (zy + 3a) — 3a =

(f(z) —a) + (g(z) + 2a) = (f(z) + 2a) + (g(x) — a). The rest is clear. O
Clearly, 2.1(ii) implies that the loop Q(+) is an isotope of the qua-

sigroup . Consequently, every loop isotopic to a linear quasigroup is a
Moufang loop.

2.2 PROPOSITION. Let (Q(+),f,9,a) be an arithmetical form of a
linear quasigroup @ and g be a relation on the set (). Then g is a normal
congruence of Q iff p is a congruence of Q(+) which is invariant with respect

to f,g,f 97",

PrROOF. First, let ¢ be a normal congruence of . If (z,y) € g then
(f(z), f(y)) € o and (f~Y(=z),f (y)) € o and similarly for g. Further,
using 2.1(ii), we have (a + (z + 2),a + (y + z)) € p for every z € @ and
(taking z = —2a) also (z —a,y —a) €. Sincez+z=(a+ (z+2)) —a
and y+ 2z = (a+ (y + 2z)) — a, we obtain (z + 2,y + z) € p for every z € Q,
i.e., o is a congruence of Q(+). The converse is straightforward. O

2.3 PROPOSITION. The class L of all linear quasigroups is closed under
cartesian products and (quasigroup) homomorphic images.

PROOF. The fact that L is closed under homomorphic images follows from
2.2 and the rest is clear. O

2.4 PROPOSITION. Let (Q(+), f,9,a) be an arithmetical form of a
linear quasigroup Q. Then @ is commutative iff f = g.

PRroOOF. If Q is commutative then f(z) +a=2z:0=0-2 = g(z) + a for
every ¢ € Q and hence f = g. The converse is clear. O

2.5 PROPOSITION. Let (Q(+), f,9,a) be an arithmetical form of a
linear quasigroup Q. Then Q is idempotent iff a = 0 and f(z) + g(z) = =
for every = € Q.

PROOF. If Q is idempotent then @ = 0-0 = 0 and hence f(z) + g(z) =
zx = z for every x € Q. The converse is obvious. O

2.6 PROPOSITION. Let (Q(+), f,9,a) be an arithmetical form of a
linear quasigroup Q. Then Q is a loop iff f = g = idg. In this case, Q is a
commutative Moufang loop.



P. Némec, 27

PRrROOF. If Q is a loop with neutral element e then g(e) +a =0-e=0 =
e-0 = f(e)+a and so g(e) = f(e) = —a. Consequently, for every z € Q we
have f(z) = f(z)+(—a+a) = (f(z)—a)+a = (f(z)+g(e))+a =ze =2 =
ez = (f(e) +g(z)) +a = (9(x) — a) + a = g(x). Conversely, if f =g =idg
then, for all z,y € Q, we have zy = (z + 2) + @ and hence z - (—a) =z =
(—a)-z. Thus Q is a loop with neutral element —a and, for all z,y,2z € Q,
zz-yz = (((z+2z)+a)+((y+2)+a))+a=(((z+2z)+(y+2)) +2a) +a =
(z+y)+(z+2)+2a)+a=(((z+y)+a)+((x+2)+a)) +a=zy zz.
O

3 Semimedial linear quasigroups

3.1 PROPOSITION. Let (Q(+), f,9,a) be an arithmetical form of a
linear quasigroup Q. The following conditions are equivalent:

(i) Q is left semimedial.
(i1) Q is right semimedial.
(iii) @ is semimedial.

(iv) fg =gf and fg~! is a 2-central automorphism of the loop Q(+).

PROOF. For all u,v,w € @ we have
uw-vw = (((f*(u) + f9(U)) + f(a)) + ((9f (v) + g*(w)) + g(a))) +a, (1)

w - uw = (((f*(u) + fg(v)) + f(a)) + ((9f (1) + g*(w)) + g(a))) +a . (2)

If (i) holds then, taking u = 0, w = —g~!(a), we get f(a) + gf(v)
fg(v) + f(a) and hence fg = gf. For arbitrary z,y,2 € @Q put u
f7lg @), v=f""g7'(y), w = g~*(2). Then

((fg7'(2) +2) + f(a)) + (v + 2) + g(a)) = 3)
= ((fg~ (@) +y) + f(a) + ((z + 2) + g(a)).

o

Hence (taking z = 0) f(a) + ((y + 2) + g(a)) = (y + f(a)) + (2 + g(a))
for all y,z € Q. Since Q(+) is commutative, for all u,v € @ we have
(f(a) +u) + (g9(a) + v) = (f(a) + v) + (g(a) + u) and consequently, using
1.2,

(7(@) +9(@)) + (u+v) = (f(a) + ) + (g(a) +0) . @)
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Hence the left-hand side of 3 is equal to (f(a) + g(a)) + ((fg~'(z) + =) +
(y+ 2)) and the right-hand side to (f(a)+g(a))+((fg~'(z) +y)+ (x+2)).
Now, for all z,y,2z € Q,

(fo @) +o)+(y+2) =g '@ +y)+(z+2). (5)

By 1.2, fg~Y(z) —z € C(Q(+)), hence fg~'(z) + 2z € C(Q(+)) and fg~!
is 2-central.

If (iv) holds then f(z) —z € C(Q(+)) for every z € @ and, with
respect to 1.2, 5 holds for all z,y,z € Q. Since fg~! = g~1f, we have
g 'f(a) —a € C(Q(+)), hence f(a) — g(a) € C(Q(+)) and so, using 1.2
again, 4 holds for all u,v € Q. Adding f(a) + g(a) to both sides of 5 and
using 4, we conclude that 3 holds for all z,y,z € Q. If u,v,w € Q are
arbitrary and =z = fg(u), y = fg(v), 2 = ¢?(w) then 3 implies 1 and 2)
U - VW = UY - uw, i.e., Q is left semimedial.

The equivalence of (ii) and (iv) is an immediate consequence of the fact
that @ is right semimedial iff Q(x) is left semimedial, where z * y = y:z: =

(9(z) + f(y)) +a for all z,y € Q (by 1.5(iii), the mapping gf ' = (fg~!)~"
is 2-central iff fg~! is 2-central). O

3.2 PROPOSITION. Let (Q(+), f,g9,a) be an arithmetical form of a
linear quasigroup Q. The following conditions are equivalent:

(i) @Q is left distributive.

(ii) Q is right distributive.

(iii) Q is distributive.

(iv) a =0, f(z) + g(z) = z for every € Q and fg~' is 2-central.
(v) a=0, f(z) + g(z) = z for every z € Q and f is 1-central.

PROOF. The equivalence of (i) — (iv) is an immediate consequence of 2.5
and 3.1, since Q is (left, right) distributive iff it is idempotent and (left,
right) semimedial. If (iv) holds then fg = gf, f~lg = (¢71f)7! is 2-
central and f~lg(z)+2z € C(Q(+)) for every z € Q, hence g(z)+2f(z) =
z + f(z) € C(Q(+)) and f is 1-central. Conversely, if (v) holds then
2z +2f(z) € C(Q(+)) for every z € Q, hence 2z — f(z) = z+ (z — f(z)) =
z + g(z) € C(Q(+)) and g is 1-central. By 1.5(i), fg~! is 2-central. O

3.3 PROPOSITION. Let (Q(+), f,g,a) be an arithmetical form of a
linear quasigroup @. The following conditions are equivalent:

(i) Q is medial.



P. Némec, 29

(ii) fg = gf and Q(+) is an Abelian group.

PRroOOF. For all u,v,w,t € Q,

wv - wt = (((f*(u) + fg(v)) + f(a)) + ((9f (w) + g°(t)) + 9(a))) + a,
uw - vt = (((f*(u) + fg(w)) + f(a)) + ((9f (v) + g°(t)) + 9(a))) + @,

and hence () is medial iff

((£2(u) + fa(v)) + f(a)) + ((9f (w) +92(t)) +9(a)) = (6)
= ((*(u) + fg(w)) + £(a) + ((gf(v) + g°(2)) + 9(a)

for all u,v,w,t € Q.
Suppose that (i) holds and z,y,2z € Q are arbitrary. By 3.1, fg = gf

and f(a) — g(a) € C(Q(+)). Taking u = f~2(z), v =0, w = g~} f~(y),
t=g"2(z), 6 yields

(z + f(a)) + ((y + 2) +9(a)) = ((z +y) + f(a)) + (2 + g(a)). (7)

However f(a) — g(a) € C(Q(+)), and so (with respect to 1.3) (z + f(a)) +

(y+2)+g(a)) = (z+(y+2))+(f(a) +9(a), (z+y)+ f(a)) +(z+g(a)) =
((z+y)+2)+ (f(a) + g(a)). Now 7 implies z + (y + z) = (z + y) + z and
the converse implication is obvious. O

4 Linear F—quasigroups

Let @ be a quasigroup. For every z € @, there are uniquely determined ele-
ments (called local units) e;, fr such that ze, = frz = z. The quasigroup
Q is called

— an LF -quasigroup if ¢ - yz = zy - ez for all z,y, z € Q,

— an RF —-quasigroup if yz-x = yf, - zz for all z,y,z € Q,

an LE-quasigroup if x - yz = fyy-zz for all z,y,z € Q,

an RE-quasigroup if yz-x = yzx - ze; for all z,y, 2 € Q

4.1 PROPOSITION. Let (Q(+), f,g9,a) be an arithmetical form of a
linear quasigroup ). The following conditions are equivalent:

(i) @ is an LF—quasigroup.
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(ii) fg=gf, a € C(Q(+)) and f is 1-central.

PROOF.For every ¢ € Q we have z = ze, = (f(z) + g(ez)) + a and hence

ez = g7 ((z — a) — f(z)) = (97" (z) — ¢7'(a)) — 97" f(z). In particular,
eo = —g~ '(a). For all u,v,w € Q we have

u-vw = (f(u) + ((9f(v) +¢*(w)) + 9(a))) +a (8)

uv - eyw = ((f*(u) + fg(v)) + f(a)) + (9 (eu) + g°(w)) + g(a))) +a (9)
If (i) holds then (taking u = 0, w = —g~1(a) ) we have

9f(v) = (fg(v) + f(a)) — 9fg™"(a). (10)
Hence (for v = 0) f(a) = gfg '(a) and 10 yields fg = gf. For
arbitrary z,y,z € Q put u = f~Y(z), v = f"lg7(y), w = g~ ?*(2). Then

z+((y+2) +9(a)) = ((f(z) +y) + £(a)) + ((9f (ef-1(z)) + 2) + g(a))- (11)
Since gf(ef-1(z)) = (z — f(a)) — f(z), we can rewrite 11 as

z+((y+2)+g(a)) = ((f($)+y)+f(a))+((((w*f(a))—f(x))+2+9((a)g)-
1
Taking z = 0, v = z — f(a), we conclude that, for all u,v € Q,

9(a) + (y + (f(a) +v)) = (f(a) +y) + (v +g(a)). (13)

In particular, for v = — f(a) we have g(a)+u = (f(a)+u)+(g(a)—f(a))
and hence 13 yields g(a) + (y + (f(a) +v)) = (f(a) + y((f(a) +v) + (g9(a) —
f(a))). Writing again z = v+ f(a), we get (f(a)+(g(a) — f(a))+(y+2) =
(f(a)+y)+(2+(g9(a) - f(a)) for all y, z € Q. By 1.3, f(a) —(9(a) — f(a)) =
2f(a) — g(a) € C(Q(+)), hence —f(a) — g(a) € C(Q(+)) and, adding this
element to both sides of 12, we get z+ ((y+2)— f(a)) = (f(a)+(f(z)+y))+
((((z — f(a)) = f(z)) + 2) — f(a)). Adding 3f(a) and writing u = z + f(a),
for all z,y,u € @ we have

z+(u+(y+f(a))) = (f(a)+(f($)+y))+((((fc—f(a))—f(w))+f(a))+(;2)-

From this (takingy = 0 and u = —f(a)) z = (f(a)+f(z))+((z—f(a))—
f(z)), hence z+(—f(a) - f(2)) = (z~ f(a)) - f(z) and [z, f(a), - f(2)] =
0. Thus the subloop of Q(+) generated by the set {z, f(a), f(z)} is asso-
ciative and [z, f(z) + f(a), f(a)] = 0. Hence ((z — f(a)) — f(z)) + f(a) =
‘v + (—f(z) — f(a))) + f(a) = z — f(z) and we can rewrite 12 in the form

z+ (u+(y+f(a) = (f(@) + (f(z) +y) + ((z = f(z)) +u).  (15)
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Taking y = —f(a), we have z+u = f(z)+ ((z — f(z)) +u) , hence (z +
u)—f(z) = (z—f(z))+uv and [u,z, — f(z)] = 0. Thus [z, f(20,u] = 0 for all
z,u € Q. Further, taking v = 0 in 15, we get 2+ (y+ f(a)) = (f(a)+(f(z)+
y)) + (z — f(z)) and hence f(a) + (f(z) +y) = (z+ (y+ f(a)) + (f(z) — ).
Writing v = y+ f(a), 15 implies that z+(u+v) = ((z+v)+(f(z)—z))+((z—
f(z))+u). However [z, f(z),z+v] = 0, hence (z+v)+(f(z)—x) = v+ f(z)
and z + (u+v) = (v+ f(z)) + ((z — f(z)) + u). Since u +v = v + u, we
get (f(z) +v) + ((z — f(z)) +u) = (f(z) +u) + ((z — f(z)) +v). With
respect to 1.3, z — 2f(z) € C(Q(+)), hence z + f(z) € C(Q(+)) and f is
1-central. Adding central elements —z — f(z) and z + f(z) to both sides
of 15, we get z + (u + (y + f(a))) = (f(a) + (y — 7)) + (2z + u) and so
(adding —3z) (u—=z)+ ((y + f(a)) —z) = (f(a) + (y —2)) + (u—2) . Thus
(f(a) +y) —z = f(a) + (y — z) for all z,y € Q, hence f(a) € C(Q(+))
and so a € C(Q(+)), since C(Q(+)) is invariant with respect to every
automorphism of Q(+) .

Conversely, if (ii) holds then (z — f(z)) — f(z) € C(Q(+)) and (with
respect to 1.3) z + (y + 2) = (f(z) + (z — f(2))) + (y + 2) = (f(z) +y) +
((z — f(z)) + 2). Since f(a),g(a) € C(Q(+)), 12 and consequently 11 hold
for all z,y,2z € Q. If u,v,w € Q are arbitrary and z = f(u), y = fg(v),
z = g*(w) then 11 implies (see 9 and 8) u - vw = wv - e,w. O

4.2 PROPOSITION. Let (Q(+), f,9,a) be an arithmetical form of a
linear quasigroup (). The following conditions are equivalent:

(i) @ is an RF—quasigroup.
(ii) fg =9f, a € C(Q(+)) and g is 1-central.

PROOF. It suffices to use 4.1 for Q(x), where z xy = yz for all z,y € Q.
O

4.3 PROPOSITION. Let (Q(+),f,9,a) be an arithmetical form of a
linear quasigroup (). The following conditions are equivalent:

(i) Q is an LE—-quasigroup.
(ii) Q is an RF-quasigroup.
(iii) fg =gf, a € C(Q(+)) and g is 1-central.
PROOF. For everylx EQ z = fex = (f(fz) + 9(z)) + a and s0 f; =

(f~Yz) = f~Ya)) — f'g(z). In particular, fo = —f1(a). If u,v,w € Q
are arbitrary .then

u-vw = (f(u) + ((9f(v) + g°(w)) +9(a))) +a ,
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fuv - uw = ((F2(fu) + f9(0)) + £(a)) + ((9f (u) + ¢°(w)) + g(a))) +a .
If (i) holds then, taking u = 0, w = —g~'(a), we immediately get

fg = gf . For arbitrary z,y,z € Q, put u = f7'(z), v = f~'g7(y),
w = g~2(z). Then

z+ ((y+2)+g(a)) = (f2(fr-1(z) +¥) + f(a)) + ((g(2) + 2) + g(a)). (16)

Since f2(fs-1(z)) = (z — f(a)) — g(z) , we can rewrite 15 in the form

z+((y+2)+g(a) = ((((iv-f(a))—g(ﬂ?))+y)+f(a))+((9($)+Z)+9((a)))-

17

Taking z = 0, we get (y + 2z) +g(a) =y + (2 +g(a)) forall y,z € Q,
hence g(a) € C(Q(+)) and a € C(Q(+)). Now 16 yields

z+(y+2) = ((z—g(2)) +9(2)) +(y+2) = ((z—g(z)) +y) +(g9(z) +2). (18)

By 1.3, (z — g(z)) — g(z) = = — 29(z) € C(Q(+)), hence z + g(z) €
C(Q(+)) for every z € Q and g is 1-central.

Conversely, if (iii) holds then z —2g(z) € C(Q(+)) and 1.3 implies that
18 holds for all z,y,z € Q. As f(a),g(a) € C(Q(+)), 17 and consequently
16 hold for all z,y,z € Q. If u,v,w € Q are arbitrary and z = f(u),
y = fg(v), z = g*(w) then 16 implies u - vw = f,v - uw and hence Q is an
L E—quasigroup.

The equivalence of (ii) and (iii) is an immediate consequence of 4.2. O

4.4 PROPOSITION. Let (Q(+), f,g,a) be an arithmetical form of a
linear quasigroup Q. The following conditions are equivalent:

(i) Q is an RE—-quasigroup.
(ii) @ is an LF-quasigroup.
(iii) gf = gf, a € C(Q(+)) and f is 1-central.

PRrOOF. It suffices to use 4.3 on Q(x), where z xy = yz for all z,y € Q.
O
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