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Abstract. We discuss a general view of solutions for characteristics of non-classical
queueing systems with random capacity customers (demands), i.e. we suppose that
each customer is characterized by some random capacity (volume) and the whole
capacity (total volume) of customers present in the queueing system is bounded by
a constant walue V' > 0. We determine the general view of the stationary number
distribution and loss probability in the systems under consideration as compared
with corresponding classical queueing systems. It’s turned that in some cases we
can write expressions for non-classical characteristics of finite total capacity queues
if corresponding classical characteristics are known.

1. Introduction

In present work we investigate non-classical queueing systems with random
volume demands and finite total (demands) capacity. It means that 1) each
demand is characterized by some non-negative random space requirement
(capacity or volume) (; 2) the total sum o(t) of space requirements (volumes)
of all demands present in the system at arbitrary time moment ¢ is limited by
some constant value V. which is named the memory volume of the system;
3) we also assume that service time £ of the demand and it’s volume ( are
generally dependent.

Such systems have been used to model and solve various practical problems
occurring in the design of computer and communicating systems.

Let F(z,t) = P{¢ < z,£ < t} be the distribution function of the random
vector (¢,€). Then L(z) =P{( < 2} =F(z,00), B(t) =P{¢ < t} = F(o0,1)



108 Oleg Tikhonenko

are the distribution functions of the demand volume and service time, respec-
tively. The space is occupied by the demand at the epoch it arrives and is
released entirely at the epoch it completes service. The process o(t) is called
the total (demands) volume.

Total volume limitation leads to additional losses of demands. A de-
mand having the space requirement z, which arrives at the epoch 7, when
there are idle servers or waiting positions, will be admitted to the system if
o(t —0) +x > V. Otherwise (o(1 — 0) + 2z < V), the demand will be lost.

Various queueing systems with limited memory volume were analyzed in
the papers [1 8|. It follows from the papers that it’s possible to determine a
stationary demands number distribution and loss probability for the following
queueing systems:

1) M/M/n/(m,V) (M/M/n/m-type system in which a demand has an
arbitrary distributed volume, but service time is independent of the demand
volume and the total volume is limited by the value V"> 0, 1 < n < o0,
0<m< );

2) M/G/n/(0,V) system (generalized Erlang system or M/G/n/0-type
system with an arbitrary joint distribution of service time and demand volume
and limited total volume);

3) processor-sharing system with an arbitrary joint distribution of service
time and demand volume and limited total volume.

Our aim is to show that it is possible to determine some characteristics of
non-classical (in the above sense) queueing systems, if the similar characteris-
tics of classical systems are determined. In other words, we want to show the
relation between similar classical and non-classical characteristics.

We'll demonstrate this approach by some examples.

2. M/M/n/m and M/M/n/(m, V) systems

Let a be the intensity of input flow, u be the parameter of service time.
Denote as pr = P{n = k} the stationary probability of presence of k demands
in the classical system, k = 0,n +m. Then we have the following well known
equations for pg:

0= —apo + pp1; (1)

0= apo — (a + p)p1 + 2up2; (2)

0 =apy—1 — (a+kp)py + (k + Dpppyr, k=1,n —1; (3)
0 = apr—1 — (a4 np)py + nppr1, k= 1,n+m —1; (4)
0 = apntm—1 — NEPntm- (5)
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Suppose now that each demand in the non-classical system is characterized
by some random volume (, and service time & doesn’t depend on its volume.
Let L(x) be the distribution function of the random variable . Suppose that
the total demands volume is limited by value V' > 0.

We suggest a hypothesis that probabilities rp, = P{n =k}, k =0,1,...,
for the second system have the following form:

Tk = CpkLS(k)(V), k= 1,2, cey

where Lik) (x) is the kth order Stieltjes convolution of the function L(x), i.e.
x
L@ =1, 1% (2) = / L5 V(@ — wydL(u), k=1,2,....
0

To conform this hypothesis, we have introduce the following functions
having (for & > 1) the following probability sense:

ge(x) =P{n=k,o < z}, (6)

where o is the stationary total volume of the demands present in the system.
It’s clear that r, = gx(V), k = 1,2,.... According to our hypothesis we
assume that

gr(z) = Cpp L (2), k=1,2,.... (7)

We obtain the following equations for introduced functions:

0=—argL(V) + pry; (8)

1%
0=argL(V) — a/ g1(V —x)dL(z) — pry + 2urs; 9)

0
1% 1%
0= a/ ge—1(V —x)dL(x) — a/ 9. (V —x)dL(z) — kpry, + (kK + D) prg4q,
0 0

k=1n—1; (10)

1% 1%
0=a [ gua(V = a)dLix) ~a | iV~ 0)dL() ~ o+ mpn,
0 0

k=n,n+m—1; (11)

\%4
0= a/ gn-i-m—l(v - x)dL(:IZ) — NUTn+m- (12)
0
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It’s easy to see that, if we substitute functions (7) to the equations (8)—
(12), we obtain the equations (1)-(5) for pg. So, our hypothesis is truthful,
and we have

Tk = n .k

From the normalization condition we obtain [9]

-1

n n k nn n+m
o= |3 POy + Y F L)
k=0 ’ " k=n+1

For the loss probability we have [9]

n—1 n—1
pr=1—(np)"! Zk‘rk —p! (1 - Z?%) :
k=0

k=1

3. M/M/1/(oc0, V) system with preemptive discipline

Let us consider M /M /1/(co, V') system with two Poisson input flows: the first
is the flow of the first priority with parameter a; and the second is the flow of
the second priority with parameter ay. Demands from the first flow gain an
advantage over demands from the second one in accordance with preemptive
resume discipline. Each demand is characterized by some random volume (
with the distribution function L(x) for the both priorities. The total demands
volume o(t) is limited by the value V' > 0. A demand arriving to the system
will be lost in accordance with the above agreement. Demands service time
doesn’t depend on its volume. Let @1 and pg be the parameter of service time
of the first and second priority demands, respectively.

Our aim is to determine the stationary joint distribution of numbers of
both priority demands present in the system and stationary loss probability
for demands of each priority.

Let m1(t) and 72(¢) be the number of demands of the first and second
priority accordingly present in the system at time moment ¢, Czj(t) be the
volume of jth demand of ith priority (¢ = 1,2). Then system behavior can be
described by the following Markov process:

(m(®sme (i@, = L ®: 1), = Lm(?)) (13)
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n(t) n2(t)

It’s obvious that o(t) = Z Cit) + Z ).
We shall characterlze the process (13) by the following functions:

G(i,j,x,t) = P{nl(t) = i’772(t) = j,U(t) < $}7 i,j=0,1,.., max(ivj) > 1
P(i,j,t) =P{m(t) =i,m2(t) = j} = G(i,4,V,t), i,5 = 0,1, ..., max(i,j) > 1.

If stationary condition takes place (V' < 00), we have o(t) = o, n;(t) = n;,
1= 1,2, in the sense of a weak convergence. Then the following limits exist:

p(070) = tILIEQ P(()?Ovt) = P{nl =1n2 = 0}7 (14)

9(i,j,x) = lim G(i, j,a,t) = P{m = i,mp = j,0 <z},
i,j=0,1,..., max(i, j) > 1 (15)

p(i,j) = lim P(i,j,t) = P{m =i,m = j} = 9(, 5, V),
i,j=0,1,..., max(i, j) > 1. (16)

It can be easy shown that the functions (14) (16) satisfy the following
equations:
0= —(a1 +a2)p(0,0)L(V) + mp(1,0) + p2p(0, 1); (17)

v
0=a1p(0,0)L(V) — (a1 + a2) /0 9(1,0,V — x)dL(x) — pap(1,0) + u1p(2,0); (18)
v v
0= al/o g(i — 1,0,V —z)dL(x) — (a1 + az)/o 9(1,0,V —x)dL(x)—
_Mlp(i’0)+ﬂlp(i+170)a i:273a~'~; (19)

;
0 = asp(0, 0)L(V) — (a1 + as) /0 90,1,V — 2)dL(z)—

—p2p(0,1) + p1p(1, 1) + pap(0, 2); (20)
\% \%
O:ag/ 9(0,j — 1,V —x)dL(x) — (a1 + a2) / 9(0,4,V —x)dL(zx)—
0 0
—p2p(0,7) + pap(1, j) + p2p(0,5 + 1), j = (21)

%4
0:a1/0 g(i—l,j,V—x)dL()+a2/O glir =1,V — 2)dL(z)—

14
—(&1+CL2)/ g(z,j,V—x)dL(J:)—ulp(z,])+u1p(z+1,j), i7j:1a27"'7 (22)
0
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and the following equilibrium equations take place:

a1p(0,0)L(V) = u1p(1,0), asp(0,0)L(V) = uap(0,1), (23)
1%
(a1 +a2)/ 9(i,4,V = 2)dL(x) = pup(i + 1), i = 1,2, j=0,1,..., (24)
0
1%
0

For similar classical preemptive discipline system M /M /1/oo with two priority
classes we can obtain for stationary functions r(i,j7) = P{m = i,m2 = j},
i,7 =0,1,..., the following known [10] equations:

0= —(a1 + a2)r(0,0) + p17(1,0) + w2r(0,1); (26)

0 =a1p(0,0) — (a1 + a2 + p1)r(1,0) + p17(2,0); (27)

0=ar(i—1,0) — (a1 +az + p1)r(i,0) + par(i + 1,0), i = 2,3, .. .; (28)

0 =aor(0,0)L(V) — (a1 + a2 + p2)r(0,1) + p1r(1,1) 4+ par(0,2); (29)

0= &QT(O,j - 1) - (a’l +az + HQ)T(OJ) +/1:17"(17]) +/J:27'(07j + 1)’ .] - 2a 37 B (30)

0=ayr(i—1,7)+asr(i,j—1)— (a1 +as+pu1)r(, j)+pir(i+1,5), i, =1,2,..., (31)
and the the following equilibrium conditions take place:

a17(0,0) = u17(1,0); (32)

(a1 +ax)r(i,j) =mr(i+1,7),i=1,2,...,5=0,1,...; (33)

azr(0,7) = pop(0,5 + 1), 5 =0,1,.... (34)

Assume that numbers r (4, j) sutisfy equations (26) (34) and normalization

oo o0
condition > > r(i,7) = 1. We suggest a hypothesis that
=0 j=0

g9(i,j,x) = Cr(i, )L (x), i,j = 0,1,..., max(i,5) > 1, (35)

where C' is some constant value. This hypothesis is truthful, as it follows from
the direct substitution of the function (35) to equations (26) (34). By this way
we obtain equations (17)—(25) for the functions r(i, 7). So, for probabilities
p(i,7) we have
p(i,5) = Cr(i, /)L (V), i,j = 0,1,...,
oo o0

where C' can be obtained from the normalization condition > > p(i,j) = 1.
i=07=0
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It’s known [10] that equations (26)-(34) can be solved by using the gener-
00 00 o
ation function R(z1,22) = > > p(i, )zt 23. Then we have [10]
i=05=0

(1—p)d —p12")
(1= p12* — pazo)(1 — p12¥z1)’

R(Zl, 22) =

where p1 = a1/p1, p2 = az/p2, p = p1 + p2,

R + as(1 — 22) + p1 — v/[ar + a2(1 — 22) + 1] — day
N 20,1 '

Now we can calculate the numbers 7(3, 5):

T(07 0>: 1- Ps

e iljl 8z18z2

R(Zl, ZQ)

, 4,7 =0,1,..., max(i,j) > 1.

21=22=0
So, the probabilities p(7,j) can be determined as

C 8i+j
- R(Zl, 22)

(i+7) — S
z!j! 571071 Ly L(V), i,7=0,1,..., max(i,j) > 1,

z1=22=0

p(i, j)=

where the constant value C' can be calculated from the normalization condi-
tion, i.e.

-1
8”3

1
= p+ 21, %
ZZ@'J' 8z1822 Bz, 22)

=1 j=1

L£i+j)L(V)

21=22=0

Now we can determine loss probabilities pl and pl for both priority demands
accordingly from the followin equilibrium equations:

o0
ar(1—pj) mZZpZJ az(1—p7) = p2 Y _p(0,7),
=1

i=1 j=0

whence we have



114 Oleg Tikhonenko

Note that for more general case when demands from different priority have
generally different volume distribution (with distribution functions L (z) and
Ls(x) accordingly), the hypothesis

g(i, j,x) = Cr(i, j) L) « LY (2)
is not truth.
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