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On a characterization of the logarithm
by a mean value property

Roman Ger

Any real polynomial f(x) = az?+ bz +c, z € IR, has the property that

flz)-fly) _ f (w+y)

T—Y 2
for every (z,y) € R, z # y. It turns out that that particular form of the
Lagrange mean value theorem characterizes polynomials of at most second
degree. Much more can be proved: J. Aczél [1] has shown that, with no

regularity assumptions, a triple (f, g, k) of functions mapping IR into itself
satisfies the equation

f(z) —g(y)

g = h(z+y)

for all (z,y) € R, z # y, if and only if there exist real constants a,b,c
such that f(z) = g(z) =az® +bz+c,z € R, and h(z) =az+b, z € R.
Generalizations involving weighted arithmetic means were also considered
(see e.g. M. Falkowitz [3] and the references therein) and characterizations
of polynomials of higher degrees (in the same spirit) were obtained (see [4]
and [5], for instance).

In what follows we are going to characterize the logarithm in a similar
way. To this end, denote by D the open first quadrant of the real plane
IR? with the diagonal removed, i.e.

D = (0,00)? \ {(z,z) € R?: z € (0,00) }.

Applying the classical Lagrange mean value theorem to the logaritmic func-
tion we derive the existence of a function
D > (z,y) — &(z,y) € intconv {z,y} such that the equality

logz —logy 1
z—y ¢(z,y)
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holds true for all pairs (z,y) € D. Obviously, we have

r—Yy
= D.
€oy) = ey for Al (my)e

A natural question arises to find all differentiable functions
f:(0,00) — IR satisfying the equation

fx)y=~fy) oig T —y
z—y ‘f(logw—logf)

for every (z,y) € D.

Actually, inspired by the above mentioned Aczél’s result from [1], we
deal with somewhat more sophisticated problem, involving a Pexider-type
functional equation, in order to have no regularity properties whatsoever.
Namely, we shall prove the following

Theorem 1. Let functions f,g,h, defined on the positive half-line,
satisfy the equation

(1) f{w)-g(ylzh( z—y )

z—yY logz — logy
for all z,y € (0,00), z # y. Then there exist real constants a,b,c such
that

f(z) =g(z) =alogz+ bz +c, z € (0,00),

and
1

h(m)za;—i—b, z € (0,00).
Conversely, each triple (f,g,h) of the form described above yields a solu-

tion to equation (1).

Proof. Assume that functions f,g,h : (0,00) — IR satisfy equa-
tion (1) for all z,y € (0,00), z # y. Interchanging the roles of z and y in
(1) we leave the right hand side unchanged; therefore,

f(:B)—g(w):g(y)—f(y), a:,yE(O,oo),a:;éy.

Setting « := f(1) — g(1), we deduce that g(y) = f(y) + « for all
y € (0,00) \ {1} and, consequently,

f(@)=(f(z)+a) = (f(y)+a)—f(y) for all z,y € (0,00), z#y, z#1#y,

whence a@ = 0. Thus ¢(y) = f(y) for all y € (0,00) \ {1} and in view of
the definition of «, we have f(1) = g(1) as well, so that g = f.
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Now, equation (1) assumes the form

B T—y T
f@ - 1) = 6 (i) 1os

for all z,y € (0,00), z #y, where we have put

(2) G(t) := th(t), t € (0,00).
For the sake of brevity, we set additionally
A |
o(t) == t € (0,00) \ {1},

logt’
getting

flx)-fly) =G (w(—z-)) logg, z,y € (0,00), z #y.

Replacing here z by zy we arrive at

(3) f(zy) — f(y) = G (yp(z)) logz, z,y € (0,00), z # 1,
whence, subsequently, for all z,y,z € (0,00), z # 1 # z, we obtain
the equalities

flzyz) — f(yz) = G (yzp(z)) logz
and
f(zyz) — f(z2) = G (yp(zz)) log z2.
This implies that

f(yz) — f(y) = G (yp(z2)) logzz — G (yzp(z)) logz

holds true for all z,y,z € (0,00), zz # 1 # z. Consequently, applying (3)
to the left hand side of the latter equality, we infer that

(4) G (yp(2)) log z = G (yp(z2)) logzz — G (yzip(z)) logz

is satisfied whenever =z,y,z € (0,00), zz # 1,z # 1 # z. Putting here
z =z and taking into account that

o(a*) = 1 2p()  for all z€(0,00)\ {1},

we conclude that

G (ygo(a:)wTH) - G (a’y(f’(m))z-l- G (yp(z))

provided that z,y € (0,00) and z # 1. This proves that the function G
is a solution to the Jensen functional equation; indeed, fixing arbitrarily a
pair (s,t) € (0,00)%, s # t, and putting

t
T = - and 2y e
s
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we have s = yp(z) and t = zyp(z), whence
(5) G(S-zkt) - G(S);G(t)

for all s,t € (0,00), including s = t, as claimed.

It is well known (see e.g. M. Kuczma [6, p. 315]) that (5) implies the
existence of an additive function A : IR — IR and a constant a € IR such
that

G(z) =A(z)+a for all z€(0,00).

Applying this representation we can rewrite (4) as

A (y(p(2) — p(z2))) logz = A(y(p(z2) — 2¢(2))) logz,

whenever z,y,z € (0,00), zz # 1,z # 1 # z. Take here z := e and
T := e'; then zz # 1 # z if and only if ¢t € R\ {—1,0}. Thus, by means
of the oddness of A (resulting from its additivity),

(6) A (y(p(e™) — p(e))) = A (y(ep(e) — p(eth))) - ¢,

holds true for all y € (0,00) and all ¢ € R\ {—1,0}. One can easily check
that for every ¢ > 0 the number ep(e?) — ¢(ef*!) is positive as well, which

enables to put
1

VT ol - gl )

in (6) provided that t € (0,00). Hence, a simple calculation shows that,

(et —pe) \ _
A(t) = A (ego(et) 3 cp(e“‘l)) =A(1) -t for all t € (0,00).

Setting b:= A(1) and recalling (2) we get
zh(z) = G(z) = A(z) +a=bx+a for all =z€(0,00),

i.e.
h(z) = al +b for all ze€(0,00).
z

Consequently, in view of (1) and the fact that g = f we conclude that

f(z)—fly) _ , gz —logy

I—Y r—Y

+b for all z,y € (0,00), z#y.

In other words,
f(z) —alogz — bz = f(y) —alogy — by
for every z,y € (0,00), including z = y. By setting

c:= f(z) —alogz — bx = const on (0,00),
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we obtain the desired form of f.
The latter part of the assertion is a subject for a straightforward veri-
fication which completes the proof.

As simple consequences of Theorem 1 we obtain the following charac-
terizations of logarithms.

Theorem 2. A nonzero function f : (0,00) — IR is a logarithm
if and only if f(1) =0 and there exist functions g,h : (0,00) — IR such
that equation (1) is satisfied and h(2) = %h(l).

Proof. Assume that a nonzero function f : (0,00) — IR with
f(1) = 0 satisfies equation (1) with some functions g,k : (0,00) — IR
and h(2) = $h(1). Then, according to Theorem 1, there exist real con-
stants a,b,c such that

f(z) =g(z) =alogz + bz +c, z € (0,00),
and

h(z) =a— +0b, z € (0,00).

K|

Now 3(a+b) = h(1) = h(2) = La +b yielding b = 0 which jointly with
the equality f(1) = 0 gives f(z) = alogz, z € (0,00). If we had a = 0
we would get f = 0, which contradicts our assumption. Thus

f(z) =log,z, =z € (0,00), with  p:= e .

To prove the converse, assume that f(z) = log, z, = € (0,00), with
some p € (0,00) \ {1}. Then f(z) = Ioé—plog:c, z € (0,00), and taking
= f, h(z) := ===, = € (0,00), we obviously have h(2) = zh(1), whe-

zlogp’

reas the triple (f,g,h) yields a solution to equation (1).

Theorem 3. A nonzero function f : (0,00) — IR is a logarithm
if and only if f(1) =0, f(z2) = 2f(z,) for some z, € (0,00) \ {1} and
there exist functions g,h : (0,00) — IR such that equation (1) is satisfied.

The proof is similar.

Remark. The function ¢ spoken of at the beginning of this paper
provides an example of a mean value. Indeed,

Tr—Yy
logz — logy

D> (z,y) — &(z,y) = € int conv {z,y} for all (z,y) € D,
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and limy_,; {(z,y) = z, for any = € (0,00). What makes this logarith-
mic mean value particularly interesting is that it separates the classical
geometric and arithmetic means, i.e.

=y <x+y
logz — logy 2

VZY < for all (z,y) € D,
(see B. C. Carlson [2]; a different proof, involving the Schur-concavity ma-
chinery, may be found in A. W. Marshall & I. Olkin monograph [7, pp.
98-99]).

For these reasons the idea of characterizating the logarithm with the
aid of logarithmic mean value seems to be well motivated.

Acknowledgement. The original statement of Theorem 1 conta-
ined the assumption of the local boundedness of function A occurring at
the right-hand side of equation (1). I am indebted to Professor Janusz
Matkowski for his information that while considering some more general
problem he had obtained a similar result (with ¢ = f) with no regularity
assumption (cf. [8, Theorem 3]). This stimulated me to seek for an entirely
elementary direct proof of Theorem 1. The method presented here is com-
pletely different and shorter than that from [8); therefore, I believe that it
may present an interest of its own.
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