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The block tableaux method
in finitely many-valued logics

Piotr Borowik

Introduction

In the paper we will present a tableaux formalization of an arbitrary n-
valued logic, n > 2. Our formalism constitutes a certain modification —
in the style of Beth’s semantic tableaux — of the formalization presented
by W.A. Carnielli (see [Carnielli 1987]) for finitely many-valued first order
logics. The difference concerns the method of representing sets of formulae
in the process of theorem proving. Our method allows us to implement the
algorithm for authomatic theorem proving in the simplest way possible.

1 Syntax of semantic tableaux

Assume that S is the set of all the formulae of the first order language defi-
ned in [Borowik 1993]. Let I'p,...,['n—1 be arbitrary finite sets of formulae.
In particular, some of the sets I'; may be empty. By an n-field semantic
tableau, shortly a tableau, we mean an ordered n—tuple of sets of formulae
(Coy...,'n—1) denoted as follows:

(a) Lo|T1]|++ | Ca-1.

et Eowd Didraniil- Piisy and II=AgF - F Ap—1 be two
arbitrary tableaux. The tableau X is said to be contained in the tableau II
iff T'; C A, for every ¢, 0 <1 < n — 1. The above fact will be denoted by
¥ C II. By the composition of the tableaux ¥ and II, denoted by % *II,
or shortly by XII, we mean the tableau

Ao[---lAn_1, where A;, =T UA; for 0<i<n-1

Let I' C S be an arbitrary set of formulae. By |; ' we mean a tableau
Y=TI¢| -+ |p=1 such that

okl b
F‘"{w if i#37.
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In particular, |; a is a tableau of the form |; {a}. From the above definitions
it easily follows that an arbitrary tableau ¥ = Ty | --- | I',—1 can be
represented as the composition of n tableaux of the form |; I'; for 0 < 5 <
n — 1. A tableau is said to be atomic if all the formulae appearing in this
tableau are atomic.

Now we shall define conditions s#(c; j) and wy(d; 7). Recall that G, =
{07 1}”—-—{(0,0, Lo 10)}' Letz,y € Gp, T = ("Biu e swin)a - R (yiu aivis ayin)'
We say that ¢ < y iff z;, < y;, for p=1,2,...,n, and there exists
p, 1 £ p < n, such that z;, # y;,. Now let s : E* — E, be the interpre-
tation of a connective o, and let a function ¢ : G,, — E,, be the interpre-
tation of an n—valued quantifier Q. The function s (resp. the function q) is
said to satisfy condition s(ci,, Ciyy-..»Cip_,57), (resp. q(dk,,dkyy .- dk,57))
for variables z;,,;,,...,z; _, (and resp. for variables yx,,Yk,,. .., Uk, ) iff
the value of the function s for z;, = ¢;,, t=0,1,...,k—1 (resp. the value
of the function ¢ for yx, =dy,, p=1,2,... ,n), is 7. The function s (the
function ¢) is said to minimally satisfy condition s(ci,,Ciyy.--,Cir_y3J)
(resp. condition q(dy,,dk,,. .. ,dk,;7), which will be denoted by
s#(Ciys Ciyy- -+ Cip_y5J) (and resp. by wq(dk,,dky, - .., dk,;7), iff k—1 is the
minimal index of a variable for which the condition is satisfied, i.e. iff for
any {bi,,biy,- .. bi,_1 } C {CipsCiry--+»Cix_,} such that p # k the function

s does not satisfy the condition s(b;,, b;,,...,b;,_,;J) for any subset of the
variables

T1,T2,...,ZTm, (resp., there does not exist a sequence

(Gky, Qkyy - 50k, ) < (diy,dky, - - -, dk,) such that the condition

q(dk,,dk,,--.,dk, ;7)) is satisfied. If we denote the sequences

(Cigy Ciys---+Cip_y) and (dg,,dk,,...,dk,) by ¢; and dy, respectively, then
the notations s#(ci,,Ciyy---,Ci,_,3J) and wq(dk,,dk,,-..,dk,;J) can be
respectively abbreviated to s#(c;;j) and wg(dk; j). For example, let s be
a function interpreting three-valued Lukasiewicz implication in the ma-
trix M3 = (({0, 1,2}, s,n),{2}), where s and n are given by the following
truth tables:

adth 1. % z | nz
Uid 2 2 0f 2
PR R 311
g % Pt 210

The function s minimally satisfies condition s(0; 2) with respect to the first
argument, and condition s(2; 2) with respect to the second one, since in the
first case s(0,z3) = 2 for any z, and in the second case s(z;,2) = 2 for
any xi.
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Now let ¢ be an arbitrary m-ary connective, and let a function s :
ET' — E, be the interpretation of this connective. Moreover, let @ be
an arbitrary n-valued quantifier, and let a function p: D, — E, be the
interpretation of this quantifier. An (m + 1)-tuple (¢, 71,...,Jm), m < n,
is said to satisfy the condition wq(%;j1,...,Jm), shortly wo(i;j), if the
n—tuple (d(0),...,d(s1),...,d(52),...,d(Jm),...,d(n — 1)) defined by the
formula

ey 1 iftE{jla-'-7jm}:
d(t) = { 0 otherwise

belongs to the set p~1({i}). In other words, the condition wg(i, 71, .- , jn)
is satisfied iff an n—tuple with 1’s on the positions ji, ..., jn and 0’s on the
remaining positions is assigned the value ¢ by the function p.

Now we shall give the elimination rules for eliminating quantifiers @
from formulae of the type @, [(zx) and connectives o from formulae of
the type o(ay, ag,...,a;,) occuring in the j-th field of a tableau

Y=Lo|ly|-+| Tl | Ta.
The said rules, denoted by (cj) and (Q;), have the following forms:
Tolli i ola o8, 0k) 1 [T al
{(Tc:ce E & k<m & s#(c;5)}
(Q ) I‘Ol_ I_Fquzkﬂ(xk) I_""_]--‘n—l
J {Aa: a € Gp & wyla;j)}
for' 3= 0,1,V 5n=1,

(o)

where
Ye=Do |y |- | Thy,
Aa,=1‘f)' | ""F:':,—lv
with
[ =T U {a : pre(c) =i},

I} =T U{B(a) : (d(jo),---,d(jn-1)) € p~ ({i})},
fori =0,1,...,n—1, where prr(c) denotes the projection of the sequence
c on the k-th coordinate,

1 if there is a sequence b€ UY such that
d(jx) = v(B(z/as),b) =k,
0 otherwise.
Here the notations s#(c;j) and wg(a;j) mean that the functions mi-
nimally satisfy conditions (c;j) and (a;j), respectively, with certain limi-
tations to be imposed on the constants a; depending on the quantifier @)
eliminated by means of the considered rule.
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The tableau £ =T | Ty | -+ | Tj,0(on,02,...50m) | +++ | Tp-1, or
respectively the tableau ¥ =Ty | I'; | ... | I';,QzeB(zx) | ... | Tn-1,
is the premise of rule (oj), respectively (Qj), and the set ¢ (resp. Aq)
of tableaux — its conclusion. The rules (07),(Q7) can be applied to a
tableau ¥ if it is of the form given above. In particular, all the sets [';, ¢ =
0,1,...,n — 1, may be empty.

Now let us consider some examples. Let ~ and = denote n-valued ne-
gation and implication in Lukasiewicz logic, respectively, with the following
interpretations in E,,:

i gt n—1 if r<wy,
Y=Y n-1-z+y if z>y,

~r=n—1-—2.
The elimination rules for the above Lukasiewicz connectives are of the
following forms

- FRolealBy1 | Drv ol Figa Vi dod Lnri

(tln); T KD f e, T .

i, S EVETEVREY 1) YT S
J Fol""FS,O,’I"'Irt,ﬂl"'an_I.'Z#(S;]),Z#(S,t;j),'ﬂ#(t;])},"
where
: n-—1 if 1 <t, :
z(s,t)—{n_l_s+t i §> 8, for any j € E,.

For Stupecki’s logic with the primary connectives =, ~, -, interpreted in
Stupecki’s matrices by the functions

e n-1l <<y
el if r<z<n-1,

{:c—l if 0<z<n-1,
P =L~y ]l =

neloilhg=1,
T if 0<z<n-3,
~2=4n-2 if z=n-1,

n—1 if z=n-2,

the rules for elimination of the above-mentioned connectives are of the
following forms:

(tSi)' PO""IFj7a=>6|"'|Fn_1
I oI Tsal - | Te BT Tomt s i#(:5), (5,6 9), (G 9)}
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wherez’(s,t):{ n—1 if 0<s<r,

t ifir<e<n =<1,
rdo: ST T
(o) AT TR T T e TR, <7 € n - 1,
(tsm); r£0&||rl‘31||'-'-.-’|%;,;a| = el 0<isn-3,
(Bemmlicia 3 II:()l Ill.“;.||-1-1?|—%‘,nj?,larn_l’
ooy TR T e Tom

In Sobocinski’s logic, where the implication = i negation ~ are respectively
interpreted by the functions

e n—1 if z=y,
Sl v ifz#y,

il 0 if z=n-1,
TV z+1 ifO0<z<n-1,

the rules for elimination of these connectives take the following forms:

I‘0||I‘Nall:[‘n__1 - . :

tan). > E g

(tsm); FOI"'|Fj+1,0~’""Fn—1’ JEE, j#n )

P LT3 |-V Db Tk g

lenjoy) “SoalTilistilsiing T’

(t50); e i sn w diotctns o oy .
I (Lo |-+ |Tsyal:|Ty,B| | Tncr1is# s>t =)}
j'_lé'n""l’

) POIFII"‘ll-‘avz—la‘3f'_—'>»6
. .,
-1 o Pontbd dsnsii ol bnds 18 € Bokt
{0}« [ Ppal | Dy-nyars <n=1}

For implicatively-negational n—valued propositional Post logics, in which
implication and negation are respectively interpreted by the functions
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n—1, if &<y,
z=2y=q n—1l—-z4+y, if z>y and z<r,
1, if 2>y and 2271,
3L n—1 if z=0,
"] z=1 if 20,

the rules for elimination of the above connectives are of the following forms:

(tps), Lol dTpas BANADLE L g
4 TF()'"'IFS,QI"‘IPt,ﬁ“"|Fn_1:Z#(S;j),’&#(s,t;j),'L#(t;])}
n—-l, if SSta
where i(s,t) =¢ n~1—s+¢t if s>t and s<r,
£ if s>t and s>,
Ty, v [Ty || Py
o [Tyl [Taopya
Lol T |Tj,~a |l |- | Tay :
¢ . ’ 0 <n-1.
A Y TSP Y T T | v R Pl

The three-valued propositional logic introduced by Boévar and Finn
[Bo¢var, Finn 1976] is determined by the matrix

mBF;; 3 (EB: {2}: LY =, <:>)’

where the functions ~, A, V, =, & are defined as follows:

z|~z o i i A S
Ry 00 58 gpganiog
1] 1 111 1] lahiiy 14, 1
2401, 1: 2 21261 2
=i sk 2 il 3 2
0. {582 2 0/2 20
hah il {0 0 B A
2180 2 2 {00e 2

Of course, a < f is an abbreviation for (a = () A (8 = «). Both the
function < and the corresponding connective will be disregarded in the
following considerations.

The rules for eliminating the connectives ~, A, V, = from the formulae
occuring in a tableau have the following schemata:

I'N'~al|ll
(tbfn)o I'\ | A H,Ot’
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(tbfn); FI! lA’ = IHH,

@fmy o RTI

(tbfk)o r,a,5|A|n;Pf‘,aa/\|gll?I,lg; IglA|ILea’
(tfkh Alﬂ,iy?ﬁ?ll\‘?gﬁ [

(tbfk)2 Frl |AAI |Hri,a af\ﬁﬁ’

Bfa HEFTATT

W5fah TR TARTT

(tbfa)s T,al[A] H,,@;FI‘I,[;!A|IZIXLIC;IY£ FfAlLa,pB’
(tf1)o g7 /_E.‘]oﬂj—;ﬁ 7 IAA|,I£[3 [T,a’

. P A, = B
W12 T GTATI T4, ol T TTATTL A
In the sequel it will turn out that the tableau I' | Ao = [ | IT is

inconsistent, and the connective = need not be eliminated from the formula
a = f.

Quantifiers for n-valued first-order logic — denote them by Q;,7 € W,
where W is a certain set of indices — can be interpreted as functions

q; : P(En) — (D oy En.

In particular, the existential quantifier 3 is interpreted by the function
maz, and the universal quantifier V — by min. The rules for eliminating
the quantifiers 3 and V are respectively of the following forms:

: 2 |; Jza(x) .

(37)n Xx |j ala), Jza(z) for 0<j<r,
" Yx | dJzal(z .

(Hj)w Eljlj a(é) ) for r < i 1:
. Tx |; Vza(z) .

(V7)n S [; alo) for 0<7<F,

_ 2+ |; Vza(r)
(o ST, el ¥ 5(E)

for r<j<n-1.
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On the constants a, b, ¢, d, we impose certain conditions depending on the
type of the quantifier Q eliminated, as well as on the table field index 7 and
on the number n of logical values. In case of Bo¢var-Finn’s [Botvar, Finn
1976 first order three-valued predicate calculus, the rules for the existential
quantifier 3 and the universal quantifier V have respectively the following
schemata:
P 3godz) | & 11T
(50 Fafal el TATTD

where a is an arbitrary element of some universe U,
' A, 3a(z) | IT
(tbfa)l T | A,a(b) I ) 5 2R
(tbf3) I'lA |1l 3;a(x)
2 TTATI,ab),a, ala), 3za(z); T, ala), Iza(z) | A [IT’
where a is an arbitrary constant, and b does not occur in any tableau on

the branch B of the proof tree which contains the tableau with the formula
ez ks

Y, Vool2
o T8y ala) Voo AT

with the limitations on b like in (32),

T'|AVYa(z) | A
IVREITYEES

with the limitations on b like in (V,),

' A|ILVa(z
(thfV)q T All H,Ia(a),déxc)l’(ﬂ?)’

where a is an arbitrary element of a given universe U.

ATl
' AT a(a),Vea(z)’

A tableau ¥ =T | --- | ' is said to be inconsistent iff

(a) there exist r,ssuchthat 0 <r <n-1,0<s<n-1andI'.NT, # 0,
or

(b) there exists a non-atomic formula o(a, ..., a;) € I';, for which there
does not exist a sequence of constants ¢ € E such that s#(c,j), or

(c) there exists a formula of the form Q;a(z) € I';, for which there does
not exists a sequence of constants a € G, such that wy(a; 7).

A tableau ¥ is said to be atomic if all the sets I'; on its fields
(7 =0,1,...,n — 1) contain at most atomic formulae.

Recall that S denotes the set of all well-formed formulae of the langu-
age of first order calculus of n—valued predicates. Let U be an arbitrary
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nonempty set of individuals. The set U is called a universe of individuals,
shortly universe or domain. The set Sy of U-formulae is defined analogo-
usly as the set S; the only difference is that every occurence of any symbol
representing an individual constant in a formula is replaced by a suita-
ble element of the universe U. Hence by an atomic U-formula we mean
an expression of the form p;(z1, 22, ... 2, ), where p; is an m—ary predicate
symbol, and z; is either an individual variable or an element of the universe
U for 1 £ ¢ < m. Hence Sy can be defined inductively as follows:

Svo = {a: a is an atomic U-formula },

Svk+1 = Sux U {oi(ar,09,...,am) : a1,...,0m € Syk,0i € AU
U{waia L E SU,k,Qw €EQ,z; € V}, and
Sy = () 8%

neN

2. Remarks about semantics of n—valued predicate calculus

In propositional calculus, the values of formulae are determined by the
values of their subformulae. However, as we have noticed above, quantified
formulae may have infinitely many subformulae. In order to establish the
relationship between the truth values of quantified formulae and the values
of their subformulae, we employ an additional function, sometimes called
the distribution function.

Letn >0 and m > 0,and let E, = {0,...,n—1},s; : El' — E, for j €
L,qy:P(E,)\{0} — E, for w € W, where P(E,) denotes the powerset
of the set E,. Let D, = P(E,) — {0}. One can easily note that there
exists a natural one-to-one correspondence between the set D, and the
set G, = {0,1}" — {(0,0,...,0)}, and hence these sets will be sometimes
identified.

A quadruple
E=(En, By {sj:7 €T} {qu:weE W},

where E; C E,, E; # E,, is called a structure for the set S. In addition,
we assume that E} = {r,r+1,...n—1} and r > 0. Now let U be and
arbitrary nonempty set, and let R denote the following system:

R = (U, {pi i € I}, {g; : j € T}, {aw : k € K}, ),
where p; and g; are functions such that
p; U9 5 B for i€l
gj :U%99) — E for j€J, and
ar, € U for k € K,
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i.e. the ap’s are certain selected elements of the set U. ( In the above
relationships, arg(p;) denotes arity of the function p;, and the meaning of
arg(g;) is analogous).

The notions of interpretation of the language Sy in the structure R,
as well as of satisfiability and truth of formulae are defined in a standard
way.

For technical reasons, we shall now define a certain special valuation,
called a Post valuation. Let Sf; denote the set of all closed U-formulae
of the first order language. By a Post valuation we mean a valuation v :
Sf; — Ey such that the structure £ is a chain-complete Post algebra of
order U. By an atomic valuation we mean a function

va : Aty = Ey,
where Aty denotes the set of all atomic U—formulae without free variables.
Obviously, if two atomic valuations v4 and w4 coincide on the set
Aty, then they coincide also on the whole set Sf;. Hence an arbitrary atomic
valuation of the set Aty can be extended to a valuation on Sf; in at most
one way. One can also easily note that an interpretation in a structure R is
closely connected with an atomic valuation. Any given atomic valuation v4

generates some corresponding interpretation in a certain structure £, ,, and
conversely: an interpretation i generates a corresponding atomic valuation

Vig-

3. Proof tree of a tableau.

By a proof tree of a tableau
E=Dg|T1]| - |Taa

we mean a quintuple

DadX D LY. v 1),
where:

(a) the tableau X is the root of the tree,
(b) D is a set of tableaux, and D' C D,

(c) r is a binary relation on D, defined as follows:

Arll & there exists a rule (o7), with 0 € A, j € E,, such that the
tableau A is the premise of this rule, and the tableau II — one of the
elements of its conclusion; moreover, each vertex of the tree except
the root has exactly one predecessor,
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(d) I: D — N is a function satisfying the following conditions:
I(X) =0,
if Arll, then I(IT) = {(A) + 1.

The value [(A) of the function [ for A is called the level of a tableau
A in the tree D. The set D' is a set of final tableaux, also referred to as
leaves of the tree D. By a final tableau we mean one that is either

(a) an inconsistent tableau , or

(b) an atomic tableau.

The tableaux that fulfil condition (a) above are referred to as closed table-
auz. In the opposite case, a final tableau is said to be open. A branch of
the tree is said to be closed or inconsistent if it contains a closed tableau;
otherwise it is said to be open. A proof tree of a tableau ¥ is said to be
closed if all its branches are closed. Recall that r, where 0 < r < n—1, is
the least distinguished value in the set E, of logical values. We say that
a formula a € S is a theorem in the semantic tableau system for n—valued
logical calculus iff proof trees of the following tableaux are closed:

oo, ha ..., l-10

The relation r can be extended to a relation r, which orders the ver-
tices of the tree as follows: if A,II are arbitrary vertices of the tree D,
then (A,II) € rp iff either A = II, or (A,Il) € r, or there exists a
sequence X, X9,...,5;,, m > 2, of vertices such that £; = A, o, =11
and (X;,%;41) € r for ¢ = 1,...,m. Hence the pair (D,r,) is an ordered
set. Each maximal chain of the tree (D,rp) is called a branch of the tree
D.

Note that each of the rules we have described above, which eliminate
propositional connectives and quantifiers from the formulae occuring in a
tableau, represents a two-level tree. The root of that tree (level zero) is a
tableau being the premise of the rule. The sequence of its k& conclusions,
1 € k < m™ (where n is the number of logical values, and m denotes the
arity of the connective eliminated), constitutes the first level of the tree.
Each tableau being a conclusion of a given rule is an immediate successor
of the tableau being the premise of the rule. This is illustrated by the
following picture:

A proof tree Dy is said to be a simple extension of a proof tree D; iff
the tree D, is obtained from the tree D; by applying the rules (o;) or (Q;)
for 7 € E, in the following way:
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(a) if we apply a rule (o;) to a tableau ¥ € Dy, then to each leaf A of the
branch G of the tree D; which contains ¥ we attach as immediate
succesors of A all the conclusions of the rule (o;) applied to the
tableau X,

(b) if we apply a rule (Q;) to a tableau ¥ € D, then, similarly as in
case (a), to each leaf A of the branch G of the tree D; containing
Y we attach as immediate successors of A all conclusions of the rule
(Q;) applied to the tableau Z, respecting the limitations on the con-
stants introduced in the conclusions; moreover, if the quantifier Q is
eliminated from a formula Qz(3(z), and aq,as,...as is a sequence
of all constants that occur on the branch G containing ¥, then on
a level t,1 <t < s, we extend each branch passing through ¥ with
successors according to the following schema:

V{|k. (z//at) : we(kr, kay- .., kn;5)}
=0

D, is said to be a proof tree of the formula o € S, shortly a tree of a, iff
there exists a sequence of trees Dy, Dy,... Dy such that Dy = D,,D; is a
singleton tree consisting of the formula «, and, for each s,1 < s < k, the
tree Ds41 is a simple extension of the tree D;.

Let X C S, and define

T*(X)={ljca:j€ E;,a € X},
THX) ={lx a: k € En — E;,a € X},
T(X) = T*(X) UT™(X).

If X is a singleton consisting of the formula «, i.e. X = {a}, then the
sets 7*(X),7T™(X) and T(X) will be denoted by T*a,T"a and T,
respectively. Hence Ta ={loa, 1 @, ..., |n-1 a}.

Let Y be an arbitrary subset of the set 7(X) for some X C S. By a
configuration of the set Y of tableaux we mean a proof tree Dy constructed
inductively in the following way:

(a) We order the elements of Y into a sequence |;, a1, |i, @2, ...

(b) We construct a proof tree of the tableau [;, o (initial step of the
induction).

(c) Assume we have created a configuration for the tableaux |;, a1, ..., |,
. Then:
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e we terminate the construction procedure, if the configuration
constructed up to now does not contain an open branch, or else

e to each leaf [ of an open branch of the currently created configu-
ration we attach a proof tree of the tableau |;,,, ax41 insuch

a way that the root of the latter tree is an immediate successor
of the leaf [.

(d) If the construction procedure was not terminated in (c), we terminate
it after exhausting the elements of the set Y, if Y is a finite set. In
the opposite case the configuration is an infinte tree.

One can easily note that applications of the rules (3;), and (V;), may
result in an infinite open tree. In practice, if we impose no limitations on
the constants introduced according to a given rule, then the rule is applied
at most the number of times equal to the number of constants that have
occurred on a given branch before a rule (3;), or (V;), was applied.
Of course, the above practical limit of the length of a branch (where the
length of a branch denotes the cardinality of the set of its elements) is
applied to the trees which are attached in the procedure of constructing a
configuration.

Lemma 1.
Let Y C 7(X) be an infinite set of tableaux. If a configuration Dy is open,
then Dy contains an infinite branch.

Proof.
Since the set Y is infinite, and the configuration is an open, finitely gene-
rated tree, then the Konig’s lemma implies existence of an infinite branch.
B

A tableau

E=To|...|Tau1

is said to be satisfiable iff there exists a valuation v : Aty — F, such that
hy(a) = j for some a € I'j, where h, denotes extension of the valuation v
to a homorphism of S, into E,.

A proof tree of a tableau ¥ is aid to be satisfiable iff some vertex of
this tree is a satisfiable tableau.

Theorem 1
Let a € S. If a tree D of a tableau |; a is closed, then for every valuation
v: Aty = E,, hy(a) #J.

Proof.
If there existed a valuation v such that h,(a) = 7, then the tree consisting
solely of the formula |; @ would be satisfiable. One can easily check that
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the rules (07)(Q;) extend satisfiable trees to satisfiable trees. Hence the
proof tree D of the formula |; o would also be satisfiable, which contradicts
the fact that D is closed. ®

Let Y C T(X) for some X C Sy. The set Y is said to be consistent with
respect to the universe U iff the following conditions are satisfied:

(n;) for any atomic formula a € Sy and any j,k € E,, if j # k and
ja€Y, then |(ad,

(ng) if @ = o(ay,...am) and |; @ €Y, then there exist a rule (0j) and
indices k, k¢, 0 < k<n-—1, 1< ki <m,suchthat [f oy, €Y, |j ais
the premise of (¢j), and |g ai, is a conclusion of that rule. |; a such
that |, o € X, :

(n3) if @ = QzB and |; @ €Y, then there exists 7 = (j1,J2,...,Jm),
js <nfors=12,...,m, such that:

(a) wq(d,7),
(b) for every c € U there exists s,1 < s < m, such that |; B(z/c) € Y,

(c) for every js that occurs in the sequence 7 there exists a constant ¢ € U
such that |;, B(z/c) €Y.

For example, we shall define in a more detailed way the notion of a con-
sistent set in three-valued Boc¢var-Finn’s logic. The considerd example is
especially interesting in that neither disjunction nor conjunction are inter-
preted in E3 as the maximum and minimum functions, respectively. In
order to obtain a clear description of a consistent set in this logic, let us
divide the rules (tbfn), — (tbfV) into the following groups:

(ra) = {(tbfn)o, (tfn)1, (tbfn)2, (805k)2, (thfa)o},

(rg) = {(tbfk)1, (tbfa)r, (tbfi)o},
(re) = {(tbfk)o, (tbfa)a, (tbfi)2},
(rp) = {(tbf3)o, (tbfV)2},
(re) = {(tbfI)1, (t0fY)1},
(rr) = {(tbf3)2, (tbfV)o}.

The tableaux which may occur as premises of of rules in groups (r4) —
(rp) wiil be denoted by ¥ 4,YXp,YX¢c,Xp, g, LF, respectively. The table-
aux being respectively conclusions of these rules will be denoted by:
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LA, “oriE A fdy T DB Ba BBy Bir T RO Ol § 2041 O 0 Ot 2D1(b);
X (8) ZFi(a,b)s ZFy(b)-

Let Y C 7T(X),X C Sy, where Sy is the set of all well-formed U-
formulae of the language of Bocvar - Finn’s three-valued predicate calculus

[Botvar, Finn 1976]. The set Y is consistent iff the following conditions are
satisfied:

(by) for any atomic @ € S and j = 0,1,2, the tableau |; a is in Y iff, for
k=0,1,2, k # 7 implies [y a € Y,

(bg) for any a, 3 € Sy, the set Y contains no tableau having a sub-tableau
of the form |; a = f,

(bg) if ¥4 €Y, then ¥4, €Y, or correspondingly ¥ 4,4, € Y,
(by) if ¥p €Y, then either Xp, B, €Y, or Xp, B,, €Y,

(bs) if Z¢c €Y, then either ¢, €Y, or X, 0y €Y, or
Xeacn €Y,

(bg) if Zp € Y, then ¥Di(a) €Y for any a € U,
(b7) f Xg €Y, then Xg ;) €Y for some b € U,

(bg) if ¥p € Y, then either Ly (,4) € Y for some a and any b in U, or
opyp) €Y for every b e U.

Returning to our discussion of an arbitrary n-valued logic, we should
note that each consistent set may be extended to a maximal consistent
set, i.e. a set determined by the present condition (n;), and conditions
(n2), (n3) strengthened to equivalencies. A maximal consistent set will be
also called a set of true statements.

Lemma 2
Let Y C 7 (Sy) be a consistent set. Then there exists a valuation
v : At — E,, such that, for any formula o € Sy, hy(a) =3 <|ja €Y.

Proof
Let X be a set, and let the conditions (n1),(ng) i (n3) be satisfied. We
define v : At = FE, as follows:

j if |ja € X for atomic a,
v(a) = . .
anything in the opposite case.

Of course, v is a function by (n;). It is easy to show that, for any a € S,
h'(a) = j implies |; o € X. We will prove it by induction. For atomic



P. Borowik, 77

a we have h'(a) = v(a) = j, and |; p € Y by definition of v. Now let
a = olay,...,qny), and assume that h'(e;) = j; implies midjo; €Y
for 1 < ¢ < m (inductive assumption). Since h¥(a) = h*(o(1,...,0m) =
s(h¥(e;),...,h'(am)), and the set Y is consistent, then s#(j1,...,Im;J)
and there exista a rule (o) such that (|; o, |j; as) € (07) for 1 <i <m.
This yields |; « € Y. If a = QzfB(z) and |; QzB(z) € Y, then condition
(n3) implies that wg (71,72, .. .,Jm; J) is satisfied for some j;, jo, . .., jm, and
for every s, 1 < s < m, there exists a € U such that mid;,3(z//a) €Y.
Then from our inductive assumption it follows that h,(8(z//a)) = js.
By the inductive assumption, the above condtion is satisfied for s = 1, 2,
...,n. Hence by condition wg(j1,J2,...,Jm;J) and the defintion of the va-
luation we have h,(Qz8(z)) = 3. m

Let Z be a finitary property, which will be denoted shortly by (fp), i.e.
a property such that a set Y has the property Z iff all finite subsets of Y
have the property Z. Now let £ C 7(S5) bea (fp), and let ¥ C S§.
The set Y of sentences is said to be K-consistent iif there exist a X € K
such that X = 7*(Y) (recall that 7*(Y) ={|; a:j € Ef,a € Y}). A
family R C 7(S§) is said to analytically consistent iff for every Y € R the
following conditions are satisfied:

(s1) for any atomic «, and any ¢,j € E,, if i#j and |;a €Y, then
|J « ¢ Y,

(so) if |; o(Br,P2,.-.,Pm) €Y, then there exist a rule (07) and a tableau
|; Bk such that the premise of (o1) is |; 0(B1, B2, .-, 8m), |; Bk belongs
to the set of conclusions of (o), and Y U {|; Bk} € R,

(s3) if |; Qza(z) € Y, then there exists a finite sequence 7, jo, . . ., jk such
that condition wq(j1,J2,- -, Jk; ¢) is satisfied and there exists a set X
with following properties:

(z) for every formula a(z/a),a € U there exists s, 1 < s < k, such
that |;, a(z/e) € X,

(12) for every js, 1 < s <k, there exists a € U such that
lj, a(z/a) € X,

(i) YUX € R.

Lemma 3
Let R be an analytically consistent family, and let Y be an R-consistent
set. Then each configuration for the set Y is open.

Proof
Let Y be R-consistent, and let D be a finite configuration containing a
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branch G such that YUG is R-consistent. If we extend branch G to a branch
G using rules of the type (07)(Qj7), then the set Y UG is R-consistent by
conditions (s2) and (s3) of the definition of analytic consistency. Hence
if Y is R-consistent, then in the construction of the configuration for ¥ on
each level there exists at least one branch G such that Y UG is R-consistent;
by condition (s1), G must be open. m

Theorem 2

Let R be an analytically consistent family of sets of formulae, and let Y be
an R-consistent set. Then the set Y is satisfiable in any structure with a
countable universe.

Proof
Let Y be an R-consistent set of formulae. Then there exists a set X € R
such that X = 7*(Y). Let us order the set X of tableaux into a sequence

BTN FIRENS (TR
We will create a consistent sequence of tableaux ¢q,92,...,¢k,... as fol-
lows:

(a') V1.7

(b) suppose that we have already constructed the m-th element of the
sequence, m > 1. If the elements ¢;, p2,..., @, of the sequence form
a set which belongs to R, then we extend the above sequence as
follows:

(2) if om =|; o(a1,ae,...,as), then we attach to the sequence
1,92, ... ,9m the element |;, a;,Ym41, obtaining the sequence

P1,$2;- -+, Pm; 'Jg Oty Ym+1,

where the pair (|; o(oy,,...,as),|; o¢) belongs to the rule (o)
and satisfies condition (s3) of analytic consistency,

(i2) if the tableau ¢,, is of the form |; Qza(z) and the sequence
J1,J2, ..., J¢ satisfies condition (s3) of analytic consistency definition,
then we extend the sequence 1, @9,

.--»%m to the sequence @1,¥2,...,¥m, |j1 a(c), ljz alez),. .., Ijt
a(ct), Ym+1, where some of the constants ¢y, cs,...,¢, (not necessa-
rily all of them) are subject to the limitations following from applying

rule (Q1).

Evidently, the set Z of the elements of the sequence 1, ¢2,..., @k, ... is a
consistent set for the universe consisting of the constants

C11,Cl2,...,01“,021,022,---,CQW,---,le,sz,---,Cmtm,---
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The set of the above-mentioned constants is obviously countable. By
Lemma 2, the set Z is satisfiable. m

Lemma 4.

Let Y be an arbitrary set of sentences of a language of n-valued first-order
predicate calculus. If the set Y is satisfiable, then there exists an open
configuration for some set Z C 7*(Y).

Proof
Immediate by the satisfiability of the set ¥ and Lemma 2. m

A formula « is said to be a tableau consequence of a set X, which will
be denoted shortly by a € CtX, iff there exists a closed configuration for
each of the sets

T*(X)U{lj a} for j € E,—E;

(recall that E} denotes the set of distinguished values).

A formula « is said to a be a semantic consequence of a set X, which
will be shortly denoted by a € Cgn X, iff for any valuation v : At — E,
and any B € X, hy(B) € E;} implies h,(a) € E;.

Theorem 3
If a € CgnX, then a€ CtX.

Proof

Let @ € Cgy. Assume that o ¢ CtX. Then there exists j € En — E7
such that the configuration 7*(X) U {|; a} is open. Hence the above
configuration has at least one open branch G containing the tableau |; a.
The set of elements of G is R-consistent and satisfiable. Hence there exists

a valuation v, : At — E, such that h, (@) = j i j < r. This implies
huy (@) ¢ E;. m

Corollary 1. (completeness of the block tableau system)
Let Y U{a} C Si. Then a € CtY iff a € CypY. m

Corollary 2.
If Y C S5, then Y is satisfiable iff each of its finite subsets X C Y is
satisfiable.

Proof

Of course, if there exists an open configuration for the set 7(Y), then there
also exists an open configuration 7(X) for some finite subset X C Y. By
Corollary 1, this implies Corollary 2. ®

Corollary 3.
If a set Y C S§ is satisfiable, then Y is also satisfiable in a structure with
a countable universe.

Proof
Immediate from the completeness theorem and Lemma 4. ®
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